
 
 

EFFECTS OF POLARIZATION 

IN A DISTRIBUTED RAMAN FIBRE AMPLIFIER 
 

 

By 

 

Kennedy Mwaura Muguro 

 

Submitted in fulfilment of the requirements for the degree of 

 

PHILOSOPHIAE DOCTOR 

 

in the Faculty of Science at the 

Nelson Mandela Metropolitan University 

 

 

 

December 2011 

 

 

Promoter: Prof A. W. R. Leitch 

 

The bursary assistance of the NMMU research office and the African Laser Centre (ALC) toward this 

research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the 

author and not attributed to any persons or organisation. 

 



2 
 

DECLARATION 

 

I, KENNEDY MWAURA MUGURO      

 

Student Number:  S208028818     

 

hereby declare that the treatise/dissertation/thesis for PHILOSOPHIAE DOCTOR is my own 

work and that it has not previously been submitted for assessment or completion of any 

postgraduate to another University or for another qualification. 

 

 

 

 

 

Signature:    

 

Date:    

  



i 
 

 

 

 

 

 

 

 

 

 

 

 

Unto Him who is able to do 

exceeding abundantly above all that we ask or think 

be the glory. 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Acknowledgement 

First I would like to appreciate the people and organisations whose contribution and 

involvement made this work a success and hitch free. In this regard I particularly thank my 

promoter professor A.W.R Leitch for his great contribution to this work and for giving me an 

opportunity to learn under him, and acquire skills in this field, thereby moulding my future in 

a very special way. I thank Dr Lorinda Wu for introducing me into the field of optical fibre 

and for her wise management of the optical fibre laboratory. I appreciate Dr T. B Gibbon for 

assistance in the laboratory, many encouragements and discussions that generated new ideas 

and perceptions toward this work. I specially acknowledge Dr D. W. Waswa for being 

resourceful and helpful in a profound way during these studies. I extend my appreciation to 

R. Gamatham for willingly assisting me to familiarize with the optical fibre measurement 

equipment in my first days. Special thanks to Mrs Alta Beer for coordinating and efficiently 

executing every administrative task in regard to the smooth running of this program. I thank 

all friends and members of Nelson Mandela Metropolitan University (NMMU) physics 

department. I also appreciate the Telkom South Africa staff at Sidwell, Port Elizabeth for 

their kindness and allowing us to use the Telkom facilities for the field measurements. I 

specially am grateful to the Telkom Centre of Excellence at Nelson Mandela Metropolitan 

University, for creating an enabling environment for this project. I thank all our supporters 

who include Telkom S.A. Ltd, Ingoma Communications Services (Pty) Ltd, Hezeki 

Contracting (Pty) Ltd, Dartcom1 (Pty) Ltd and THRIP, well as the NRF, NLC and the ALC. 

Finally I convey gratitude to all the members of our family for the moral support they have 

accorded to me during this period. Particularly I appreciate great encouragements and prayers 

from my Dad. Many thanks to my dear wife Anne and our children Faith and Favour, for 

being very supportive, focus and patient all along. 

 

 

 

 

 

 



iii 
 

Table of Contents 
Abstract .................................................................................................................................................. vi 

Abbreviation ......................................................................................................................................... vii 

Chapter One ............................................................................................................................................ 1 

Chapter Two ............................................................................................................................................ 6 

2.0 Introduction .................................................................................................................................. 6 

2.1 Polarization states of light representation ................................................................................... 6 

2.1.1 Degenerate polarization states .............................................................................................. 8 

2.1.2 Poincaré sphere ..................................................................................................................... 8 

2.1.3 Stokes polarization parameters ............................................................................................. 9 

2.1.4 Mueller and Jones matrix ..................................................................................................... 10 

2.2 Polarization mode dispersion ..................................................................................................... 11 

2.2.1 Birefringence ........................................................................................................................ 11 

2.2.2 Polarization mode coupling ................................................................................................. 13 

2.3 PSP and PMD bandwidth ............................................................................................................ 13 

2.4 Power dependent birefringence ................................................................................................. 14 

2.5 Polarization dependent loss ........................................................................................................ 15 

2.5.1 Definition and effects of PDL ............................................................................................... 15 

2.6 Cascaded PDL and PDL evolution ................................................................................................ 16 

2.7 PDL in the presence of PMD ....................................................................................................... 17 

2.8 Statistics of PDL ........................................................................................................................... 18 

Chapter Three ....................................................................................................................................... 19 

3.0 Introduction ................................................................................................................................ 19 

3.1 Origin of Raman scattering ......................................................................................................... 19 

3.1.2 Stimulated Raman scattering ............................................................................................... 20 

3.1.3 Raman Gain spectrum in optical fibres ................................................................................ 21 

3.4 Characteristics of Raman fibre amplifier .................................................................................... 21 

3.5 Pumping techniques ................................................................................................................... 22 

3.6 Polarized Raman fibre amplifier ................................................................................................. 23 

3.6.1 Average Raman gain ............................................................................................................ 24 

3.6.2 Raman PDG and on-off gain ................................................................................................. 25 

3.7 Amplified spontaneous Emission noise ...................................................................................... 25 

3.7.1 OSNR and bit error ratio ...................................................................................................... 27 



iv 
 

Chapter Four ......................................................................................................................................... 28 

4.1 Introduction ................................................................................................................................ 28 

4.2 Experimental and simulation setup ............................................................................................ 29 

4.3 Raman gain and pump power ..................................................................................................... 30 

4.3.1 Raman gain dependence on fibre length ............................................................................. 31 

4.3.2 Gain and input signal power ................................................................................................ 32 

4.3.3 Raman gain and concatenated fibres .................................................................................. 34 

4.3.4 Gain variation with wavelength ........................................................................................... 35 

4.4 Influence of signal input states of polarization on Raman amplification gain in single mode 

fibres. ................................................................................................................................................ 37 

4.4.1 Low PMD fibre ...................................................................................................................... 37 

4.4.2 High PMD fibre ..................................................................................................................... 38 

4.4.3 Effect of fibre length on SOPs dependent gain .................................................................... 39 

4.4.4 Gain variation with arbitrary SOPs ....................................................................................... 41 

4.5 PMD effects and optical noise .................................................................................................... 42 

4.5.1 Impact of ASE noise on system performance ...................................................................... 43 

4.5.2 Effects of ASE noise on the eye diagram.............................................................................. 45 

Chapter Five .......................................................................................................................................... 48 

5.1 Introduction ................................................................................................................................ 48 

5.2 Statistics of net gain .................................................................................................................... 49 

5.3 Experimental setup ..................................................................................................................... 52 

5.4 Effects of polarization scrambling technique ............................................................................. 53 

5.5 Raman on-off gain distribution ................................................................................................... 55 

5.5.1 Short fibre length ................................................................................................................. 55 

5.5.2 Standard length fibre ........................................................................................................... 56 

5.5.3 Long length fibre .................................................................................................................. 58 

5.6 Dependence of PDG and signal gain fluctuation on fibre PMD .................................................. 59 

5.6.1 Field measurements for high PMD fibre .............................................................................. 60 

5.7 Signal power distribution ............................................................................................................ 63 

5.8 Raman gain and PMD characterization of fibre .......................................................................... 65 

5.8.1 Relation between PDG and on-off gain ............................................................................... 66 

5.8.2 Determination of fibre PMD parameter ............................................................................... 66 

5.8.3 Effects of PDL and SNR ......................................................................................................... 69 

5.9 Forward and backward pumped Raman PDG ............................................................................. 71 



v 
 

Chapter Six ............................................................................................................................................ 73 

6.0 Introduction ................................................................................................................................ 73 

6.1 Measurement setup .................................................................................................................... 74 

6.2 Statistics of RFA gain in the presence of PDL .............................................................................. 76 

6.3 Simulation of PDL/PDG interaction in the presence of PMD ...................................................... 78 

6.3.1 Wavelength dependence of RFA gain in the presence of PDL ............................................. 80 

Chapter Seven ....................................................................................................................................... 83 

7.0 Introduction ................................................................................................................................ 83 

7.1 Measurement setup .................................................................................................................... 85 

7.1.1 Effects of scrambled pump on signal pulling ....................................................................... 85 

7.2 Pump-signal orientation on the Poincaré sphere ....................................................................... 87 

7.3 Effects of fibre length and PMD on polarization pulling ............................................................. 90 

7.3.1 Dependence of pulling on signal wavelength ...................................................................... 92 

7.4 Limitations of Raman polarization pulling in fibre ...................................................................... 93 

Chapter Eight ........................................................................................................................................ 96 

Appendix I ........................................................................................................................................... 100 

PDG-PDL interaction in the presence of PMD .................................................................................... 100 

Appendix II .......................................................................................................................................... 101 

Pump and signal SOPs variation with pump power ............................................................................ 101 

Appendix III ......................................................................................................................................... 102 

Equipment and components used in experimental work ................................................................... 102 

Appendix IV ......................................................................................................................................... 103 

Polarization of light representation .................................................................................................... 103 

Appendix V .......................................................................................................................................... 104 

Appendix VI ......................................................................................................................................... 105 

Appendix VII ........................................................................................................................................ 106 

Research outputs of the author .......................................................................................................... 106 

References .......................................................................................................................................... 108 

 

 

 



vi 
 

Abstract 
The need to exploit the large fibre bandwidth and increase the reach has seen the application of 

the Raman fibre amplifier (RFA) become indispensable in modern light wave systems. The 

success and resilience of RFAs in optical communication is deeply rooted in their unique optical 

properties and new technologies which have allowed the amplifier to come of age. However, the 

full potential of RFAs in optical communication and other applications are yet to be realized. 

More so are its polarization properties which still remain largely unexploited and have not been 

fully understood. In this work, fundamental issues regarding distributed RFA have been 

investigated with the aim of acquiring a better understanding of the amplifier polarization 

characteristics which have potential applications. In particular the effects of polarization mode 

dispersion (PMD) and polarization dependent loss (PDL) have been demonstrated both by 

simulation and experiment. The possibility of Raman polarization pulling in single mode fibres 

(SMFs) has also been addressed. Polarization sensitivity of RFA has been known for a long time 

but the clear manifestation of it has become evident in the advent of modern low PMD fibre. 

Unlike EDFAs which make use of special doped fibre, RFAs require no special fibre for 

operation. Besides, RFA uses a very long length of fibre and as such the fibre polarization 

characteristics come into play during amplification. 

In the demonstrations presented in this thesis a fibre of PMD coefficient < 0.05 pskm-1/2 was 

regarded as low PMD fibre while one having coefficient ≥ 0.05 pskm-1/2 was categorized to have 

high PMD unless otherwise stated. Several experiments were performed to evaluate the RFA gain 

characteristics with respect to fibre PMD and the system performance in the presence of noise 

emanating from amplified spontaneous emission (ASE). Analysis of Raman gain statistics was 

done for fibres of low and high PMD coefficients. The statistics of PDG and on-off gain were 

eventually used to demonstrate the extraction of PMD coefficients of fibres between 0.01- 0.1 

pskm-1/2 using a forward pumping configuration. It was found that, at increasing pump power a 

linear relationship exists between forward and backward signal gain on a dB scale. The 

interaction of PDL and Raman PDG in the presence of PMD were observed at very fundamental 

level. It was found the presence of PDL serves to reduce the available on-off gain. It was also 

established that the presence of PMD mediates the interaction between PDG/PDL. When PMD is 

high it reduces PDG but the presence of PDL introduces a wavelength dependent gain tilting for 

WDM channels. Further analysis revealed that signal polarization is influenced by the pump SOP 

due to the pulling effect which is present even at moderate pump power. 
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Abbreviation 
ASE – amplified spontaneous emission 

BER – bit error ratio 

CD – chromatic dispersion 

DCF – dispersion compensating fibre 

DGD – differential group delay 

DOP – degree of polarization 

DRBS – double Rayleigh backscattering noise 

DSF – dispersion shifted fibre 

DWDM – dense wavelength division multiplexing 

EDFA – erbium doped fibre amplifier 

FWHM – full width at half maximum 

FWM – four wave mixing 

JME – Jones matrix eigenanalysis 

MPI – multipath interference  

NRZ – non-return to zero 

NZDSF – non-zero dispersion shifted fibre 

OSA – optical spectrum analyzer 

OSNR – optical signal to noise ratio 

PDG – polarization dependent gain 

PDL – polarization dependent loss 

PMD – polarization mode dispersion 

PON – passive optical network 

PSP – principal state of polarization 

RFA – Raman fibre amplifier 

SBS – stimulated Brillouin scattering 

SSMF – standard single mode fibre 

SOP – state of polarization 

SPM – self phase modulation 

SRS – stimulated Raman scattering 

XPM- cross phase modulation 
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Chapter One 

Introduction 

Optical fibre communications success story is traceable in the concurrent research and 

development of its four basic elements. These are: the optical source (Laser), modulation, 

transmission medium (fibre) and optical detector. The development of optical fibre and other 

facets in communications has been motivated by the demand for long haul applications, high 

speed data communications and transmission capacity. The demand for bandwidth is 

increasing due to among other things the growing internet traffic coupled with new 

applications. Social networking which is one of the new applications has taken the centre 

stage and was the theme of year 2011 Southern African Telecommunication Networks and 

Applications Conference (SATNAC 2011). 

Although the concept of propagation of light by total internal reflection was known for 

centuries with many demonstrations of the idea, it was not until the late 1950s when the first 

practical glass fibre was fabricated (Hecht, 1999). Even so the fibre had high loss due to light 

absorption and attenuation and could not be used for optical communications. The advent of 

low loss optical fibre in the 1970‟s paved the way for optical fibre communications as well as 

the fabrication of nonlinear optical devices. The first optical communications systems 

operated in the 850 nm transmission window and were limited in capacity due to high loss 

and intermodal dispersion (Keiser, 2000). With further development of optical sources 

transmission was shifted to the 1310 nm transmission window where attenuation is ~0.5 

dB/km. This window has the advantage of zero dispersion but because of its relatively high 

signal loss and also the presence of water peak (impurities) at the vicinity, it was abandoned 

since it could not conveniently accommodate the transmission of wavelength division 

multiplex (WDM) channels. Further development of laser sources resulted in migration to the 

1550 nm transmission window where attenuation is a low ~ 0.2 dB/km. Despite the diverse 

achievements made so far in advancing and maturing the state-of-the-art of optical systems, 

many issues concerning the future of the system in regard to efficiency and the ever 

increasing demand for capacity still need to be addressed. In particular, the interactions 

between linear and nonlinear polarization effects in optical fibre which manifest at high 

optical power is still a subject of great concern. More attention is required in addressing this 
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issue because as more wavelengths are introduced in the fibre, the more the average optical 

power will increase in the fibre. 

Although modern fibres have low attenuation of ≤0.2 dB/km, the value is still large enough to 

limit the distance of transmission to a few hundred kilometres. The problem of attenuation 

was initially addressed using optoelectronics repeaters in long-haul systems (Tricker, 2002). 

However, signal regeneration was a major drawback due to the low speed of electronics 

involved and the numerous repeaters required in the system. The development of optical 

amplifiers in the early 90‟s was a major boost to fibre communication and resulted in 

elimination of repeater systems and the birth of all-optical systems with increased capacity. 

Optical amplifiers are characterized by large amplification bandwidth which has enabled the 

application of dense wavelength division multiplexed (DWDM) transmission. Indeed, the 

DWDM technique owes its success to the introduction of optical amplifiers and has resulted 

in increased capacity and span. There is also the technique of optical time division 

multiplexing (OTDM) which has been proposed as an alternative method for increasing the 

fibre transmission capacity (Spirit, 1994). 

Erbium-doped fibre amplifier (EDFA) is one of the most popular and widely used only by 

demand and capacity but also by its high performance coupled with a stable dynamic 

behaviour. As a result EDFA has been exploited close to its theoretical limits such that its 

lowest noise figure is close to the quantum limit of 3 dB. This noise figure is a limitation to 

the near future systems. The high power associated with the EDFA amplified WDM system 

is a source of nonlinear signal impairments which are known to affect the performance of 

optical devices such as compensators (Bononi et al, 2003). These nonlinearities are caused by 

induced nonlinear refractive index which occurs when a fibre is subjected to a high intensity 

beam (Agrawal, 2007). 

The other limitation of EDFA is its relatively narrow bandwidth compared to the available 

fibre bandwidth. Modern fibre technology has virtually eliminated the water attenuation peak 

around 1400 nm in conventional single –mode fibres and has effectively opened the region 

between the second and third transmission window (Keiser, 2000). This implies that there is 

more bandwidth in such fibres which is usable for transmission. Example is AllWave
TM

 fibre 

which was designed for metro networks applications. 

Research on Raman amplification in optical fibre started the 1970‟s but the first 

demonstration of the use of the Raman fibre amplifier (RFA) was in 1999, approximately ten 
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years after commercialization of the EDFA (Bromage, 2004). The deployment of a highly 

competitive and seemingly sufficient EDFA was a major blow to RFA. Other factors that 

attributed to delay in the development and implementation of RFA included its low efficiency 

and also the unavailability of high power pump lasers that could provide the appropriate 

pumping wavelengths. However, due to its great potential in extending fibre bandwidth and 

now the availability of high power lasers, RFA could not be left out in the upgrading of 

existing networks and in the deployment of modern fibre networks (Islam, 2002). For 

example RFA has found applications in hybrid optical systems such as Raman/ EDFA, where 

it is used to increase amplifier spacing thus reducing the number of cascaded amplifiers in the 

system (H. Masuda, 2004). It has also been tested for metro application in extending the 

bandwidth in passive optical networks (PONs) (Kjaer et al, 2007). The potentials of RFA are 

yet to be fully exploited and may not be limited to optical communications but with new 

applications as well. 

Polarization effects in optical fibre are significant in regard to the operation and stability of 

optical communication systems as well as optical devices and can be classified as linear and 

nonlinear. Ideally a fibre is a circular dielectric waveguide designed to confine light inside 

the core during its propagation. Due to intrinsic and extrinsic perturbations on the fibre the 

core isotropic property is lost resulting in a linear birefringence. This birefringence is 

nonuniform and changes in magnitude and orientation all along the fibre length. When light 

is coupled into a single mode fibre it split into two modes which propagate along the slow 

and the fast axes of the fibre. There is also mode coupling where the two axes change 

orientation. These phenomena lead to polarization mode dispersion (PMD) which is a linear 

effect and has its counterpart second order polarization mode dispersion (SOPMD). Another 

linear effect is polarization dependent loss (PDL) which is present in optical devices 

incorporated in a fibre optic system. Optical devices such as couplers, beam splitters, 

isolators, multiplexers, etc all behave like partial polarizers. They have an axis of maximum 

and minimum transmission such that when polarized light passes through them it can be 

attenuated depending on device orientation. This loss leads to signal distortion and decreases 

the system signal to noise ratio (SNR) at the receiver. 

Single mode fibres have a tiny core with diameter ranging from 4 µm to 10 µm which is 

surrounded by a cladding of diameter 125 µm and having slightly lower refractive index than 

the core. As a result of high mode confinement, optical intensity in the core can be very high 

especially in an optical system employing WDM techniques and optical amplifiers. In this 
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case, the intense optical field can cause anharmonic motion of the bound electrons of silica 

and induce a power dependent refractive index. The resulting nonlinear effects are elastic and 

are collectively known as the Kerr effect. A high power channel will induce a nonlinear phase 

shift upon itself otherwise known as self-phase modulation (SPM). When two wavelengths 

are co-propagating they can impose a power dependent nonlinear phase shift on each other in 

which case the effect is known as cross-phase modulation (XPM). If three or four high 

intensity beams propagate simultaneously in a fibre they can induce Kerr nonlinearities by 

their beating which is known as four-wave mixing. Although Kerr nonlinearities cause 

limitations in optical communication systems they have found applications in the fabrication 

of optical devices. Similarly, some optical devices operate on a principle governed by these 

nonlinearities (Agrawal, 2008). 

There is also an inelastic nonlinear effect which is the cause of stimulated Brillioun scattering 

(SBS) and stimulated Raman scattering (SRS). The phenomenon of SBS is caused by 

resonance of optical waves with acoustic phonons while SRS is caused by the beating of two 

waves with a vibration mode of molecules involving optical phonons. SRS is the 

phenomenon behind Raman amplification in fibres and results in polarization dependent gain 

(PDG). This PDG, though detrimental in optical communication can also be exploited in 

other applications such as polarization pulling. (Martinelli et al, 2009). It is therefore 

significant to cultivate a good understanding regarding polarization effects in RFA which 

would enable new applications of this amplifier, thereby realizing its full potential. 

This thesis constitutes three goals, the first of which is to bring forth a clear understanding of 

how linear polarization effects influence the performance of RFA in modern fibres. The next 

goal is to bridge the gap between previous work that has been carried out using other types of 

fibres such as DCF and DSF and compare different pumping schemes using SSMF of low 

and high PMD. The third goal is to develop an experimental feedback which can be used to 

improve and support the existing theories of RFA. The small residue birefringence still 

existing in modern fibres is of great concern to the fibre industry. Increasing transmission 

span and capacity would introduce more optical power into the fibre resulting in the power 

dependent nonlinear birefringence. Investigating the behaviour and performance of RFA in 

the presence of linear and nonlinear birefringence would be highly significant. In most cases 

the fibre with appropriate parameters may not be available, thus one would resort to a 

simulation approach. 
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The work presented in this thesis is organized as follows: Chapter 2 consists of a brief 

explanation of theory with a focus on polarization of light as well as polarization effects in 

optical fibre. In particular the chapter addresses the various aspects of PMD and PDL effects 

with the aim of laying the required foundation toward the understanding of their 

manifestation in fibres. Chapter 3 deals with Raman amplification in fibres and considers the 

various facets of Raman gain. The chapter introduces the parameters that determine Raman 

gain and the contribution of amplified spontaneous emission (ASE) in the degradation of the 

amplifier optical signal to noise ratio (OSNR). Chapter 4 presents simulations and 

experimental results showing the gain characteristics of RFA in the presence of high and low 

fibre PMD. The RFA which was used in the measurement was newly acquired and assembled 

in our laboratory, thus becoming necessary to study its PMD characteristics. The chapter 

concludes by evaluating the system performance in the presence of ASE noise when a fibre 

of low and high PMD is employed in the amplification. Chapter 5 investigate the statistics of 

RFA due to PMD for different lengths of fibre and compares the three pumping schemes of 

Raman amplification. The chapter underscores the issue of extracting the fibre PMD 

parameter simply by analysing the gain statistics of a forward pumped RFA. Chapter 6 

considers the effects of PDL on Raman gain in the presence of PMD and shows the effects on 

the gain due to PDL positioning in the RFA system. Chapter 7 presents results on Raman 

polarization pulling showing the effect of fibre PMD, fibre length and pump power. Chapter 

8 bears the concluding remarks and unifies the findings of this work. 
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Chapter Two 

Polarization effects in optical fibre 

2.0 Introduction 
Polarization phenomena in optical fibre were cited as early as 1961(Snitzer and Osterberg) 

but became significant only in the later stages of development of fibre communication. In the 

absence of chromatic dispersion (CD) polarization effects emerged to be the next hurdle in 

the advancement of the modern lightwave system. The significance of polarization effects in 

optical fibres have been attributed to major developments on the system which include 

increasing bit rate and the introduction of WDM channels in the fibre. Polarization effects 

have further been boosted by the introduction of optical amplifiers and increasing optical 

components in the system. In this chapter we start by reviewing some mathematical tools 

which are relevant for understanding and analysing polarization in single mode fibre. Later 

we discuss two linear polarization phenomena occurring in optical communication namely 

PMD and PDL. 

2.1 Polarization states of light representation 
Light is an electromagnetic wave that satisfies Maxwell‟s equations. When a transverse 

electromagnetic wave propagates longitudinally in free space or vacuum its electric and 

magnetic components are orthogonal and its polarization state is defined by the direction of 

Electric field vector E. A transverse electromagnetic wave E (z,t), moving in a vacuum in the 

z-direction is composed of two independent plane polarized components (fig 2.1a) which are 

orthogonal to each other. In the right hand Cartesian coordinate, E (z,t) can be written in 

terms of its two sinusoidal components in the form: 

                            2.0 

                            2.1 

                            2.2 

where E0x and E0y are the amplitudes of each component, δx and δy are the corresponding 

phases and  t - kz is the wave propagator. 



7 
 

The nature and behaviour of polarized light can be understood if we eliminate the wave 

propagator between the two components Ex (z,t) and Ey(z,t) to get the equation: 

  
      

   
  

  
      

   
  

               

      
               2.3 

where  =  y -  x is the phase difference. The end point of the electric vector as seen by an 

observer looking into the source traces an ellipse as the wave propagates in the z-direction 

(fig 2.1b). This concept is popularly known as polarization ellipse and provides the most 

basic and convenient way of representing polarized light. 

 

 

 

Figure 2.1: (a) Illustration of a transverse electromagnetic wave propagating in z-direction and (b) 

Polarization ellipse. 

The rotation angle ψ and ellipticity χ can be expressed in terms of optical field amplitudes 

and the phase difference. 

 

X 

Y 
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       0≤ ψ < π    2.4 

      
       

   
     

       π/4 ≤ χ < π/4 and 0 ≤ ∂ < 2π  2.5 

2.1.1 Degenerate polarization states 

There are six unique polarization states which are mostly used in the study of polarized light 

because they can be easily created in a laboratory environment. These states can easily be 

derived from the polarization ellipse by defining E0x, E0y and δ. 

If E0y or E0x=0 the resulting polarization states are known as linear horizontal polarization 

(LHP) and linear vertical polarization (LVP) respectively. When E0x=E0y and δ = 0 or π the 

states are known as linear - 45 (L- 45P) and linear + 45 (L+45P) respectively. If E0x= E0y and 

δ = π/2 or 3π/2 the states are known as right circular polarization (RCP) and left circular 

polarization (LCP) respectively. We use right handed convention to define the direction of 

rotation of the E-vector as the wave propagates. In this case for right circular polarization the 

vector rotates clockwise while for left circular polarization the vector rotates counter 

clockwise. 

2.1.2 Poincaré sphere 

Polarization ellipse is a powerful tool of representing and visualizing any state of completely 

polarized light but the method becomes more complex when applied to changing polarization 

states. In any polarizing medium such as optical fibre the state of polarization of light keeps 

on changing as light propagates from one end to the other. The behaviour can be extremely 

difficult to visualize by the analysis of a polarization ellipse. A more practical method of 

representing polarized light is the Poincaré sphere (fig 2.2) which was suggested and named 

after a German astronomer H. Poincaré in 1892. In the Poincaré sphere representation the 

polarization ellipse, which is characterized by orientation ψ and ellipticity χ, is mapped onto a 

point P on the sphere. If the state of polarization (SOP) of light changes as light propagates 

through a medium the new state is represented by another point on the sphere. That is, each 

point on the sphere represents a specific SOP of completely polarized light. Poincaré sphere 

whose theory was presented in 1954 by H. G. Jerrard is now used extensively in research 

activities related to fibre optics. 
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Figure 2.2: Poincaré sphere representation of light 

2.1.3 Stokes polarization parameters 

In its original presentation the Poincaré sphere was not practical because the amplitudes Eox 

and Eoy of the field components are not observable. The period of light is very small  

(~10
-15

 sec) and therefore it is practically impossible to observe the elliptical behaviour of 

light as it propagates in a cycle. In addition polarization mapping cannot be used to represent 

partially polarized and unpolarized light which are also equally important aspects of light. 

G.G. Stokes (1852) introduced into optics the measurable or observables of polarization 

ellipse which are now known as Stokes parameters (vectors). Stokes parameters can be 

derived after rewriting the amplitudes of equation 2.1 and 2.2 in terms of complex 

amplitudes. That is, 

                          2.6 

                          2.7 

The kz term was dropped because only the time average of polarization ellipse (i.e. intensity) 

is of interest. Now Stokes parameters are defined by the relations: 

       
      

       
     

     2.8 

       
      

      
     

     2.9 

       
      

                   2.10 

         
      

                   2.11 

where   
 

=(x,y) are the complex conjugates of the E-fields. The interpretation of the four Stokes 

parameter S0, S1, S2, S3 is as follows: S0 is the total intensity of the optical beam, S1 signifies 

the difference between the intensity of horizontally polarized and vertically polarized beam, 

 

2χ 

 

P 

S1 

S2 

S3 

2ψ 
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S2 represents the difference between the intensity of linear+ 45 polarized and linear- 45 

polarized light, while S3 describes the difference in intensity of right circularly polarized and 

left circularly polarized beam. 

The Stokes parameters are commonly arranged in column matrix known as Stokes vectors. In 

the Poincaré representation the Stokes vectors are normalized and can conveniently be 

expressed in terms of rotation ψ and ellipticity χ angles as; 

 

  
  

  

  
 

  
 

  

  

  

   

          
          

     
      2.12 

All linear polarization states are represented at the equator of the sphere while right circular 

polarized light and left circular polarized light are represented at the north Pole and south 

Pole of the sphere respectively. All other points on the surface of the Poincaré sphere 

represent elliptically polarized light. The origin of the sphere represents completely 

unpolarized light while points inside the sphere represent partially polarized light. 

The degree of polarization (DOP) of light is given by: 

    
 

  
   

    
    

   0≤ DOP ≤1  2.13 

The DOP of partially polarized light is less than unity while the DOP of completely polarized 

light and unpolarized light is one and zero respectively. 

2.1.4 Mueller and Jones matrix 

When light propagates in a polarizing medium the state of polarization at the output varies 

from the input polarization. H.Mueller and R.C Jones in the 1940s separately developed the 

Mueller and the Jones formulations as alternative mathematical tools to the Poincaré sphere 

approach for solving polarization problems. These matrices are mathematical relations that 

describe the transmission characteristics of an optical device and have been successfully 

applied in polarization studies. However the Poincaré sphere still remains a powerful tool for 

visualization of the behaviour of polarized light as it passes through polarizing medium. 

In the Mueller matrix formulation the input Stokes vectors S(s0,s1,s2,s3) representing the beam 

intensity and polarization at the input of a device are related to the output Stokes vectors 

Ś(ś0,ś1,ś2,ś3) of the beam such that: 

            2.14 
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where M is the Mueller 4x4 matrix whose element are real quantities. 

Similarly, the Jones matrix relates the components of the incident field to the emergent 

components of the field of completely polarized light. In the Jones formulation a 2x1 column 

vector whose elements are the instantaneous E-field components represents any polarization 

state and a 2x2 Jones matrix describes the characteristics of the polarizing device. Thus the 

transmission of any beam of polarized light in Jones space is described by the relation: 

 
  

  
   

      

      
  

    
   

    
   

      2.15 

where E0x and E0y are the field amplitudes and δx, δy are the phases. Unlike Mueller matrix 

representation, the Jones technique is limited to completely polarized light and cannot 

describe partially polarized light and unpolarized light. A complete and more elaborate 

treatment of polarization optics can be found in (O'Neill, 2004; Collet, 2003). 

2.2 Polarization mode dispersion 
Polarization mode dispersion (PMD) in optical fibres is an impairment caused by polarization 

dependent delays in propagation of a signal pulse resulting in pulse spreading. At high bit 

rates (>10 Gb/s) PMD causes intersymbol interference which limits the transmission capacity 

of the fibre. This effect was introduced by several authors and observed in fibres as early as 

mid 1970‟s. However, a modern description of PMD was achieved by Poole and Wagner, 

(1986) and the mathematical formulation unified by Gordon and Kogelnik (2002). In single 

mode fibres PMD emanates from the fact that at a given wavelength the fibre supports two 

orthogonally polarized modes (Buck, 1995). In an ideal fibre the two modes are degenerate 

such that if we excite only one mode at the fibre input no signal energy coupling takes place 

between the modes and during propagation. Real fibres are generally anisotropic and the core 

is asymmetric all along the length of the fibre. As a result the two modes exhibit a difference 

in the phase and group velocities commonly known as birefringence (Rashleigh, 1983). The 

loss of degeneracy also results in a mixing of the two polarization states which is known as 

mode coupling. Both the birefringence and mode coupling define the PMD of a fibre. 

2.2.1 Birefringence 

The small difference in refractive index exhibited by the two modes as the pulse propagates 

through the fibre (fig 2.3a) and optic fibre components is a measure of birefringence. In 

single mode fibre birefringence originates from loss of core circularity due to internal and 

external perturbations (Poole and Nagel, 1997). Internal perturbations are inherent to the fibre 



12 
 

manufacturing process while external perturbations are induced into the core during cabling 

and deployment of fibre. Since these perturbations are nonuniformly distributed on the fibre 

transverse and longitudinal dimensions, the birefringence varies in strength from one fibre 

section to the other. Fibre birefringence is also sensitive to environmental conditions such as 

change in temperature. Mathematically we can define birefringence if we consider a fibre to 

be made up of small sections each having a uniform birefringence (Poole and Nagel 1997). 

Over a short fibre length which is characterized by birefringence uniformity, the difference 

between the propagation constants of the slow and fast modes is given as: 

         
   

 
 

   

 
 

   

 
 

    

 
    2.16 

where ω is the frequency, c is the speed of light, ∆n=ns-nf is the differential effective 

refractive index between slow (s) and fast (f) modes. 

 

 

Figure 2.3: Illustration of the (a) effect of fibre birefringence on an optical pulse which is propagating 

along its length (b) mode-coupling sites where the birefringence changes orientation. 

The birefringence causes the state of polarization (SOP) of the input light to rotate in a cyclic 

manner as it propagates in the fibre. In a short fibre length, the beat length Lb is define as the 

fibre length over which the polarization rotates through a full cycle or in the frequency 

domain it is the propagation length  for which a 2π phase difference accumulates between the 

two modes. That is 

x 

y Δτ 
fast axis 

slow axis Birefringence 
(a) 

 

Mode coupling 
(b) 

z 
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      2.17 

The group-delay difference between the slow and fast modes is known as differential group 

delay (DGD). 

2.2.2 Polarization mode coupling 

In long fibre spans such as used in terrestrial and submarine transmission systems the 

birefringence orientation changes (fig 2.3b) in a random fashion all along the cable length. To 

understand the mode coupling in fibre we consider the fibre as a concatenation of small 

segments whose birefringence axes (and strength) are randomly oriented along the fibre 

(Poole and Wagnar, 1986). At the coupling site where the birefringence changes orientation, 

the fast and slow polarization modes from one segment decompose into both the fast and 

slow modes of the next segment. As a result of mode coupling the birefringence of each 

segment may add to or subtract from the total birefringence. It has been shown that due to 

mode coupling the DGD accumulates with the square root of distance (Poole 1988, Poole and 

Nagel 1997). Mode coupling in fibre can be intentionally induced during fibre drawing (spun 

fibres) or unintentionally during spooling, cabling and deployment. Due to mode coupling 

and the statistical nature of PMD two fibre regimes (short and long length) are defined and 

are characterized by a parameter called correlation length Lc (Poole and Nagel 1997). In this 

classification a fibre is short if, L<< Lc and as such DGD increases linearly with distance. For 

a long fibre, L>> Lc the mean DGD increases with the square root of distance. That is, 

                 , where Dp is the PMD coefficient of the fibre. 

2.3 PSP and PMD bandwidth 
Manifestation of PMD in optical fibre can be described in both the time domain and 

frequency domain (Gordon and Kogelnik, 2000). The principal states model which was first 

developed by Poole and Wagner, (1986) applies equally well in both domains. In the 

frequency domain, the states model implies that, there exists for every frequency a special 

pair of polarization states called the principal states of polarization (PSP). A PSP is that input 

polarization for which when light is launched the output SOP remains independent of 

frequency to first order. That is, in a small frequency range ∆ω, light launched in the PSP 

does not change polarization at the output. In the time domain, a light pulse launched into the 

PSPs will experience maximum differential group delay (DGD). In the absence of 

polarization dependent loss (PDL), the PSPs are orthogonal and for short fibre (L<<Lc) they 

correspond to the fast and slow modes. 
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In the Stokes space, the principal states model can easily be used to characterize PMD in 

randomly birefringent fibres. In particular the PMD vector      is defined as: 

              2.18 

where    is the instantaneous DGD and     is a unit vector pointing in the direction of the 

slower PSP (Kogelnik et al. 2002). The unit vector -    denotes the fast PSP such that the two 

unit vectors are antiparallel (180
o
) in Stokes space. For a fixed input SOP the output SOP    

precesses about the PSP     at a rate equal to the DGD or the magnitude of the PMD vector as 

frequency changes. For a small frequency range the output SOP precession is of the form: 

   

  
               2.19 

The PMD vector is stationary only over a small frequency bandwidth. The change of the 

PMD vector with frequency ω can be understood by determining the bandwidth of the 

principal states. That is, the bandwidth over which the PMD vector is constant. The concept 

of PSP bandwidth is important and has been used in the frequency domain measurement of 

PMD vectors and the measurement of PMD statistics (Kogelnik et al 2002). It can also be 

applied in understanding of the PMD behaviour when more than one wavelength is launched 

into a fibre. One such example is Raman amplification, where the pump and signal propagate 

simultaneously in the fibre. Betti et al, (1991) and Bruyere, (1996) reported varying constants 

of PMD bandwidth (∆ωPSP) while Jopson et al, (1999) provided the practical estimate given 

by the relation: 

             
        2.20 

where       is the mean DGD of the fibre. When the mean DGD is expressed in picosecond (ps) 

we can rewrite the above relation in terms of frequency band ∆ѵPSP: 

                     2.21 

Note that for the PMD vector, a variation with frequency also leads to higher order PMD, 

which is a subject outside the scope of this work 

2.4 Power dependent birefringence 
The fibre birefringence discussed in section 2.2 is commonly known as linear or modal 

birefringence. When optical power increases in the fibre, the associated optical field induces 

a power dependent refractive index whose magnitude depends on the field intensity. This 
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nonlinear refractive index which is also the cause of Kerr effects in fibre, results in 

polarization dependent nonlinear birefringence (Agrawal, 2007). In the absence of linear 

birefringence the nonlinear birefringence manifests as a rotation of the polarization ellipse for 

a continuous wave propagating in the fibre (Maker et al. 1964). Interaction of linear (WL) and 

nonlinear birefringence (WNL) leads to complex motion of the SOP which can be described 

for continuous wave CW as: 

  

  
          2.22 

where W=WL+WNL. In WDM systems where PMD compensation is achievable on a channel 

to channel basis, the nonlinear birefringence enhances SOP scrambling of channels making 

optical based PMD compensation difficult (Collings and Boivin, 2000). A more detailed 

analysis of nonlinear birefringence can be found in chapter six of the text by Agrawal, 

(2007). 

2.5 Polarization dependent loss 
Polarization dependent loss in fibre optic systems comes from the fibre and optical 

components interleaved with the fibre. However, the PDL of fibre is negligibly small and is 

due to imperfections and bends along the fibre. With the introduction of dense WDM 

technique as well as the application of optical amplifiers in the modern optical system, the 

number of optical devices in the system has greatly increased. Each of these devices has an 

associated small insertion loss which depends on the polarization state of incident light. 

When a signal is transmitted in an amplified fibre link or in passive optical networks (PONs) 

it encounters many of these optical components whose cumulative loss can lead to signal 

impairment. Optical components such as isolators, couplers, filters, splitters, fibre grating etc 

exhibit polarization dependent loss (PDL). When these components are incorporated in the 

system their PDL become random and time varying because of polarization evolution as light 

propagates over long distances in fibre. This random variation of PDL causes power 

fluctuations which affect the performance of a system (Yamamoto et al. 1993; Lichtman 

1995). 

2.5.1 Definition and effects of PDL  

Polarization dependent loss PDL is defined as the difference between maximum and 

minimum power transmitted by an optical component or device as the input SOP is varied 

over all possible polarization states (Ding et al, 2007). The causes of PDL include dichroism 

(the unequal spectral absorption of orthogonal components), fibre bending, angled optical 
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interfaces and oblique reflections. An element exhibiting PDL is characterized by its 

orientation vector and the transmission coefficient which are defined in relation to the 

maximum Tmax and the minimum Tmin transmission axes. The SOPs corresponding to Tmax 

and Tmin axes of the PDL element are not necessarily linear but are orthogonal in Stokes 

space (Gisin, 1995). Light launched along the PDL axis is transmitted unaltered and 

undiminished while light launched along the orthogonal axis is unaltered in state but suffers 

loss. 

According to international standards (TIA and IEC), PDL is defined for completely polarized 

light, in decibel unit as: 

            
    

    
     2.22 

where Tmax and Tmin are the maximum and minimum power transmitted through the PDL 

element. An incident light having arbitrary polarization that is not aligned with either of the 

axes will suffer loss and polarization change on traversing a PDL element. 

If unpolarized light is incident on a PDL element it emerges partially polarized and the 

element becomes a partial polarizer. Depolarized light can be treated as a mixture of two 

orthogonal polarization states (Gisin, 1995), so that the transmission coefficient Tdepol in this 

case is given by: 

       
           

 
     2.23 

from which the statistical definition of PDL is given by: 

  
         

         
      2.24 

where   is the length of a global PDL vector    . Therefore, the decibel expression of PDL has 

the form: 

            
   

   
 .     2.25 

PDL decreases as the degree of polarization of incident light decreases (Ding et al. 2007). 

2.6 Cascaded PDL and PDL evolution 
In a fibre network where many PDL components are cascaded, their transmission coefficients 

do not multiply. This is because the polarization sensitive axes of each PDL element in the 

cascade are not aligned and each element has its own orientation    which is different from 
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the other elements in the chain. Besides, PDL orientation fluctuates with time due to PMD, 

causing PDL to manifest the wavelength dependent nature. Thus, each element changes the 

SOP incident to it and a cascade will exhibit multiple polarization alteration along its length 

(Gisin, 1995; Damask, 2005). The implication is that the global PDL requires statistical 

treatment (Amari et al, 1998). 

In the Stokes space the global PDL vector     is cumulative and always tries to track the local 

PDL    vector but it can be decorrelated if the cascaded elements have low PDL and random 

orientation. For a chain of PDL elements having arbitrary orientation, the evolution of the 

PDL vector     has been derived using a different approach (N Gisin et al 1997; B. Huttner et 

al, 2000; A. Mecozzi and M. Shtaif, 2004) and has the form: 

    

  
                   .     2.26 

The implication of this equation is that the magnitude of     may increase or decrease in a 

cascade but is always less than   . The equation has been thoroughly discussed in the text by 

Damask, 2005. 

2.7 PDL in the presence of PMD  

In real systems the fibre and optical components are interleaved along the link, resulting in 

the interaction between the PDL of the components and the fibre PMD. This interaction has 

many anomalous effects which are more severe than individual effects of PMD or PDL. 

Firstly, PDL elements exhibit wavelength dependence in the presence of PMD. This is 

because the SOP incident onto a PDL element depends on the source wavelength. This 

implies that in a WDM system each channel will experience a different PDL resulting in 

unequal power in the channels. Second, the principal states of polarization lose their 

orthogonality and are no longer the fast and the slow axis (Gisin and Huttner, 1997). The 

evolution of the output SOP with frequency is complex and the simple precession motion 

(equation 2.19) is no longer valid (Frigo, 1986; Eyal and Tur, 1998) Other implications of 

PDL and PMD interaction include increased DGD (B. Huttner and N. Gisin, 1997) and 

increase in higher order PMD (C. Xie et al, 2003) which leads to pulse spreading even at zero 

DGD (B. Huttner et al, 1999). 

In the presence of PDL the modified PMD vector       has a complex form and is given by: 

                             2.27 
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where       and          are the real and the imaginary components of the complex PMD 

vector. Consequently the motion of SOPs on the Poincaré sphere as the frequency changes is 

also complex and is of the form: 

    

  
                               2.28 

2.8 Statistics of PDL 
The stochastic nature of PDL is caused by time dependent orientation of the PDL vector. 

There exist different views in the literature in regard to the statistics of global PDL involving 

two or more elements. The global PDL in the absence of PMD is stated to have a Gaussian 

form of distribution (Gisin, 1995). Numerical simulations showed that the PDF of the decibel 

global PDL in the presence of small DGD take the form of Rayleigh distribution (Lu et al, 

2001). A Maxwellian-distribution has been reported for global PDL (dB) and was shown to 

be independent of the amount of PMD present in the system (Mecozzi and Shtaif 2002, A. 

Steinkamp et al, 2004). The Maxwellian distribution has been validated for a rather high mean 

cumulative PDL (~25dB) (Galtarossa and Palmieri; 2003). 
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Chapter Three 

Raman amplification in optical fibres 

3.0 Introduction 
Raman amplification in optical fibres has been applied in optical communication to overcome 

signal attenuation and to increase the usable fibre bandwidth. The Raman nonlinear effect 

was first observed in 1928 (Raman, 1928) but attracted limited interest until 1962 (Woodbury 

and Ng, 1962) when the phenomenon of stimulated Raman scattering was discovered. The 

success of Raman amplification in optical communication was prompted by the fabrication of 

low loss fibres and high power laser sources. This chapter highlight the basics of Raman 

scattering in optical fibres and explains relevant parameters that influence Raman gain and 

performance of the amplifier in communication systems. No attempt has been made to 

exemplify the subject because detailed texts bearing the relevant topics are readily available. 

3.1 Origin of Raman scattering 
Raman scattering of light is a phenomenon that is due to inelastic nonlinear behaviour of a 

dielectric medium, such as fibre when subjected to a high intensity optical beam. In this case 

the effect is known as spontaneous Raman scattering.  In the quantum mechanical description 

(figure 3.1), Raman scattering is most easily understood and involves photon-optical phonon 

interaction. Raman scattering is different from Brillouin scattering which involves acoustic 

phonons. Optical photons are inelastically scattered by quantized molecular vibrations called 

optical phonons (Ashcroft and Mermin, 1976). The photons lose or gain energy to the 

molecular lattice resulting in scattered light of lower or higher frequency. The lower 

frequencies ωs of scattered light are the Stokes-shift (fig 3.1a) and the higher frequencies ωp 

are called anti –Stokes shift (fig 3.1b). The anti-Stokes process is very weak in fibres and 

plays no role in Raman fibre amplifiers. This is because the occurrence of the anti-Stokes 

shift requires a population inversion in the vibration states, a process which cannot be easily 

achieved (Boyd, 1992; Singh, 2007). 
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Figure 3.1: (a) Stokes scattering and (b) Anti Stokes scattering process 

3.1.2 Stimulated Raman scattering 

Stimulated Raman scattering (SRS) occurs when signal light in the Stokes frequencies and a 

high power pump are coherently coupled by the Raman process. This nonlinear process 

results in the transfer of power from the pump to the signal and can turn optical fibres into 

broadband amplifiers. SRS was first observed in fibres by Stolen, (1972) and was initially 

considered a detrimental nonlinear effect in WDM systems where it can transfer power from 

a high frequency channel to a low frequency channel causing signal crosstalk (Zhou and 

Magill, 2004), It is important to note that SRS is polarization dependent and results in 

polarization dependent gain (PDG) where the gain is maximum when the pump and signal are 

parallel and minimum if both are orthogonal. The SRS process can be described quantum 

mechanically in a similar way as the spontaneous Raman scattering. In this case a pump 

photon is converted to a second signal photon that is an exact replica of the first and the 

remaining energy is converted into an optical phonon. The virtual state is due to the fact that 

Raman scattering is non-resonant and is therefore a very fast process (Stolen et al, 1989). The 

continuum nature of molecular vibration states is due to the amorphous nature of silica. 

 

Figure 3.2 Quantum representation of Stimulated Raman scattering 
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3.1.3 Raman Gain spectrum in optical fibres 

The Raman gain spectrum in optical fibres is very broad and extends over a range beyond 

40THz as shown in figure 3.3. The broadband gain is a manifestation of the continuum nature 

of the vibrational states of silica corresponding to different transition states. The frequency 

difference between the pump and the signal is the Stokes shift or pump –signal detuning. The 

peak of the Raman gain curve for standard single mode fibres occurs at Stokes shift of about 

13.2 THz which is approximately 100 nm bandwidth. The Raman fibre amplifier RFA gain 

can be flattened for dense WDM application, by employing multiple pumps of slightly 

different wavelengths (Rottwitt, and Kidorf, 1998; Emori et al, 1999). All signals whose 

wavelengths are within the Stokes shift are amplified via the SRS process. 

 

Figure 3 3: Raman gain spectrum in fused silica fibre for co-polarized pump-signal light (After H. 

Stolen and Ippen, 1973). 

The Raman gain coefficient gR is a function of frequency shift Ω and is the most important 

parameter for characterizing the Raman amplifier. It is also referred to as the Raman gain 

efficiency which is the ratio of a nonlinear coefficient γR(Ω) and effective area Aeff of the 

fibre. The gain efficiency varies for different types of optical fibres depending on fibre 

effective area and the level of GeO2 doping. A standard single mode fibre SSMF has the 

lowest Raman gain efficiency while dispersion compensating fibre DCF has relatively high 

gain efficiency (Bromage; 2004). The gain efficiency increases with decreasing pump 

wavelength (Cordina and Fludger, 2002; Newbury, 2003) which is an added advantage when 

pumping on the high attenuation frequencies.  

3.4 Characteristics of Raman fibre amplifier 
The Raman fibre amplifier has several advantages which make it a potential candidate for 

application in passive optical networks (PONs) (Kjær et al; 2007, I. T. Monroy et al; 2008). It 
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is a broad-band amplifier with a bandwidth > 6THz at full-wave half-maximum (FWHM) and 

the gain is relatively flat over a wide wavelength range. (Islam, 2002). Unlike the EDFA 

which requires a specially fabricated fibre, SRS occurs in any fibre and amplification can be 

achieved at any signal wavelength by choosing the pump wavelength appropriately. This 

implies that RFA can extend the usable bandwidth of a fibre enabling transmission in the  

S-band, L and C-band. Beside, the RFA has a lower noise figure and higher gain saturation 

than the EDFA. The fact that amplification is distributed in RFA greatly reduces the Kerr 

nonlinear penalty in long haul transmission because the channel‟s average power remains 

moderately low (Islam, 2002). 

The nonlinear SRS is polarization dependent and depends on the orientation of pump and 

signal (Stolen, 1997; Dougherty et al, 1995). This implies that Raman gain is polarization 

dependent and is maximum when pump and signal are copolarized and minimum when both 

are orthogonally polarized. In optical fibres polarization cannot be maintained during signal 

amplification. This is because polarization mode dispersion PMD present in fibres rotates the 

pump and signal SOPs at different rates thus changing the pump-signal orientation as both 

propagate through the fibre. Raman polarization dependent gain PDG is mitigated by 

depolarizing using the pump. This can be accomplished by using polarization multiplexing of 

two pumps of same wavelength (Emori et al, 2000; Tokura et al, 2002), fibre Lyot 

depolarizers (Böhm et al, 1983; Wang et al, 1999) and PMD fibre depolarizers (Tokura et al, 

2006). This unfortunately reduces the Raman gain efficiency by half of the polarized pump 

(Toge et al, 2002) which implies that more pump power is required to compensate for the lost 

gain. 

3.5 Pumping techniques 
Raman gain is independent of the relative direction of propagation of a pump and signal. The 

photon-optical phonon momentum conservation is always achieved irrespective of the 

relative direction of pump and signal photons (Ashcroft and Mermin, 1976). There are three 

basic pumping schemes which are popularly used in the research on Raman amplification in 

optical fibres. The pump and the signal can copropagate in which case the method is called 

forward pumping. When the pump propagates through the fibre in the opposite direction to 

the signal, the scheme is called counter pumping or backward pumping. We also have 

bidirectional pumping where two pumps are employed simultaneously at opposite ends of the 

fibre during amplification. When pumping is done on the actual transmission fibre linking 

two points, the setup is referred as a distributed Raman amplifier (Hansen et al, 1997). If the 
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amplifier is pumping a localized DCF in the transmission system (Lewis, 2000) or is placed 

near the transmitter or receiver end, the system is called a discrete Raman amplifier. The 

performance of RFA depends on the pumping scheme applied. However, each of these 

pumping configurations has advantages which make them equally competitive. Forward 

pumping scheme provides a high optical to signal ratio (OSNR) while bidirectional pumping 

is appropriate in reducing noise transfer between pump and signal. Backward pumping 

greatly reduces PDG because of gain averaging as signal and pump traverse each other. The 

choice of which scheme to adapt can only be determined using performance criteria of a 

particular RFA design (Kim et al, 2007). A thorough treatment of Raman amplification in 

fibres can be found in the two volumes (Headley and Agrawal, 2005; Islam, 2004). 

3.6 Polarized Raman fibre amplifier 
Polarization properties of the Raman fibre amplifier (RFA) are related to the imaginary part 

of the third-order nonlinear polarization in silica (Hellwarth et al 1975; Hellwarth, 1977). To 

understand the amplification process we consider the case for continuous wave CW where a 

single pump amplifies a signal as both propagate in the fibre. We assume the pump-signal 

configuration where the signal propagates forward and the pump propagates forward or 

backward. In Stokes space, the two coupled equations governing the dynamics of pump P and 

signal S are of the form (Lin and  Agrawal 2002): 

 
  

  
  

    

   
                             3.1 

and 

  

  
  

  

 
                              3.2 

where  = ±1, in the forward and backward pumping configurations repectively, Pj, αj and γj 

=n2ωj/cAeff (j=p,s) account for input pump and signal power, fibre losses and nonlinearities at 

pump and signal frequencies, ωj is the pump and signal frequencies, Aeff is the effective core 

area of the fibre, gR=(γR/Aeff) is the Raman gain efficiency, α(p,s) represent the pump and 

signal attenuation, β is the linear birefringence vector, Wp and Ws account for the SPM and 

XPM induced nonlinear polarization rotation. The boldface symbols imply vector 

representation of quantities in Stokes space. 

The terms in the equations 3.1 and 3.2 can be explained as follows; the first term on the right 

side of equation 3.1 represents the pump depletion, the second term pump loss and the third 
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term accounts for the effect of linear and nonlinear birefringence on the pump. Similarly, the 

first term on the right side of equation 3.2 represents the signal gain, the second term the 

signal loss and the third term represents the linear and nonlinear birefringence effects on the 

signal. The pump and signal SOPs rotate as both propagate in the fibre and their motion is 

governed by the linear birefringence vector β in Stokes space (Ciprut et al, 1998). The 

nonlinear birefringence whose magnitude is intensity dependent induces a nonlinear rotation 

of polarization ellipse (Maker et al, 1964). The equations can be simplified depending on the 

quantities of interest one would like to investigate and detailed treatment of these equations 

can be found in chapter two of Headley and Agrawal, (2005). 

3.6.1 Average Raman gain 

In the small-signal analysis the pump depletion is negligible because the signal power is 

usually low. The output signal power fluctuates with time due to pump-signal misalignment 

mostly caused by time variation of birefringence in the fibre. The average gain of the signal is 

defined as: 

    
       

     
      3.3 

 where        , is the average power of the amplified signal at the output end of fibre of 

length L and       is the power at fibre input. The variance of the signal power fluctuation 

has the form: 

  
  

   
     

        
  .     3.4 

Integrating equation 3.2 and using equation 3.3, the average gain Gav which is also the net 

gain can be expressed in the form (C. Headley and G. P. Agrawal, 2005): 

        
 

 
                  3.5 

where Pin is the input pump power, Leff is the Raman effective length which is defined as the 

length of a lossless fibre that would achieve the same Raman gain as the actual fibre. In the 

expression for Gav it is assumed that Leff>>Ld, where Ld is the PMD diffusion length which is 

the length at which the SOPs of the pump and signal are decorrelated. Fibre diffusion length 

is given by: 

      
   

         3.6 



25 
 

where Dp is the fibre PMD coefficient and ΩR=ωp-ωs is the frequency shift. The fibre 

effective length Leff is given by: 

     
 

  
         .     3.7 

For a typical transmission fibre the pump attenuation coefficient αp is~0.25 dB/km and when 

αpL>>1, then Leff is approximately 20km (Rottwitt and Stentz, 2002)  

A quantity of importance is the Raman on-off gain GA which is the ratio of signal power at 

the output with the pump switched on to the signal power when the pump is off. 

Alternatively, the on-off gain is equal to Raman average gain minus the fibre loss. That is: 

       
 

 
          .     3.8 

If RFA is operated in the saturation mode, the gain reduces and the above sets of equations do 

not hold. 

3.6.2 Raman PDG and on-off gain 

As mentioned in section 3.1.2 Raman gain is polarization dependent and therefore depends 

on pump-signal orientation. Polarization dependent gain (PDG) is defined as the difference 

between the maximum and the minimum Raman gain. It has been shown analytically (Q. Lin 

and G.P. Agrawal, 2003) that when Leff>>Ld, the average PDGdB in the forward pumping 

configuration is given by: 

    
       

        
                  

 
      3.9 

where a=10/ln10≈ 4.343, Pin is pump input power, and Dp is the fibre PMD coefficient. 

3.7 Amplified spontaneous Emission noise  
An amplified light signal always suffers from optical noise which is generated during 

amplification. The amplified spontaneous emission (ASE) is an inherent noise which is 

present in all optical amplifiers. In RFA the ASE is generated by spontaneous Raman 

scattering which is due to phonon population in the vibration states of silica. Phonon 

excitation is temperature dependent, thus the ASE noise increases with the temperature of the 

amplifying fibre (Ashcroft and Mermin 1976). Due to its random phases the ASE is 

generated in all directions in the fibre but in practice it exists only in the amplifier bandwidth. 
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The ASE noise performance of a RFA can be describe in terms of a quantity known as 

optical-signal-to-noise ratio (OSNR) which is defined as the ratio of the signal optical power 

to the power of the ASE with respect to a given reference bandwidth centred about the signal 

wavelength.  The OSNR is often referenced to 0.1 nm bandwidth when measured with the 

optical spectrum analyser (OSA). The system OSNR can be improved by filtering the ASE at 

the amplifier output i.e. by placing an optical filter just before the receiver photo-detector. 

The OSNR at the amplifier output is defined as: 

     
     

    
 

   

        
      3.10 

where GL is amplifier gain, Pin is the input signal power, PASE is the unpolarized ASE noise 

power, nsp is the spontaneous-scattering parameter also known as population inversion 

parameter, h is Planck‟s constant, ν is the optical frequency of noise and Bm is the 

measurement bandwidth. The factor of 2 in the equation accounts for the two fibre 

polarization modes. However, if ASE is partially polarized as would happen in the case of 

pump polarized RFA the PASE factor takes a value of one because only the component of ASE 

copolarized with the signal contributes to the ASE noise. (Sun et al, 2003). 

At the receiver, the photo-detector converts optical power to electrical current in a process 

that gives rise to mixing between the optical signal power and the optical noise power 

(Olsson, 1989; Steele, 1991). The detector current contains the signal-spontaneous beat noise 

which is the dominant noise occurring when signal light interferes with copolarized ASE 

which is propagating in the same direction. The detector current also includes a spontaneous–

spontaneous beating noise term but this noise contribution to current fluctuation is 

insignificant. This noise terms causes fluctuation of the detector current which may lead to 

erroneous bit recognition in digital systems. 

Beside ASE generation in RFA other effects can also contribute to amplifier noise depending 

on operating conditions. The main noise factors which can impair the RFA include, the 

multipath interference noise MPI which is mainly caused by double Rayleigh back scattering 

(DRBS) and the relative intensity noise (RIN) which is due to pump power fluctuations. 

Details of generation of these noises in RFA and their control can be found in literature 

(Bromage, 2004 and Bromage et al, 2003). 
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3.7.1 OSNR and bit error ratio 

Optical amplifiers are meant to improve the OSNR of the system but can also degrade the 

system performance if their noise level is high (Bromage et al, 2003). According to equation 

3.10 OSNR at the output of the amplifier is degraded if the system noise increases. The bit 

error ratio (BER) is one of the parameters used to characterize the performance of the system 

at the receiver end. The system BER is the ratio of the number of bits which are erroneously 

detected to the total number of bits transmitted in a specified time. For example a BER of 10
-9

 

imply that one error can occur for every one billion bits transmitted. BER is related to system 

quality factor Q, which is the ratio of the difference between the mean powers of digital states 

and the sum of the standard deviations of the states. The BER can be calculated with respect 

to system Q using a simplified but valid approximation (Essiambre et al 2007; Winzer and 

Essiambre, 2008). That is; 

    
 

    
     

  

 
 .     3.11 

In an amplified fibre optic system where the dominant noise is due to spontaneous emission 

the system Q can be related to OSNR at the receiver end. That is; 

        
  

  
         3.12 

where Bo and Be are the optical and electrical bandwidths respectively. This Q approximation 

assumes negligible receiver noise (thermal and shot noise) and that other effects such as 

dispersion, nonlinearities, PMD virtually contribute to the eye closure. Therefore the above 

equation is only applicable in numerical modelling of receiver responses to amplifier noise. 

More detailed analysis of BER can be found in (Matera and Settembre, 1996; Iannone et al., 

1998). 
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Chapter Four 

PMD effects characterization in Raman 
fibre amplifier 

This chapter investigates the effects of polarization mode dispersion (PMD) in the distributed 

Raman fibre amplifier (RFA). We focus on the consequences of polarization when single 

mode fibres of low PMD coefficients are employed in the design of the forward and 

backward pumped RFA. Using experimental setups as well as simulations we demonstrate 

the various aspects of PMD effects and quantify the behaviour of RFA gain. Finally we 

demonstrate the impact of ASE generated noise in distributed Raman amplification based on 

low PMD fibre. 

4.1 Introduction 
In fibre optic communication polarization mode dispersion (PMD) effects become significant 

when light pulses are transmitted over long distances. In high bit rate (>10 Gb/s) optical 

systems PMD becomes a problem causing inter symbol interference of the transmitted signal 

(Kogelnik et al, 2002). In these cases the effects of PMD on the propagating pulse are 

described using the concept of DGD. PMD effects can also be observed when a continuous 

wave (CW) propagates through the fibre. In the frequency domain PMD manifests as a 

change in the output SOP when the source SOP is fixed at the input and the frequency is 

varied. This variation in output SOP forms the basis for several PMD measurement 

techniques (Hernday, 1998). When two wavelengths propagate in the fibre the frequency 

dependent birefringence rotates their SOPs at difference speeds (Gordon and Kogelnik, 

2000). In RFA the effects of PMD can be quantified using the concept of Raman PDG 

(Headley and Agrawal, 2005). According to their theoretical analysis, PDG in a Raman 

amplifier behaves in a similar way to PDL and is inversely proportional to fibre PMD. 

Investigations by Mahgerefteh et al, (1997) while using two 2 km spools of randomly 

birefringent fibre revealed that the length over which Raman gain for copropagating pump 

and signal becomes independent of the input polarization is determined by the fibre PMD. In 

another numerical analysis Ebrahimi et al, (2001), while investigating the statistics of RFA, 

found that PDG decreases as the fibre PMD coefficient increases. Similar experimental 

results were observed by Popov et al, (2002) using two dispersion compensated fibres of 
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different PMD coefficients. Theoretical analysis by Lin and Agrawal, 2003 showed that PMD 

effects in the backward pumped RFA are far less compared to the forward pumping. Further 

analysis by Galtarossa et al, (2006) revealed that these effects largely depend on the PMD 

regime under consideration and can be more than previously predicted for backward 

polarized RFA. While the effects of PMD in RFA have been observed experimentally and 

analysed theoretically there is the need to review and compare previous results that were 

based on moderately high PMD fibre with findings based on modern low PMD fibre. When a 

low PMD fibre is subjected to high optical power such as used with RFA, the resulting 

nonlinear birefringence may not be negligible and will interact with linear birefringence 

(Agrawal, 2007). We also find that much of the optical amplifier characterization is based on 

the EDFA (Derickson, 1998; Desurvire, 2002) which is rarely affected by the fibre 

characteristics. On the other hand RFA makes use of transmission fibre as the gain media and 

their characteristics are affected by parameters such as variation in span length, attenuation 

and the type of fibre (Evans et al, 2002). This chapter highlights some issues which are often 

assumed in the evaluation of PMD effects in RFA. 

4.2 Experimental and simulation setup 
The schematic shown in figure 4.1 is that of a distributed RFA which was used in performing 

simulations and experiments. Measurements were obtained for both the forward and 

backward pumping schemes. Two signal sources namely: a WDM source and a tunable laser 

were used in the experiments and the choice of a source depended on the particular 

measurement. In the simulations, commercially available VPI 8.6 software was used and has 

the capability to configure any type of optical device. The signal and the pump were coupled 

into the fibre using an input WDM coupler while the output coupler was used to couple the 

backward pump and also separate the signal from excess forward pump. The signal was then 

filtered of noise before measurement using either the OSA or power meter. 

 

Figure 4.1: Schematic diagram of RFA used in the measurement 
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4.3 Raman gain and pump power 
The dependence of Raman gain with pump power is one of the basic steps we used to 

characterize PMD effects during Raman amplification. This step served a twofold purpose: 

firstly, we were able to determine the range of possible pump powers to use in other 

experiments. Second, we obtained an understanding of how Raman PDG can be managed by 

choosing an appropriate pump power. This step also enabled us to characterize the newly 

acquired Raman pump for our optical fibre research unit. In the simulations a 1 mW signal 

transmitted at a wavelength of 1550 nm and a pump of variable power operating at a 

wavelength of 1450 nm were propagated through a 25 km single mode fibre (SMF). The 

pump power was varied over a range of values while different fibres were simulated by 

varying the PMD parameter. The amplified signal was filtered and detected using the power 

meter before obtaining the Raman on-off gain. In the experiment, two fibres each of length 

24.06 km and PMD coefficients 0.011 pskm
-1/2

 and 0.113 pskm
-1/2

 were used. 

  

  

Figure 4.2: Raman on-off gain and PDG variation with pump power for fibres of different PMD 

coefficients; (a), (c) simulations and (b), (d) experiment (fwd-forward pumping, bk-back pumping). 
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The signal power was set at -10 dBm while the pump power remained the same as in the 

simulation. Using the IQS- 1722X high performance power meter the Raman PDG and on-off 

gain were measured after filtering. 

As can be seen in figure 4.2, the experimental results are in agreement with the simulations. 

However the gains obtained in the experiment are lower because of losses at the splices, and 

connectors which are not present in the simulations. In addition the fibre attenuation 

coefficients for pump and signal were assumed to be the same at 0.2 dB/km. In a separate 

measurement the loss coefficient at pump wavelength was found to be 0.27 dB/km. The 

Raman gain coefficient gR of the fibre used in the experiment was found to have a value  

0.53 W
-1

km
-1

,
 
at signal wavelength of 1550 nm. This value of gR is less than the one used in 

the simulations which is approximately 0.6-0.7 W
-1

km
-1

 (Dougherty et al, 1995; Namiki and 

Emori, 2001). Simulation results in figure 4.2a were obtained for the forward pumped 

distributed RFA and show that Raman on-off gain increases exponentially with pump power 

for different values of the fibre PMD coefficients. The same behaviour was confirmed by 

experiment (fig 4.2b) using a pump of a maximum output power of 375 mW. As the pump 

power decreased (<20 dBm) the Raman on-off gain showed least dependence on the pumping 

scheme employed. The decrease in gain as PMD increased is clearly notable at high pump 

power as can be seen for power values >24 dBm. Figure 4.2c and 4.2d show the simulations 

and experimental results which were obtained for Raman PDG. These results show similar 

behaviour as in the case of on-off gain. In both the simulations and experiment it is observed 

that PDG reduces drastically even for high pump power if the fibre PMD coefficient is  

> 0.01 pskm
-1/2

. Figure 4.2c presents the gain behaviour of a forward pumped RFA and 

shows that PDG reduces greatly for PMD coefficients > 0.05 pskm
-1/2

, even for high pump 

power. Figure 4.2d shows that PMD reduces the Raman PDG in a similar way as when 

counter pumping is used. However, there is a great dependence of PDG with pump power 

when PMD is very low as can be seen for the fibre of PMD coefficient ≤ 0.01 pskm
-1/2

. 

Again, the values of PDG obtained by simulations differ from the experiment due to the same 

reasons that affected the on-off gain. 

4.3.1 Raman gain dependence on fibre length 

In the simulation setup the fibre parameter for length was varied between 0-40 km. The pump 

power was fixed at 200 mW and the signal at 1 mW. With the signal wavelength set at 

1550nm the on-off gain and the net gain were determined at each fibre length. 
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Figure 4.3 Variation of Raman (a) on-off gain and (b) net gain as a function of length. 

Figure 4.3 illustrates the results obtained by simulation showing the dependence of Raman 

on-off gain and net gain on the fibre length in the forward pumping configuration. Raman net 

gain is different from on-off gain for a given fibre length because the net gain includes signal 

losses due to fibre attenuation (Headley and Agrawal 2005) That is, the on-off gain is the 

ratio of output signal power with the pump on to the output power with pump off. Since the 

signal experiences losses even when the pump is switched on, the ratio eliminates the effect 

of attenuation in the fibre. In practice there are other causes that would result in signal losses 

as can occur at the fibre connectors, mid coupler and splices all of which affect the RFA net 

gain. The net gain can be negative as is the case for the fibres of PMD coefficient  

>0.05 pskm
-1/2

. This is because fibre attenuation or losses increase linearly with length 

decreasing the power of the pump and signal. When the length L of the fibre is such that 

L>>Leff, pump power becomes very low and amplification ceases causing the signal to 

experience a net loss (equation 3.5). It is evident that both gains increase up to a maximum as 

fibre length increases. We also observe that the gains have little dependence on fibre PMD, 

for coefficients >0.05 pskm
-1/2 

and depend entirely on fibre length. 

4.3.2 Gain and input signal power 

In this case the gain was characterized as a function of input signal power. The length of the 

fibre used in the simulation was 25 km while three fibres, two of which were standard single 

mode fibre (SSMF) of length 24.06 km and a none zero dispersion shifted fibre (NZDSF) of 

length 24.7 km, were used in the experiment. The pump power was set at constant value of 

200 mW in the simulations and experiment. The source wavelength was set at 1550 nm while 

the signal power was varied over a range of values. A similar setup was used to perform field 

measurements of Raman gain on a 28.8 km of buried fibre cable. 
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Figure 4.4 Raman on-off gain and PDG as a function of input signal power for different fibre PMD 

coefficients. (a) simulations, (b),(c) experiments and (d) field measurements at Sidwell TelkomSA 

exchange at Port Elizabeth (fwd-forward, bk-backward). 

Simulation results in figure 4.4a indicate that, the Raman on-off gain is fairly uniform over a 

wide range of input signal power. The gain saturates as the input signal power increases 

beyond 0 dBm. As can be seen the signal power at the „knee‟ (where the amplifier begins to 

saturate) depends on the fibre PMD coefficient. When the fibre PMD coefficient is low the 

RFA gain is high and the gain is less if the amplifying fibre has high PMD. Thus the RFA 

enters into saturation at a lower signal power if the gain is high while saturation occurs at a 

higher signal power if the gain is low (Ikeda, 1981). This behaviour was confirmed by 

experimental results in figure 4.4b using two fibres of PMD coefficients, 0.011 pskm
-1/2

 and 

0.113 pskm
-1/2

. These results can be very significant in the design of a RFA for WDM 

applications where the total power is a function of the number of channels. In this case the 

total average power of the channels should not exceed the maximum („knee‟) value if the 

RFA is designed to operate in the small-signal region. Experimental results in figure 4.4c 

show the PDG behaviour of three fibres and are similar to those of the Raman on-off gain. 
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The fibre of PMD coefficient 0.025 pskm
-1/2

 is a spooled none zero dispersion shifted fibre 

NZDSF of length 24.7 km It is important to emphasis the fact that the input signal power has 

a lower limit below which the gain is no longer uniform. This can be seen in field 

measurements of figure 4.4d where a deployed cable of length 28.8 km was tested for on-off 

gain and PDG in both forward and backward pumping configurations. The non uniformity of 

PDG as the signal power decreases was observed for input powers below -15 dBm. This is 

because as the signal power decreases the OSNR also decreases and the signal become 

susceptible to the noise. Similar results have been obtained with EDFA (Desurvire, 1994). 

The key advantage of RFA is the improvement in noise figure (Islam, 2002) so that lower 

signal powers can be used in longer transmission distances. 

4.3.3 Raman gain and concatenated fibres 

Fibre links comprise of several short fibre segments which have been spliced together in 

cables. It is of interest to evaluate the RFA gain when the PMD of such segments differ 

slightly. Besides, old deployed fibre has been found to often consist of sections of high and 

low PMD. (Ehrhardt et al, 2008). In this step of characterization two fibres each of length 

12.03 km having PMD coefficients of 0.011 pskm
-1/2

 and 0.162 pskm
-1/2

 respectively were 

spliced to make a concatenate of low-high (high-low) PMD fibre of length 24.06 km. The 

fibre ends were arranged in such a way that would enable the signal coupling from high-low 

(or low-high) PMD section. The Raman on-off gain and PDG was evaluated in both the 

forward (fwd) and backward (bk) pumping configurations. 

  

Figure 4.5: (a) Raman on-off gain and (b) PDG as a function of input signal power. The amplifying 

fibre was obtained by splicing two equal fibres of high and low PMD coefficients. 
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coupling is from high-low and is high if the coupling is from low-high PMD section of the 

fibre. In the backward pumping case the gain difference is small with the high-low coupling 

showing a slightly higher gain. These results can be easily understood by noting that the fibre 

with low PMD has a higher gain than the one with high PMD. When the pump and signal 

propagate from low to high PMD fibre, the signal acquires most of its gain in the low PMD 

section. If the two propagate from high to low PMD fibre the pump is attenuated before it 

reaches the low PMD section resulting in less signal amplification. In the case of backward 

pumping the same analysis can be used to explain the slight difference in the gain in the two 

fibre arrangements. Similar results were obtained for PDG as shown in figure 4.5b and can be 

interpreted in the same way as with the on-off gain. The composite fibre displayed the same 

signal PDL when measured on either end as shown in figure 4.5b. The significance of these 

results lies in the fact that PDG can be drastically reduced in the design of the RFA by using 

fibres of varying PMD and making proper fibre arrangements. It has been shown theoretically 

that such an approach would achieve both a low PMD and PDG (Sergeyev et al, 2009). 

4.3.4 Gain variation with wavelength 

The Raman gain coefficient gR in fibre depends on the pump-signal frequency shift Ω 

(section 3.1.3) and results in wavelength dependent Raman gain. It is therefore important to 

characterize the behaviour of the gain spectrum at different PMD coefficients. In the 

simulation the source wavelength was swept over the range between 1530 nm and 1565 nm 

in the forward pumping configuration while the fibre PMD coefficient was varied between 

0.005 pskm
-1/2

 and 0.1pskm
-1/2

. The length of the fibre was 25 km while the pump and signal 

powers were set at 200 mW and 1 mW respectively. In the experiment two SMF each of 

length 24.06 km and PMD coefficients 0.011 pskm
-1/2

 and 0.113 pskm
-1/2

 were used in the 

backward pumping configuration. The pump power was set at 22 dBm while the input signal 

was set at -10 dBm. The wavelength of a tunable laser source was varied between 1525 nm 

and 1565 nm and the gain determined for each wavelength. In the experiment wide 

bandwidth circulators were used instead of WDM couplers which have narrow bandwidth of 

± 5 nm. 
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Figure 4.6 Variation of on-off gain with wavelength (a) simulations (b) experiment. 

The results shown in figure 4.6 resemble the Raman gain spectrum for bulk silica (Stolen 

2000; Bromage, 2004) where the gain increases with pump-signal detuning up to the peak 

wavelength before it starts decreasing. As can be seen in both simulations and experiment the 

gain is PMD dependent and decreases evenly with increasing fibre PMD for the entire 

amplification bandwidth. However simulation results in figure 4.6a show that for 

wavelengths below 1550 nm, the fibre with PMD coefficient of 0.1pskm
-1/2

 has a higher gain 

than that of PMD coefficient 0.05 pskm
-1/2

. We can understand this behaviour by noting that 

the randomly distributed fibre birefringence is wavelength dependent (Rashleigh, 1982) 

which consequently influences the Raman gain. In the weak birefringence regime the pump 

and signal maintain their orientation over the amplification length and the signal gain is fairly 

high as in the case of fibres with PMD coefficient <0.01pskm
-1/2

. In this regime the 

birefringence is also weakly dependent on wavelength. In the intermediate birefringence 

regime the pump-signal orientation cannot be sustained along the fibre. This result in gain 

fluctuation as can be seen with the fibre of 0.05 pskm
-1/2

 PMD coefficient. We also have 

strong birefringence where the pump-signal SOP‟s rotation is maintained resulting in 

minimum gain fluctuations due to gain averaging. This strong birefringence is highly 

wavelength dependence. Alternatively, the results in figure 4.6a can be understood by 

considering the PMD bandwidths (section 2.3) of the four fibres used in the simulation. 

Simulated results displayed higher values of gain than was obtained by experiment. The 

difference largely depended on the Raman gain model used in the simulations and that no 

signal losses are created. Also noted is gain tilt with wavelength as the fibre PMD increases. 
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4.4 Influence of signal input states of polarization on Raman amplification 

gain in single mode fibres. 
Theoretical analyses of Raman amplification in optical fibre suggest that the gain depends 

only on the pump-signal orientation (Lin and Agrawal 2003). It has been shown 

experimentally (Popov et al, 2004) that Raman gain also depends on the pump input SOP and 

that this gain dependence results in two pump SOPs which provide the maximum and 

minimum PDG. In this analysis we looked at the signal input states to evaluate their influence 

on Raman gain. The six degenerate SOPs that were used to illustrate the gain dependency are; 

Linear horizontal (LH), linear vertical (LV), linear+45 (L+45), linear-45 (L-45), right circular 

(RC) and left circular (LC) polarizations. A manual polarization controller (PC) was used to 

set the signal input SOPs which were monitored using a polarimeter, before coupling with the 

pump. The pump power was set at 22 dBm and the pump was scrambled at low speed to 

provide all input states of pump polarization. At the fibre output the amplified signal was 

filtered before the measurement using IQS 722xx high performance power meter. 

4.4.1 Low PMD fibre 

In this case, a WDM source operating at a wavelength of 1550 nm was used to provide a 

variable signal power while the pump power was set at 22 dBm. The fibre length was  

24.06 km and PMD coefficient 0.011 pskm
-1/2

. 

  

  

Figure 4.7: Dependence of Raman PDG and on-off gain on the input signal SOPs. (a) and (b) 

represent forward pumping, (c) and (d)  represent backward pumping  
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As shown in figure 4.7 the Raman PDG and on-off gain highly depend on the input signal 

SOP. In the forward pumping case (fig 4.7 (a) and (b)) the PDG difference for LH-LC 

polarizations is > 1 dB while the on-off gain difference for LH-LV polarizations is >2 dB. 

The backward pumping (fig 4.7 c and d) also show a significant gain dependence on SOP of 

the signal at the input. There is a dependence of the amplifier level of saturation with the 

input signal SOP due to the same reason as given in section 4.3.2. It should be noted that the 

results in figure 4.7 cannot be used to predict the SOP that would provide the maximum or 

minimum gains. For example in the forward pumping (fig 4.7 (a) and (b)) the LC polarization 

provided the lowest PDG while the LV polarization provided the lowest on-off gain. The 

pumping configuration is also a contributing factor to the SOPs with maximum and minimum 

gains. 

4.4.2 High PMD fibre 

To investigate the influence of PMD on gain variation with the signal input SOPs, a fibre of 

similar length and PMD coefficient 0.113pskm
-1/2

 was used. By following the same 

procedure as used with the low PMD fibre, both the variation of the gain with signal input 

power and with the source wavelength were demonstrated. The small wavelength range of 10 

nm involved was due to the narrow bandwidth of the WDM couplers. 

  

  

Figure 4.8: Dependence of Raman PDG and on-off gain with signal input SOPs for a high PMD fibre 

(Dp= 0.113 pskm
-1/2

) in the forward pumping configuration. 
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The results in figure 4.8 show that when the fibre PMD is high the gain dependence on input 

SOP of the signal decreases. In this case, the difference between the maximum and the 

minimum PDG is less than 1 dB. However the PDG curves corresponding to the six signal 

SOPs at the input are well defined just as in the case of the low PMD fibre. The on-off gain 

curves in figure 4.8b show negligible dependence on the signal input SOPs. This is because 

the relatively high birefringence effectively rotates the pump and signal SOPs as both 

propagate in the fibre resulting in average gain. When the source wavelength is varied as in 

figure 4.8c the PDG variation with the signal input SOPs becomes wavelength dependent. 

The difference between the maximum and minimum PDG is still < 1 dB over the small 

bandwidth and narrows as the signal wavelength increases. Figure 4.8d show the variation of 

the on-off gain with the wavelength. Again in this case, the gain is clustered and show 

negligibly small dependence on the SOPs particularly for the wavelengths > 1550 nm. Apart 

from the fibre PMD contribution to the clustering of the gain, the decreasing Raman gain 

coefficient for the wavelengths between 1550 nm and 1560 nm is also a contributing factor. 

This is what was observed in the Raman gain spectrum for the two fibres in the backward 

pumping configuration (section 4.3.4). 

4.4.3 Effect of fibre length on SOPs dependent gain 

The dependence of the Raman gain on the length of the amplifying fibre prompts us to look 

into the length contribution to the SOPs with maximum or minimum gain. Two fibres of 

lengths 12.03 km and 24.06 km and having same PMD coefficients of 0.011 pskm
-1/2

 were 

used. In each of the two setups the same pump power was applied in the forward pumping 

configuration while following the same procedure as outlined in section 4.4. 
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Figure 4.9: The length contribution to SOP dependent Raman gain. In (a) and (b) the fibre length is 

24.06 km and in (c) and (d), the length is 12.03 km. 

One thing is notable in figure 4.9 that for each of the SOPs, the gain variation is well 

streamlined over the small bandwidth of 1.25 THz. Comparing figure 4.9a and 4.9b it is clear 

that LH polarization is the only SOP that has corresponding maximum PDG and on-off gain. 

The other five input SOPs changed their positions randomly in the two curves. This 

behaviour is due to the fact that Raman on-off gain grows faster than PDG as the length of 

the fibre increases. It is therefore not easy to predict the SOP with corresponding maximum 

or minimum gain for this length of fibre. Figure 4.9c and 4.9d which is a case of short fibre 

length shows good correlation of the SOPs. That is the SOP displaying maximum or 

minimum PDG also contribute the maximum or minimum on-off gain. The reason for these 

well defined trajectories is attributed to PMD diffusion length of the fibre. For a low PMD 

fibre the diffusion length approaches the actual length of the fibre so that polarization mixing 

is highly inefficient. On the other hand a high PMD fibre has a small diffusion length and as 

such the mixing of the pump and signal SOPs is very efficient (Lin and Agrawal, 2003). We 

also note that the gain appear much more tilted for the 12.03 km fibre than for the longer 

24.06 km fibre. This tilting is related to the difference in gain in the two fibres. Such gain tilt 

has been observed in EDFA (Hansen et al, 1993) and has been attributed to changes 

occurring at the amplifier input. 
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4.4.4 Gain variation with arbitrary SOPs 

It is important to mention that the results in this section are not an independent study but 

serve as an extension to what has already been discussed. The aim here is to consolidate the 

idea of SOPs characterization of the gain by considering other signal SOPs and fibre PMD 

coefficients. In the simulation setup the signal power was set at 1 mW and the source 

wavelength at 1550 nm. The pump polarization at the input was changed by sweeping the 

polarization controller azimuth and ellipticity angles while keeping the input signal SOP 

fixed. The signal SOP at the input can be set to any of the six degenerate states but they all 

lead to similar results. In this case the signal SOP was set at LH polarization. 

  

Figure 4.10: Simulations of (a) On-off gain variation with Azimuth angle of polarisation ellipse for 

various PMD fibre coefficients (azimuth and ellipticity both varied) (b) on-off gain variation with 

azimuth (constant ellipticity (0
0
)). 

Figure 4.10 shows the simulation results obtained for on-off gain for fibres of varying PMD 

coefficient in the forward pumping configuration. It is evident that the weak birefringence is 

one of the reasons for the manifestation of the SOP dependent gain. At fibre PMD  

> 0.05 pskm
-1/2

 there is minimum gain variations as the input SOP of the pump is varied. At 

low fibre PMD the LH polarization displayed the maximum gain because the pump and 

signal are then aligned at the input resulting in the best coupling condition. As fibre PMD 

increases the initial coupling of the pump and signal is destroy due to the rotation of their 

SOPs at different rates (Gordon and Kogelnik, 2000) resulting in low average gain. In figure 

4.10a the pump azimuth and ellipticity was changed simultaneously between (-90
o
,-45

o
) and 

(90
o
,45

o
) which correspond to LC and RC polarizations respectively. Thus, the LC pump 

polarization shows similar coupling for fibres of PMD above >0 pskm
-1/2

. In figure 4.10b 

only linear states of the pump were launched and as can be seen, the gain is zero for a fibre of 

PMD coefficient 0 pskm
-1/2

, if the pump and signal are orthogonally aligned at the input. 

-90 -60 -30 0 30 60 90
4

5

6

7

8

9

10

O
n

-o
ff

 G
a

in
 (

d
B

)

Azimuth (Degree)

 0 pskm-1/2

 0.005pskm-1/2

 0.01pskm-1/2

 0.05pskm-1/2

 0.1pskm-1/2

 1pskm-1/2

(a)
-90 -60 -30 0 30 60 90

0

2

4

6

8

10

12

O
n
-o

ff
 g

a
in

 (
d
B

)

Azimuth (degree) 

 0 pskm-1/2

 0.005 pskm-1/2

 0.01 pskm-1/2

 0.05 pskm-1/2

 0.1 pskm-1/2

 1 pskm-1/2

(b)



42 
 

Therefore the small fibre PMD is necessary in rotating the initially orthogonal SOPs of the 

waves as they both propagate in the fibre thereby assisting the signal gain. 

4.5 PMD effects and optical noise 
The generation of noise during amplification is inevitable and is present in all optical 

amplifiers. In spite of its low noise characteristics (Rottwitt and Stentz, 2002), RFA noise can 

still reach unacceptable levels depending on the operating conditions. During the experiments 

we observed that the RFA would turn noisier depending on the environmental conditions. 

There are several sources of optical noise in RFA as mentioned in section 3.7. However the 

most important source of noise in RFA is amplified spontaneous emission (ASE) which is 

temperature dependent. In this work we limit our investigation to a system dominated by 

ASE generated noise. We investigate the fibre PMD contribution to the effects of ASE noise 

and the implication to the performance of amplified optical systems. The noise properties of 

RFA can be described by measuring the optical signal to noise ratio (OSNR) during 

amplification of the signal. In the simulation analysis (Fludger et al, 2000) using optical 

fibres of different properties it is shown that the OSNR of a distributed RFA improve as the 

pump power increase. 

In the experiment we used the optical spectrum analyser (OSA) to measure the OSNR of a 

RFA as a function of the signal wavelength. The OSA was set to determine the OSNR over a 

reference bandwidth of 12.5 GHz. Two fibres each of length 24.06 km and PMD coefficients 

0.011 pskm
-1/2

 and 0.113 pskm
-1/2

 were used in the measurements. The signal from a tunable 

laser source was set at -10 dBm while the pump power was set at 21 dBm in both the forward 

and backward pumping configurations. The signal was coupled with the pump using wide 

bandwidth filter-based WDM couplers. 

 

Figure 4.11: The variation of OSNR with wavelength for the two fibres in the forward (fwd) and 

backward (bk) pumped distributed RFA. 
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Figure 4.11 shows the OSNR as a function of the signal wavelength which was obtained 

using the two fibres. The OSNR increases moderately with pump-signal detuning in both 

fibres. This is caused by the fact that Raman gain efficiency (gR/Aeff) increases with 

wavelength shift up to the peak frequency. One would expect OSNR to decrease after the 

peak wavelength but this is not the case. The reason for this behaviour is that the ASE 

generated noise is less for signal wavelengths that are farther from the pump wavelength than 

those that are near (Namiki et al, 2005). The fibre with low PMD coefficient has higher 

OSNR over the entire wavelength range in both pumping schemes. This is because the signal 

gain increases with decreasing fibre PMD coefficients and this translates into higher OSNR 

values. Higher values of OSNR were observed during forward pumping in each fibre which 

is an indication that backward pumping scheme is noisier. 

4.5.1 Impact of ASE noise on system performance 

The ASE noise of a distributed RFA accumulates along the fibre resulting in the degradation 

of the system OSNR at the output. In this case the system performance is mostly limited by 

the OSNR rather than the optical power received. Thus the receiver sensitivity is qualified by 

its ability to resist the influences of waveform distortion and optical noise (Essiambre et al, 

2007). In this study we simulated the BER of a distributed Raman amplified link using the 

ASE noise loading technique (Hui, and O'Sullivan; 2009). The forward pumped simulation 

setup is shown in figure 4.12 and consists of a non-return to zero (NRZ) transmitter (TX) 

operating at 10 Gb/s at a carrier wavelength of 1550 nm and an ASE source. The choice of 

NRZ data format in this investigation is simply because it is used as a reference to other 

modulated data formats (Krummrich, 2007). 

 

Figure 4.12: Simulated diagram of a distributed Raman amplified fibre link (see appendix V 

for an enlarged version) 
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Two SMFs each of length 100 km were used and their other specifications were set to be 

similar to those used in the experiment while the dispersion effect was assumed negligible. 

The pump power was set at 24 dBm to amplify a channel of 1 mW input power in the small 

signal gain region (no pump depletion). During the measurement the ASE source power was 

varied resulting in different values of OSNR at the receiver. The excess noise at the fibre 

output was filtered using a band pass filter at 40 GHz bandwidth (Bm). The receiver electrical 

filter bandwidth was set at 5 GHz to ensure that only the ASE generated noise co-polarized 

with the signal at the fibre output was used to determine the system BER. It should be noted 

that the receiver shot noise and thermal noise are assumed negligible compared with noise 

from the amplifier. Therefore only the ASE generated noise at the receiver is considered in 

the simulations. 

  

Figure 4.13: BER as a function of OSNR (a) forward pumping (b) back pumping configuration. 

In figure 4.13 are the simulated results showing the variation of BER as a function of OSNR 

for the two fibres when the same range of ASE noise power is applied. In the forward 

pumping scheme (fig 4.13a), the 0.01 pskm
-1/2

 fibre has a better OSNR and therefore lower 

BER values while the fibre of 0.1 pskm
-1/2

 shows higher values. That is, the curve of the  

0.01 pskm
-1/2

 fibre is shifted downward to lower BER values while that of the 0.1 pskm
-1/2

 

fibre cannot attain the same low BER values, for the same range of loaded ASE noise. The 

difference in the BER performance of the two fibres is due to the fact that the lower PMD 

fibre provides a higher Raman gain to the signal. For the lower PMD the gain is higher 

because there is less scrambling of the SOPs, hence the SOP of the pump and the signal 

remain more coplanar. In the case of backward pumping (fig4.13b) the opposite happens 

where the lower PMD fibre shows higher BER values for the same range of ASE noise 

power. The minimum BER is above the acceptable 10
-9 

value. In this case the fibre with PMD 
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coefficient of 0.1 pskm
-1/2

 has good ASE noise performance. This behaviour can be 

understood if we consider the fact that spontaneous noise generated near the input end of the 

fibre experiences less loss throughout the amplification length in the case of backward 

pumping, whereas the same noise experiences more losses in the case of forward pumping 

(Headley and Agrawal, 2005). At the same time signal losses occur throughout the full length 

of fibre in the case of backward pumping and most signal amplification occurs near the fibre 

output end where spontaneous noise is high compared with the signal (Jordanova, and 

Topchiev; 2008). Following this explanation and also the fact that the lower PMD fibre has 

higher Raman gain, its poor signal-ASE beat noise performance in the backward 

configuration can be understood. Its high Raman gain results in the spontaneous noise 

generated gaining more power compared to the same noise generated in the case of the high 

PMD fibre. We note here that Raman gain is limited by the input pump power Pin and fibre 

effective length (Le) which is as a result of pump decay during propagation in the fibre (Lin 

and Agrawal, 2003). The long length of fibre used in the simulation may be another 

contributing factor to the nature of results observed in the case of backward pumping 

(Zyskind et al 2002) 

4.5.2 Effects of ASE noise on the eye diagram 

The same setup in figure 4.12 was used to investigate the effects of ASE generated noise on 

the eye pattern. The eye pattern was plotted by sending an alternating bit sequence of length 

2
7
-1 to the receiver when the ASE source spectral noise density was set at 5 x 10

-16
 W/Hz. 

 

Figure 4.14 Eye diagrams of the two fibres in the (a) forward pumping and (b) backward 

pumping configuration. 

 

(a) 

 

(b) 
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Figure 4.14 is the simulated eye pattern after the NRZ modulated data was transmitted in the 

Raman amplified SMFs. In the forward pumping case (fig 4.14a) spontaneous noise effects 

on the eye diagram are almost the same for the two fibres. However, the eye opening of the 

fibre with higher PMD coefficient is slightly narrower and has less power than the eye of the 

low PMD fibre. This can be attributed to the lower signal gain of the high PMD fibre. In the 

case of backward pumping (fig 4.14b) the eye closure is complete for the low PMD fibre 

while the eye opening of the relatively high PMD fibre is moderate. 

It is evident in both pumping schemes that ASE noise adds to the amplified signal and affects 

the eye by changing the power level of “ones” and “zeros” in a bit sequence. The difference 

observed in the “ones” and “zeros” is due to Raman gain of the channel which occurs when 

the laser light is on, and when the light is off no amplification takes place. Spontaneous noise 

effects observed on “zeros” is attributed to the fact that the externally modulated laser was 

simulated to provide a non-infinite signal extinction ratio (Pauer and Winzer; 2003). It is also 

worth noting that the eye closure depended on the spectral noise density and in this case only 

the worst case results were presented. Other results not presented showed that as the ASE 

spectral noise density decreases the eye opening increases, depending on the fibre PMD 

coefficient and the pumping scheme employed. 

In summary Raman PDG and on-off gain in a transmission fibre depends on the fibre PMD, 

pumping scheme and frequency detuning of the channel. In low PMD fibres the gain depends 

upon the input SOPs of the signal, a factor that is attributed to coupling of pump and signal 

energies into the PSPs of the fibre. Spontaneous noise which is a by-product of amplification 

accumulates throughout the amplified transmission fibre and degrades the OSNR at the fibre 

output. The system OSNR depends on the fibre PMD and the pumping configuration. 

Forward pumping has superior ASE noise performance compared with backward pumping. 

The quality of signal at the receiver is consequently determined by Raman amplification and 

PMD effects. A low OSNR manifests itself as high BER and decreases the eye opening. A 

fibre with high PMD would perform better in the case of backward pumping. However, in a 

high bit rate system (>40 Gb/s) high PMD would cause inter-symbol interference thereby 

reducing the quality of the signal. In addition, PMD is complicated by random mode coupling 

in long fibres which makes the temporal response of the fibre to be undeterministic. This 

temporal response of fibre PMD is complicated further due to its sensitivity to environmental 

changes. The gain of RFA operating under changing environmental conditions will fluctuate 
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with time causing system instability. However in buried fibres of low PMD this temporal 

behaviour is minimum and consequently the detrimental effects of PMD are also reduced. 
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Chapter Five 

Statistics of the Raman gain in single 
mode fibres 

The characterization of Raman fibre amplifier (RFA) with respect to fibre polarization mode 

dispersion (PMD) discussed in chapter 4 shows that Raman on-off gain and polarization 

dependent gain (PDG) are closely related quantities. This implies that, even though each of 

these gain quantities has different implications in regard to the nature of the amplified signal, 

we can in many aspects obtain the behaviour of one by simply analysing the other. In this 

chapter we investigate the statistics of Raman gain using both high and low PMD fibres. We 

include results on the net gain, on-off gain and signal power fluctuations which were obtained 

for the three pumping schemes using polarization scanning techniques. Finally we 

demonstrate how the PMD coefficient of a fibre can be extracted by simply measuring the 

PDG and on-off gain of the signal. 

5.1 Introduction  
Previous analysis of Raman gain statistics as found in the literature show that gain fluctuation 

depends on the fibre PMD and the pump DOP. While using a complex experimental setup 

Ebrahimi et al, (2001) investigated the statistics of PDG in RFA using a 10 km DSF of  

0.06 pskm
-1/2

 PMD coefficient. Together with simulation results they found that the PDG 

decreases with PMD coefficient. The statistical properties of PDG were studied by Kee et al, 

(2002) using monte-carlo simulations and experiment. In their experiment, the Raman added 

gain or on-off gain was found to depend on DOP and the pumping configuration. In another 

study (Popov et al, 2002) it was found that the PDG is frequency shift dependent and 

decreases as the pump-signal frequency shift increases. In their study E. Son et al (2004 and 

2005) developed an analytical model to describe the statistics of PDG in a Raman amplifier. 

Their model incorporated several design parameters and they found that the PDG of a RFA 

could be reduced by using a pump laser with low DOP, large frequency shift and a low-loss 

fibre of high PMD. Theoretical analysis of the Raman gain fluctuation induced by PMD was 

studied by Lin and Agrawal, (2002). They found that signal fluctuation becomes large for 

fibres of small PMD coefficient. In another theoretical analysis of the statistics of PDG, Lin 

and Agrawal, (Feb 2003) found that the average PDG is inversely proportional to the fibre 
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PMD coefficient. Similar results were obtained by Azami, (2004) while using a model based 

on the Jones matrix. 

In our view the study of Raman gain statistics is still an important subject in the analysis of 

RFAs using modern optical fibres. Firstly, the results obtained in the previous studies are 

rather general and therefore not conclusive. For example it was shown analytically that gain 

fluctuations in the backward pumping is less by a factor of 30 at the wavelength shift of  

13.2 THz (Lin and Agrawal, 2003). Elsewhere (Son et al, 2005) it was shown theoretically 

that backward pumping gain fluctuation is a third of the forward gain fluctuations. In this 

case no consideration was made on the contribution of different fibre PMD regime to gain 

fluctuations. In most of the experimental studies it has been assumed that gain fluctuations in 

the backward pumping are small. Again, we find that experimental work on this subject 

involves either monitoring the instantaneous gain changes with PMD (Ebrahimi et al, 2001, 

Son et al 2004) or scanning only the input SOPs of the signal (Popov et al, 2002; Mesquita et 

al, 2003). Monitoring gain fluctuations due to time changes in fibre PMD can be time 

consuming and may not be viable especially when low PMD fibres are involved. This is 

because such fibres have their PMD changing very slowly with time (Karlsson et al, 2000). 

At the same time, polarization scanning of the signal may largely influence the results since 

the Raman gain depends not only on pump-signal orientation put also the input SOP of pump 

and signal (Popov et al, 2004). In this work polarization scanning at the input of the RFA was 

implemented by scrambling both the pump and the signal. Other practical limitations 

encountered during the experimental work include the unavailability of a fibre of required 

length and PMD coefficient. 

5.2 Statistics of net gain 
Investigations of Raman net gain fluctuations were conducted by simulation using different 

fibre PMD coefficients. The simulation setup shown in Figure 5.1 consisted of a 1550 nm 

signal source, a 1450nm Raman pump operating at 200 mW, both of which were coupled into 

the fibre via a WDM coupler. The input signal was set at 1 mW before splitting it into two, to 

obtain the reference signal. The amplified signal was filtered and detected after 25km of 

amplification in a single mode fibre (SMF). Fibres of different PMD coefficients were used 

and signal net gain determined statistically with the pump polarized and when the pump was 

depolarized. The process was repeated for backward pumping configuration. 
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Figure 5.1: Schematic diagram of a Raman fibre amplifier used in the simulation. 

Figure 5.2 shows the histograms bearing information on net gain fluctuation with respect to 

fibre PMD, pumping schemes and pump depolarization. According to figure 5.2a,which is the 

case of the forward polarized pump, the net gain fluctuation is negligible when the fibre PMD 

coefficient is very small and increases as PMD increases up to some value before decreasing 

again. In the case of the backward polarized pump (fig 5.2c), the opposite happens where the 

net gain is seen to spread more as the fibre PMD coefficient becomes small. This behaviour is 

rather strange though in agreement with the analytical model by Lin and Agrawal (Feb 2003). 

The implication is that a forward polarized pump would be more efficient, having negligible 

gain fluctuation at relatively higher PMD (<0.01 pskm
-1/2

). On the other hand a backward 

polarized RFA would require a fibre of much lower PMD coefficient (<0.001 pskm
-1/2

) to 

achieve negligible signal power fluctuations. As seen in both figure 5.2a and 5.2c a signal can 

experience net loss when polarized pumping is employed. When the pump is depolarized, 

gain fluctuations decrease as shown in figure 5.2b and 5.2d. The depolarized pump minimizes 

power fluctuations for all PMD coefficients but considerably reduces the signal gain, with 

low PMD fibre having the lowest gain. It is noticeable that the backward depolarized pump 

performed better than the forward depolarized pump in terms of the mean gain achievable for 

all four fibre PMD coefficients tested. It should be noted that there is no net loss in the case 

of depolarized pumping although the average net gain is very small. Thus the net loss is 

attributed to polarization effects on the pump and the signal during amplification. 
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Figure 5.2: The net gain distributions of four SMFs of different PMD coefficients in (a), (b) forward 

and (c), (d) backward pumping with polarized and depolarized pump. 
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Figure 5.3: Standard deviation of net gain as a function of fibre PMD coefficient in the (a) forward 

pumping and (b) backward pumping configuration. 

Figure 5.3 shows the analysis of the standard deviations of the net gain when the fibre PMD 

coefficient is varied within the range 0-0.5 pskm
-1/2

. In figure 5.3a both the polarized and the 

depolarized pump show similar trends as the fibre PMD is changed but the gain deviations of 

the polarized pump are higher and therefore shifted upward. In this case the gain fluctuation 

is maximum in the vicinity of a PMD coefficient of 0.008 pskm
-1/2

 and decreases rapidly as 

the PMD coefficient drops further. For PMDs above 0.1 pskm
-1/2

, there is negligible change 

in gain fluctuation. In the polarized case of figure 5.3b, there is no convergence of the gain 

fluctuations as the PMD decrease to very small values. In the theoretical model by Lin and 

Agrawal (2003), it is stated that in the backward pumping configuration, the convergences of 

the gain fluctuations occur at much lower PMD values than in the case of forward pumping. 

Interpreting these results in terms of PMD effects would then mean that the effects are much 

stronger in the backward pumping and therefore a fibre of much lower PMD value is required 

to maintain the pump signal orientation during amplification. In our case the lowest value of 

PMD used was 5x10
-4

 pskm
-1/2 

which is practically very small. Again it is evident that there is 

similarity in the gain fluctuations in both pumping schemes when the pump is depolarized. 

5.3 Experimental setup 
Figure 5.4 depicts the experimental setup that was used in the analysis of Raman gain 

statistics and will be referred to for the rest of this chapter. The pump power was 22 dBm and 

the signal source was either varied over a range of values or set at a fixed value of -10 dBm. 

The signal was obtained from a WDM or a tunable source and a tunable filter was used to 

remove stray pump and noise power from the amplified signal. 
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Figure 5.4: Schematic diagram of a distributed Raman fibre amplifier used in the experiments. 

5.4 Effects of polarization scrambling technique  
Most researchers who have previously investigated the statistics of Raman gain in fibres used 

the technique of polarization scanning of the input signal. This has advantage in that only a 

low optical power polarization scrambler is required. Here it is demonstrated that the 

magnitude of PDG as well as on-off gain can be affected by the polarization scrambling 

method at the input. In the forward pumping scheme, the PDG and average on-off gain were 

determined firstly when scrambling the SOPs of the signal alone, secondly the pump and 

finally when both the pump and signal were scrambled. Three fibres of different PMD 

coefficients were tested. 

Experimental results in Figure 5.5 clearly show that the Raman PDG and the on-off gain 

depend upon the criteria of polarization scrambling at the input of the RFA before the pump 

and signal are coupled into the fibre. Figure 5.5a and 5.5b show the two gain quantities when 

a 24.06 km SSMF of PMD coefficient 0.011 pskm
-1/2

 was employed in the measurements at a 

signal wavelength of 1550 nm. The average on-off gain was at its highest when the pump 

SOP at the input was fixed and the signal scrambled. It can be seen that scrambling the pump 

and signal simultaneously provided the highest PDG values. Similar results were observed in 

figure 5.5c and 5.5d when a NZDSF of length 24.7 km and 0.025 pskm
-1/2

, PMD coefficient 

was used. The high gain characteristic of the NZDSF is expected and is due to the level of 

doping which is higher than that of the SSMF (Kang, 2002). This is the reason why it has a 

higher gain than the fibre of lower PMD coefficient. The high average on-off gain observed 

with these two low PMD fibres when only the signal was scrambled is attributed to the fact 

that the Raman gain is pump polarization dependent. Therefore, when the pump SOP at the 

input is fixed the gain distribution becomes skewed upon scrambling of the signal and as such 

the average gain shifts to a higher value. 
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Figure 5.5: Variation of average on-off gain and PDG with respect to polarization scrambling at the 

input. 

When a high PMD fibre is involved the gain quantities become less dependent on 

polarization scrambling at the input as seen in figure 5.5e and 5.5f. This is because high PMD 

rotates the SOPs of both the pump and signal as explained earlier, resulting in polarization 

mixing so that after a short distance of propagation the fields of the waves completely lose 

memory of the input SOPs (Wai and Menyuk, 1996). This results in gain averaging and we 

would expect even less gain variation with polarization scrambling as the fibre PMD 

increases above 0.1 pskm
-1/2

. We also note that there is a wavelength dependence of the gain 

quantities which is clearly seen for the high PMD fibre. The curve for system PDL is 

included to indicate its magnitude during the measurements. In this case the system PDL is 

low enough and does not show any effects on the gain quantities. 
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5.5 Raman on-off gain distribution 
In this case we demonstrate the on-off gain distributions of both high and low PMD fibres. 

Specifically we investigated SSMFs of lengths 6.07 km, 12.03 km and 24.06 km. The long 

fibre of length 24.06 km was obtained by splicing two, 12.03 km fibres of similar PMD 

coefficients. The reason why we used these different lengths is to evaluate how the length of 

the fibre affects the gain distribution. It is important to note that the 6.07 km and the  

12.03 km fibres used in this experiment were cabled in two spools which were fabricated by 

different companies. It is therefore possible that the two spools have different Raman gain 

coefficients. The WDM source wavelength was set at 1550 nm and a 100 GHz spacing WDM 

demultiplex was used to filter the signal before the measurements. In the measurement both 

the pump and signal input polarizations were scanned using the EXFO 5100B polarization 

scramblers before coupling into the fibre and at the output the signal power was determined 

using EXFO IQS 1700 power meter. The pump power of 22 dBm was applied in each of the 

three pumping schemes to obtain the gain distributions. 

5.5.1 Short fibre length 

In this case two fibres of PMD coefficients 0.025 pskm
-1/2

 and 0.38 pskm
-1/2

 in a cabled spool 

of 6.07 km were used in the experiment. This length is similar to that used in the design of 

the discrete RFA. In each of the fibres three gain distributions corresponding to the three 

pumping schemes were obtained and evaluated for normality. 

Figure 5.6 shows the histograms and the corresponding probability plots of the 6.07 km spool 

of two fibres that differ only in their PMD parameter. The distributions were plotted by 

applying the same size bins. The solid lines are a Gaussian fit for the distributions while 

<GdB> is the average gain and SddB is the gain standard deviation. In this case the two fibres 

have similar average gains in the forward and the bidrectional pumping. However the gain 

fluctuations are still high for the low PMD fibre. Similarly the gains and standard deviations 

of the gains of the two fibres are comparable in the case of backward pumping. In figure 5.6b 

the linear fit indicates that the points form a nearly linear pattern when the backward and the 

bidirectional pumping are applied. Therefore the Raman on-off gain distributions of these 

two schemes appear to be a normal distribution. However the forward pumping scheme 

shows minor deviations from the linearity with a tail on both ends. In figure 5.6d the data 

from each of the pumping schemes shows only mild deviations from the linear fit but the 

distributions cannot conclusively be interpreted as normal. For this short fibre it is evident 

that the distributions are less sensitive to the pumping scheme employed. 
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Figure 5.6: Gain distributions and probability plots of two fibres of the same length and different 

PMD coefficients. In (a) and (b), Dp= 0.025 pskm
-1/2

 while in (c) and (d), Dp= 0.380 pskm
-1/2

. 

In the last chapter (section 4.3.1) we showed that Raman gain in fibre increases exponentially 

with fibre length up to a maximum before it begins to drop. Here the pump remains strong 

throughout the fibre length and therefore signal losses are small leading to comparable gain 

averages. However the PMD contribution to the gain fluctuation is clearly seen for the low 

PMD fibre in the forward pumping configuration. 

5.5.2 Standard length fibre 

In this case two fibres each of length 12.03 km and respective PMD coefficients 

0.011 pskm
-1/2

 and 0.113 pskm
-1/2

 were used in the measurements. These fibres were 

classified as of standard length because their length is similar to the one mostly preferred in 

experiments as well as numerical analysis. 

0.50 0.75 1.00 1.25 1.50
0

2

4

6 D
p
 = 0.025 pskm

-1/2

<G
dB

> = 1.02

Sd
dB

 = 0.13

On-off Gain (dB)

0

4

8

12
backward

pumping

<G
dB

> = 0.96

Sd
dB

 = 0.06

F
re

qu
en

cy
 c

ou
nt

 (
x1

03 ) 0

3

6

9

L= 6.07 km

bidirectional

pumping

forward

pumping

<G
dB

> = 1.03

Sd
dB

 = 0.08

(a)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
1E-4

0.01

1

10

40

70

95

99.5

99.999

(b) On-off gain (dB)

L=6.07km

D
p
=0.025pskm

-1/2

forward

backward

bidirectional

C
u

m
u

la
ti
v
e

 C
o

u
n

ts
 (

%
)

0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

3

6

9 <G
dB

> = 1.01

Sd
dB

 = 0.06

On-off Gain (dB)

0

3

6

9

L = 6.07 km

<G
dB

> = 0.83

Sd
dB

 = 0.06

F
re

qu
en

cy
 c

ou
nt

 (
x1

03 ) 0

3

6

9

12 D
p
 = 0.38 pskm

-1/2

<G
dB

> = 1.0

Sd
dB

 = 0.04

(c)

0.6 0.7 0.8 0.9 1.0 1.1 1.2
1E-4

0.01

1

10

40

70

95

99.5

99.999

(d)

L=6.07km

D
p
=0.380 pskm

-1/2

On-off gain (dB)

forward

backward

bidirectional

C
u

m
u

la
ti
v
e

 C
o

u
n

ts
 (

%
)



57 
 

 

  

Figure 5.7: Histograms and probability plots of two fibres of length 12.03 km. In (a) and (b), 

Dp=0.011 pskm
-1/2

 while in (c) and (d), Dp=0.113 pskm
-1/2

. 

Figure 5.7 shows the on-off gain distributions and probability plots which were obtained for 

the two fibres of length 12.03 km. These fibres had similar characteristics and differed only 

in their PMD coefficients. As can be seen in figure 5.7a and 5.7c, the gain fluctuations 

depend mostly on the fibre PMD parameter while the pumping schemes employed determine 

the location of the mean of the distribution. The low PMD fibre show considerable gain 

fluctuations in the forward pumping while gain fluctuation is greatly reduced in the backward 

pumping where the average gain is shifted to a lower value. For the high PMD fibre there is 

negligible difference in the average gains and also the standard deviations in the forward and 

backward schemes. The gain averages of the bidirectional pumping compare well in both 

fibres. The probability plot in figure 5.7b shows a strongly linear pattern in the case of the 

0.7 1.4 2.1 2.8 3.5 4.2
0.0

0.5

1.0

(a)

<G
dB

> = 2.33

Sd
dB

 = 0.65

D
p
= 0.011 pskm

-1/2

forward

pumping

On-off gain (dB)

0

1

2

3

F
re

qu
en

cy
 c

ou
nt

 (
x1

03 )

<G
dB

> =1.77

Sd
dB

 = 0.2

L = 12.03 km

backward

pumping

0

1

2

<G
dB

> = 2.11

Sd
dB

 = 0.32

bidirectional

pumping

0 1 2 3 4 5
1E-4

0.01

1

10

40

70

95

99.5

99.999

On-off gain (dB)(b)

L=12.03 km

D
p
= 0.011 pskm

-1/2

forward 

backward 

bidirectional 

C
u
m

u
la

ti
v
e
 C

o
u
n
ts

 (
%

)

1.7 1.8 1.9 2.0 2.1 2.2 2.3
0

4

8

(c)

L = 12.03 km

<G
dB

> =1.91

Sd
dB

 = 0.08

forward

pumping

On-off gain (dB)

0

4

8
D

p
= 0.113 pskm

-1/2

<G
dB

> =1.91

Sd
dB

 = 0.08

backward

pumping

Fr
eq

ue
nc

y 
co

un
t (

x1
03 )

0

4

8

<G
dB

> = 2.1

Sd
dB

 = 0.07

bidirectional

pumping

1.7 1.8 1.9 2.0 2.1 2.2 2.3
1E-4

0.01

1

10

40

70

95

99.5

99.999

(d)

L=12.03 km

On-off gain (dB)

D
p
= 0.113 pskm

-1/2

C
u

m
u

la
tiv

e
 C

o
u

n
ts

 (
%

)

forward 

backward 

bidirectional 



58 
 

backward and the bidirectional pumping with minor deviations from the line fit to the data 

points. The forward pumping case shows a non-linear behaviour with the first and the last 

few points showing a complete departure from the reference fitted line. In this case the gain 

distribution is not a normal distribution. In figure 5.7d the bidirectional pumping shows 

strong linearity with only minor deviations. However the backward and the forward pumping 

curve shows departure from the fitted line particularly the lower tail and a mild S-like pattern 

at the middle. This indicates that these distributions are not a normal distribution. 

5.5.3 Long length fibre 

In this case the length of each of the two fibres was doubled to 24.06 km. 

 

  

Figure 5.8 Gain distributions and their corresponding probability plots of the two 24.06 km fibre. 
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The results in figure 5.8 can be compared with those in figure 5.7 because the fibres used in 

both cases only differ in their lengths. Figure 5.8a shows that increasing the length of the 

fibre from 12.03 km to 24.06km in the low PMD regime has little effect on the gain 

deviations for the three pumping directions. However, the gain averages have higher values 

because some gain occurred in the added fibre. Similar effects were observed in the high 

PMD fibre when its length was doubled. The probability plots of both fibres show some 

remarkable results. In figure 5.8b which is the plot for the low PMD fibre, increasing the 

length of the fibre improves the linearity of the data at the centre when forward pumping is 

employed. However the tail of the forward distribution is not affected when compared with 

figure 5.7b. The backward and the bidirectional pumping still show a reasonably linear 

pattern in the middle of the data. In figure 5.8d, increasing the fibre length separated the 

probability curves for the forward and the backward pumping with the latter shifting to lower 

gain values. A mild S pattern in the middle of the data is clearly displayed by this fibre which 

indicates that the gain distributions are out of the normal. 

According to Lin and Agrawal (Aug 2003), the PDGdB display different distributions 

depending on the fibre effective length Leff and the PMD diffusion length Ld. When Leff>> Ld, 

the PDG distribution is Maxwellian and if Leff<<Ld, the distribution is Gaussian. Since the 

PDG gain and the on-off gain are linearly related, it would imply that both gains have similar 

distributions if the test fibre meets the above criteria. Thus for a low PMD fibre where 

Leff<<Ld the on-off gain should approximate the normal distribution. While this criterion 

could not be perfectly met in this analysis, it is evident that the gain distributions of the low 

PMD fibres used are inclined toward a normal distribution and those of the high PMD fibres 

tend to fall away from a normal distribution with some dependence on the pumping scheme. 

However, the distributions of the fibre of PMD coefficient 0.38 pskm
-1/2

 are exceptional and 

imply that a close to normal distribution is achievable for fibres of high PMD parameter. This 

behaviour is attributed to the fact that for short length fibre the Raman gain is small but 

dominant over fibre losses and almost linear (section 4.3.1) and does not vary much with 

fibre PMD. This is not the case with the 12.03 km and 24.06 km fibres where even though the 

gain is high, the fibre losses are also more and gain is highly PMD dependent. A similar 

explanation about the net gain efficiency of short fibres is given by Namiki et al, (2005). 

5.6 Dependence of PDG and signal gain fluctuation on fibre PMD 
It is of interest to observe how the root mean square (RMS) value of PDG and the on-off gain 

vary with the PMD parameter. In this case several fibres in the cabled spool of length 12.03 
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km were evaluated to obtain these two quantities. Measurements were obtained at a signal 

wavelength of 1550 nm. 

  

Figure 5.9: Normalized (a) PDG and (b) on-off gain standard deviation as a function of fibre PMD 

coefficient. 

Figure 5.9 present the variation of the PDG and on-off gain standard deviation in the three 

pumping configurations. Normalization of both quantities with respect to average on-off gain 

eliminates their dependence on pump power. (Lin and Agrawal, Feb 2003). Results in Figure 

5.9 show that PDG and signal gain fluctuations depend on the pumping scheme and increase 

rapidly for co-pumped configuration at low PMD (< 0.03 pskm
-1/2

). However, as the PMD 

increases both the gain fluctuations and the PDG values of the three pumping schemes 

decrease to the same level as predicted by Lin and Agrawal, (Feb 2003). One interesting 

feature in figure 5.9 is that the two quantities vary in the same way though they are of 

different magnitudes. This implies that we can predict the effects of PDG if we know the on-

off gain distribution of the Raman fibre amplifier. The system PDL in each of the 

measurements was <0.2 dB and was observed to have no influence on the results. 

5.6.1 Field measurements for high PMD fibre 

Measurements were performed on deployed cable at Sidwell Telkom SA exchange in Port 

Elizabeth. This cable connects two stations and was looped during the measurements to make 

a total length of 28.8 km. The fibres constituting this cable had their PMD coefficient in the 

range 0.4-2 pskm
-1/2

. The same setup used in the laboratory measurements (section 5.3), was 

employed in the field measurements. 
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Figure 5.10 Distributions and probability plots of two deployed high PMD fibres. In (a) and (b) 

Dp=0.43 pskm
-1/2

 and in (c) and (d), Dp=1.84 pskm
-1/2

. 

The on-off gain distributions of deployed fibres were unusual and gave inconsistent gain 

averages. In figure 5.10 the 1.84 pskm
-1/2

 fibre shows slightly higher gain averages than the 

fibre of 0.43 pskm
-1/2

 PMD coefficient. This is rather unusual and could be attributed to non 

uniformity of the birefringence (section 4.3.3). It is likely that these fibres have high 

birefringence sections as earlier measurements on similar fibres showed (Visser et al, 2003). 

These high birefringence sections would cause the fibre to have a high PMD coefficient 

without a corresponding reduced gain. We performed the test (section 4.3.3) for concatenated 

fibres and found the field fibres to have similar results to those obtained in the laboratory. 

This was an indication that the two looped fibres were of different PMD coefficients. 
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However, the gain fluctuations of these two fibres are consistent because of their high PMD 

which results in the asymptotic nature of the RMS value of the gain (section 5.6). In figure 

5.10b the forward pumping shows a strong linear pattern in the middle with a small deviation 

from linear fit near the upper end and a tail on the lower end. At the same time backward 

pumping shows tail-less ends and a mild S-pattern at the centre. In figure 5.10d the forward 

pumping again shows strong linearity with minor deviations and a long tail at the lower end 

while the backward pumping displays a mild S pattern at the middle with a tail at the upper 

end. There is a clear indication that the distributions for both fibres are tightly bunched round 

their mean values which is mainly because of their high PMD. Thus in the high PMD regime, 

the rapid rotations of pump and signal SOPs culminate to efficient gain averaging which 

tends to incline the gain distribution to a normal. 

A similar approach as in section 5.6 was performed on the deployed fibres to establish the 

variation of PDG and RMS value of gain as a function of PMD. 

  

Figure 5.11: Normalized (a) PDG and (b) gain standard deviation of deployed fibres as a function of 

PMD. 

As is evident in figure 5.11, both PDG and gain fluctuation hardly change as PMD of the 
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below 1 dB and the calculated gain standard deviations below 0.25 dB for all the fibres 

tested. The measured PDL of each fibre also included in figure 5.11a showed no effect on the 

PDG values. One thing worth mentioning here is that these buried cables were noisy 
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PMD values changed depending on external conditions (De Angelis et al, 1992 and Cameron 

et al, 1998). Finally we note that, despite the fact that high PMD virtually eliminates the gain 

fluctuations it also reduces the Raman gain and introduces signal distortions at high data 

transmission bit-rates. 

5.7 Signal power distribution 
Amplified signal power distribution is another aspect in understanding the effects of PMD 

during Raman amplification. The data for signal power distributions is the same which was 

used to obtain the on-off gain distributions and therefore no independent measurements were 

required. In this case the power distributions of the six fibres discussed in section 5.5 were 

analysed. 

  

   

Figure 5.12: Distribution of signal power of six fibres of varying length and PMD. 
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Figure 5.12 shows the histograms of signal power in the dBm scale which were plotted with 

bins of equal size. The solid line indicates a normal distribution fit to the profile. One 

advantage of using the dBm scale is to get rid of the decimals associated with the signal 

power because it is in microwatts (µW) range on the linear scale. The main difference 

between these distributions and those of the gain (section 5.5) is the discreteness of the bins 

which may be a result of using logarithmic data. The signal power fluctuation is dependent on 

the fibre PMD as well as the pumping technique as can be seen in all the six distributions. 

According to figure 5.12a and 5.12b, the three pumping schemes shows that the signal power 

at the peaks of the distributions is lower for the fibre of PMD coefficient 0.025 pskm
-1/2

. 

Since these two fibres have the same length, it implies that the higher PMD enhances power 

averaging of the output signal. At the same time the low PMD fibre allows the amplified 

signal power to take a wide range of values because its PMD diffusion length is comparable 

to the actual length of the fibre and therefore the output power depends on the input 

conditions. That is, the output signal depends on the input SOPs of the pump and signal. In 

figure 5.12c which is a case of low PMD fibre, the power distribution is broadened for the 

forward pumping compared with the superimposed Gaussian fit. However the signal power is 

well bunched around the peak in the backward and bidirectional pumping. When the length 

of this fibre is doubled in figure 5.12f there is a strong confinement of the power distribution 

to the superimposed normal fit. The distributions shift to lower power values simply because 

of signal losses in the added fibre. A similar analysis of figure 5.12d and 5.12e, which is the 

case of a high PMD fibre, reveals that there is less confinement of the distribution profiles to 

the Gaussian fit. In this case, doubling the length of the fibre resulted in negligible 

broadening of the profiles but increased the frequency count of the side bins relative to the 

central peak. This is the reason for the loss of confinement as is clearly evident in all the 

pumping schemes. The results in figure 5.12 are in agreement with the theoretical analysis by 

Lin and Agrawal (2003) where normalized signal power (net gain GdB) was predicted to have 

a normal distribution for fibres of PMD coefficients 0.002 pskm
-1/2

 and 0.1pskm
-1/2

. Their 

choice of these coefficients was mainly to ensure that the low PMD coefficient does not 

misalign the pump-signal SOPs during amplification and the high PMD coefficient eliminates 

the dependence of the amplified signal on the input SOP. In real fibres this condition may not 

be realizable but as is evident in figure 5.12 the amplified signal power distributions are close 

to the normal distribution and therefore confirms the theoretical findings. According to 

statistical analysis of random variables the logarithm of a variable produces a normal 

distribution if the variable is lognormal distributed (Papoulis, 1991). Consequently, the log of 
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the normal distribution provides a good model for amplified signal power in the PMD 

regime, DP< 0.01 pskm
-1/2

 and DP>0.1 pskm
-1/2

. 

5.8 Raman gain and PMD characterization of fibre  

In this section we take advantage of the vector theory of RFAs (Lin and Agrawal, 2002 and 

Aug 2003) to demonstrate a simple technique of extracting the fibre PMD coefficient from 

the measurement of PDG and on-off gain. Measurements of PMD in optical fibres have been 

a subject of extensive research over the past three decades (Kogelink et al, 2002 and 

Hernday, 1998). At high bit rates (>10Gb/s) and long span transmission, which is the state of 

art in a modern fibre network, the PMD effect causes signal impairments that would lead to 

system failure. The old fibre exhibited high PMD and only allowed low bit rate-distance 

transmissions. Modern fibre fabrication technology has greatly improved the quality of the 

fibre thereby enabling the production of low PMD fibre (Kogelink et al, 2002). There is a 

need to accurately assess the intrinsic PMD of the modern single-mode fibres for 

telecommunication applications. In a long haul transmission network the small residue 

birefringence still present in modern fibres accumulates and can cause pulse distortions and 

signal fading resulting in system penalties (Poole et al, 1991 and Chowdhury, 1999]. PMD 

characterization of a fibre during and after cabling and also after installation remains an 

important step toward improving the quality of an optical link. PMD effects have instigated 

the development of many measurement techniques, most of which can be easily classified as 

either time domain or frequency domain methods (Kogelink et al, 2002 and Hernday, 1998). 

The uncertainty of the measurement associated with these techniques increases with 

decreasing PMD values (Williams, 2004). Time domain methods are limited to laser source 

coherence times and environmental perturbations while frequency scanning methods require 

a wide bandwidth source for sufficient accuracy of measurement. The random nature of fibre 

birefringence and its evolution with time causes PMD to be statistical in nature. This further 

complicates the measurements especially in unstable environmental conditions (McCurdy, 

2004). Recently, Raman amplification has been demonstrated as a new technique for making 

PMD measurements (Heras et al, 2006; Sergeyev et al, 2008). In their analysis Heras et al 

(2006) extracted the fibre PMD coefficient by measuring the RFA signal gain distribution 

along the fibre using a P-OTDR. Sergeyev et al (2008) using their model Sergeyev et al, 

(2006) characterized fibre birefringence by analyzing maximum and minimum PDG of the 

RFA. 
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5.8.1 Relation between PDG and on-off gain 

In this case we take the advantage of the analytical model presented by Lin and Agrawal, 

(Aug 2003) to show that by relating PDG and on-off gain for the forward pumping 

configuration we can extract the PMD coefficient of the fibre. Substituting the decibel form 

of equation 3.8 in 3.9 we obtain the relation: 

        
     

 π     
  

  α       

    
 
 

  

     5.1 

and 

                         5.2 

where <Δ> and <G> is the average PDG and the average on-off gain respectively,  R = ωp- 

ωs is the Raman shift where ωp and ωs is the respective pump and signal frequency, Leff is the 

Raman effective length of the fibre, αp is the pump attenuation coefficient, Dp is the PMD 

coefficient, a =10/ln10≈ 4.343, gR is the Raman gain efficiency and Pin is the input pump 

power. Again, numerical simulation and theoretical analysis (Ebrahimi et al 2001; Lin and 

Agrawal Feb 2003) have shown that the normalized PDG is related to the fibre PMD 

coefficient by the relation: 

   

   
  

 

  
      5.3 

where k is a constant of proportionality which, according to equation (5.1) is given by; 

k=
8

 π  
  

          

    
 

 
  

    5.4 

It is interesting to note that k has the same units as Dp (pskm
-1/2

) and for a known length of 

the fibre we only need to measure PDG and the corresponding signal on-off gain to determine 

Dp. 

5.8.2 Determination of fibre PMD parameter 

In the experiment the same setup as the one used to evaluate Raman gain statistics (section 

5.5) was employed. Four standard single mode fibres (SSMF) in a cabled spool of length 

12.03 km were used in the measurements. The fifth fibre of length 24.7 km (TrueWave) 

which is a non-zero dispersion shifted fibre (NZDSF) was also tested. For comparison, the 

Jones matrix eigenanalysis (JME) measurements were performed on each of the fibres and 

their PMD coefficients calculated. The JME technique yielded the PMD coefficients of the 

five fibres to be in the range between 0.01 pskm
-1/2

 and 0.1 pskm
-1/2

. A -10 dBm signal from a 

tunable laser source and the forward Raman pump were scrambled continuously at low speed 

to provide a full Poincaré sphere coverage of their SOPs before coupling them into the fibre. 
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The average PDG and on-off gain of each fibre was then determined using two approaches. 

First, with the tunable laser source set at 1550 nm the pump power was varied between  

135 mW and 330 mW in steps of 5-10 mW and both gains measured for each pump power 

using the IQS-1700 power meter. The amplified signal was filtered before measurements 

using a 100 GHz wavelength division multiplexer (DWM). In the second setup, the pump 

power was set at 200 mW and the source wavelength was changed between 1520 nm and 

1565 nm at intervals of 5 nm. Residue pump power and the amplified spontaneous emission 

(ASE) noise generated were filtered using a digital tunable filter before the measurements of 

signal gains at each wavelength. The system polarization dependent loss (PDL) and the signal 

to noise ratio (SNR) were determined for each fibre and at different wavelengths of the 

signal. The attenuation coefficients of SSMF and NZDSF at pump wavelength were found to 

be 0.269 dB/km and 0.251 dB/km respectively. 

A major advantage with this approach is that determination of gain is insensitive to SOP 

fluctuations which can occur as a result of fibre movement and vibrations during 

measurements. Secondly, the effects of signal losses due to fibre attenuation, imperfect 

connectors and other system losses cancel out in the measurement of PDG and signal on-off 

gain and therefore need not to be known. It is noted here that applying this technique and the 

conversion procedure outlined in Lin and Agrawal, (Aug 2003), in the case of backward 

pumping does not yield the correct PMD coefficients. When the same fibres were tested in 

the backward pumping configuration the resultant PMD coefficients were very small and did 

not match the values obtained using JME or forward pumping. This implies that a different 

approach is required for backward pumping analysis (Galtarossa et al, 2006). Figure 5.13 

shows the variation of Raman PDG with signal on-off gain as pump power increases. The 

solid line superimposed on the curves is the linear fit of the data distribution which is in 

agreement with the theoretical analysis (Lin and Agrawal, Feb 2003). The y-intercept of the 

solid lines graphs indicates the residue PDL of the measuring system. The PMD coefficients 

indicated in figure 5.13 were obtained by applying equation (5.1) and using the slopes of the 

linear fits. Alternatively one can use equation (5.1) and pairs of PDG and on-off gain values 

obtained at each pump power to calculate the average fibre PMD. The PMD coefficients of 

the five fibres as determined by the JME technique were 0.033 pskm
-1/2

, 0.073 pskm
-1/2 

0.12 pskm
-1/2

, 0.025 pskm
-1/2

 and 0.011 pskm
-1/2

 respectively. The values obtained using this 

technique therefore validates equation (5.1) in determining the PMD coefficient of a fibre in 

the low regime. The system PDL values of the five fibres were 0.140 dB, 0.186 dB, 0.149 dB, 

0.168 dB and 0.187 dB respectively. It should be noted that a signal wavelength of 1520 nm 
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was used in the case of the fibre of PMD coefficient 0.12 pskm
-1/2

 because the system PDL 

was lowest at this wavelength. This means that at low PDL (< 0.15 dB) this technique would 

still determine PMD coefficients above 0.1 pskm
-1/2

 with good accuracy. 

 

Figure 5.13: Raman PDG as a function of average on-off gain of five low PMD fibres. Their 

respectively lengths and the corresponding PMD coefficients are indicated. 

Figure 5.14 compares the values of DGD obtained from Raman gains with JME signatures of 

two fibres in the wavelength range between 1520-1565 nm. The DGD values were obtained 

by calculation (section 2.2.2) and the PMD coefficients of the fibres at different signal 

wavelengths were extracted from the gain measurements. Figure 5.14a shows a fairly 

consistent trend for the DGD values obtained using the Raman gain as the wavelength is 

increased. In figure 5.14b the DGD values show a more evident deviation as the signal 
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wavelength increases. This behaviour was caused by several factors that could not be 

controlled during the measurements. These factors included the system PDL and the signal to 

noise ratio (SNR) which was found to change with wavelength. Again, the DGD of the fibre 

in figure 5.14b was found to vary within a short time span (in the course of the 

measurements) as shown by the embedded seven JME trials. The two fibres also show 

differences in their DGD trends because the SSMF is cabled while the NZDSF is not. The 

DGD of a cabled fibre will be least affected by external perturbations such as changes in 

room temperature. (van Antwerpen et al, 2003; Li et al, 2000). 

  

Figure 5.14: DGD as a function of pump-signal detuning of (a) SSMF of length 24.06 km (b) NZDSF 

of length 24.7 km. Embedded is the DGD signature of the fibres as measured by JME. Included are 

seven DGD values obtain by JME for the NZDSF at different times during the measurements. 

5.8.3 Effects of PDL and SNR 

Characterization of fibre PMD using Raman gain analysis basically involves the 

measurement of amplified signal power. The accuracy of the measurements may be affected 

depending on the noise in the RFA and the PDL of the experimental setup. Other factors that 
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A lot of care was taken in the measurements to reduce errors emanating from the later to the 

minimum. 

Figure 5.15a and 5.15b show that the maximum PDL of the measurement system for the 
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(<1 dB), the SNR degradation will be the main contributor to errors in the determination of 

fibre PMD coefficient. 

   

   

Figure 5.15: PMD coefficient variation due to PDL and the SNR at different pump-signal detuning. 

The fibre used in (a), (c) is a SSMF and (b), (d) is a NZDSF. 

The presence of ASE which is a by-product of the amplification process generates signal-

spontaneous beat noise and is a major source of SNR degradation. Improved filtering can be 

achieved if a narrow wavelength filter is used or a wavelength division multiplexer WDM 

tuned to the signal frequency. As seen in figure 5.15c and 5.15d the SNR above 20 dB is 

sufficient for accurate measurements using this technique. The system PDL will also 

contribute to errors in the values of the calculated PMD coefficient. In the absence of system 

noise, PDL interaction with Raman PDG will manifest as a lower than expected value of 

PMD coefficient. It was observed that PDG sensitivity to system PDL depends on the fibre 

PMD coefficient. At low PDG (high PMD) the system PDL should be kept below 0.1 dB to 

maintain high measurement accuracy. Low system PDL can be achieved by using WDM 

couplers and a tunable filter with small PDL values. In our setup the filter was found to have 

a PDL as high as 0.65 dB at some signal wavelengths. 
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5.9 Forward and backward pumped Raman PDG  
It is important to closely investigate how Raman PDG relates in forward and backward 

pumping for fibres of different PMD coefficients and lengths. Though PDG depends on 

pump-signal detuning, evaluating its magnitude at the peak of the Raman spectrum would 

give us a good understanding of its relation in the two pumping schemes. Using the same 

setup as in section 5.5 the Raman PDG values of several fibres were obtained while varying 

the pump power between 130-330 mW. 

  

Figure 5.16: Relation between backward and forward pumped Raman PDG. In (a) each fibre has a 

length of 12.03km and in (b).the lengths L are indicated. The pump detuning is 100 nm. 

As can be seen in figure 5.16 there is a good correlation between the PDG (dB) of backward 

pumped and forward pumped signal. However this correlation depends on the length and the 

PDM coefficient of the fibre as the slopes indicate. In figure 5.16a where the fibre length is 

12.03km there is no remarkable change in the slope as the fibre PMD coefficient is increased 

from 0.011-0.113 pskm
-1/2

. This implies that within this range of fibre PMD the back 

pumping changes the effects of the Raman amplification process in a similar way if the 

length (L) of the fibre is comparable to the effective length Leff. The attenuation increases 

linearly with length and when the length of the fibre is small the pump remains strong all 

along the fibre even to the output. In this case, the PDG in the forward pumped configuration 

increased by a factor of 2-3 when compared to the backward pumping configuration. Figure 

5.16b shows that the effect of backward pumping on the amplification process depends 

largely on the fibre PMD. The results show a reduction in the slope by a factor of two when 

the fibre PMD coefficient is increased by a factor of ten. In this case the fibre is long 

compared to its effective length and most of the pump power gets attenuated. Previous report 

by Son et al (2005) concluded that backward pumping reduces PDG by a factor of three. Our 
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results contradict this earlier report which did not account for the length of the fibre. However 

there is some agreement for the fibre with low PMD. We find here that in order to determine 

how the PDG in the backward pumping configuration relates to PDG in the forward pumping 

configuration it is important to properly account for the length and PMD of the fibre. It is also 

important to ensure that the pump remains un-depleted by keeping the input signal power 

moderately low. 

In summary, the gain statistics of a RFA can be described using the three gain quantities 

which are: PDG, on-off gain and net gain. Statistical distributions of the three gains depend 

on the PMD parameter of the fibre and the DOP of the pump. The length of the fibre also 

influences the statistics of the gains. Polarization scanning techniques can be used to 

characterize the gains in low and high PMD fibres. However, low PMD fibres require the 

scanning of both pump and signal SOPs at the input. This is because uneven coverage of 

input SOPs on the Poincaré sphere may result in skewed distributions of the gains. This 

behaviour is caused by the fact that the gains depend on the pump input SOP. At high PMD 

this dependence is nullified due to enhanced polarization mixing. The gain statistics are also 

dependent on the pumping schemes where forward pumping has the highest gain fluctuation 

for both low and high PMD fibre. Raman PDG and on-off gain are well related and their 

averages can be used to extract the PMD coefficient of a fibre. Finally it was found that the 

PDG in the forward and backward pumping are proportional. The ratio of this proportionality 

decreases as the fibre PMD increases. 

 

 

 

 

 

 

 

 

 



73 
 

Chapter Six 

Effects of polarization dependent loss 
on Raman gain 

Raman polarization dependent gain (PDG) and polarization dependent loss (PDL) are two 

polarization effects which are different in terms of their generation mechanism. However, in 

their measurement and determination these effects bear similarities since they both affect the 

optical intensity of a signal. In this chapter we investigate the behaviour of Raman on-off 

gain and PDG in the presence of PDL. 

6.0 Introduction  

In practical fibre optic communication systems there exist numerous inline optical 

components whose polarization dependent loss (PDL) is non negligible. Furthermore, every 

RFA is configured into the optical system by the use of optical components such as WDM 

couplers, isolators, filters and gratings, all of which exhibit PDL (Burgmeijer et al, 1990). 

Studies have shown that adapting a more dynamic configuration would greatly improve the 

performance of a RFA. In most cases this involves introducing extra optical component(s) 

(Zheng et al, 2002; Li et al 2006). It has been confirmed by Kimsas et al (2004) that inserting 

an isolator in between two gain media consisting of dispersion shifted fibre (DCF) would 

greatly improve the noise characteristics of the Raman amplifier. When considered alone, 

PDL is known to induce OSNR fluctuations in a system (Mecozzi and Shtaif, 2004; M. Yu et 

al 2002). Previous studies that dwelt on the impact of PDG and PDL in long-haul amplified 

systems showed that the combined effect of PDL and PDG has adverse effects on the system 

performance (Lichtman, 1993, Bruyere and Audouin, 1994, Lichtman, 1995). Chowdhury, 

and Bhagavatula (2001) simulated the impact of PDL on the gain ripple of an EDFA and 

found that PDL distorts the flatness of the gain spectrum. Other analysis on parametric 

amplifiers (Yaman et al, 2006) showed that none orthogonality of two pumps caused by 

PMD and PDL is detrimental to the performance of a dual-pump parametric amplifier. They 

stated that the effect of the PDG is equivalent to that of polarization independent gain 

followed by a PDL component. The fundamental issues regarding the interaction of Raman 

PDG and PDL are greatly significant and have not been fully understood. As a result 

PDG/PDL effects have been assumed to be the same because of similarities in characteristics 
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(Haunstein and Kallert, 2001; Yan et al, 2002; Dong et al, 2006). In their experimental work, 

Yan et al (2003) argued that the presence of PDG in a system with non-negligible PDL is 

necessary in order to suppress PDL effects. This may be true for an EDFA which has low 

PDG, but the case for a RFA requires further investigation. In their investigation on statistical 

properties of PDG in a RFA, Lee et al (2002) stated that PDL effects result in nominal gain 

variations when the pump degree of polarization (DOP) is small. In this work, we investigate 

by simulations and experiment the effects of PDL in a distributed RFA. Our focus here is 

mainly on the behaviour of Raman PDG as well as the statistics of on-off gain in the presence 

of PDL and the role of PMD in the interaction. 

6.1 Measurement setup 

In the experimental setup of the distributed RFA, a PDL emulator of known value was 

introduced. Measurements were taken each time with the PDL connected at different 

locations (1-4) as shown in figure 6.1. 

Figure 6.1: Schematic diagram for evaluating PDL effects on Raman Gain. (T-filter refers to a tunable 

filter and WDM-narrow band WDM coupler). 

The WDM source wavelength was set at 1550 nm and its power changed each time while 

observing the signal gains. The pump and signal were scrambled separately at low speed 

before coupling the two into the fibre. The reason for polarization scrambling is to provide all 

possible SOPs at the input thus activating the emulator PDL and also generating PDG. 

Figure 6.2 shows the PDG variation in the forward pumped RFA in the presence of the PDL 

emulator. The fibre used was that of PMD coefficient 0.011 pskm
-1/2

 and length 24.06 km. 

This fibre provided enough PDG which would otherwise be small if a high PMD fibre was 

used. 
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Figure 6.2: Raman PDG variation with input signal power in the presence of a PDL emulator placed 

at the following positions: (a) one (1), (b) two (2) (c) three (3) and (d) four (4). (Refer to figure 6.1). 

Polarization scanning was achieved first by scrambling the signal alone, then the pump, and 

finally both the pump and signal. Incorporated in the figure are the system PDL and also the 

total PDL with the emulator connected at different positions. The total value of the PDL with 

the emulator connected ranged between 4.3-4.8 dB which is higher with respect to telecom 

optical components. However, such a large PDL value is significant and enabled us to 

emphasise the interaction of PDG and PDL. Figure 6.2a shows the PDG-PDL behaviour 

when the emulator is connected at position one. In this case, only the signal experiences loss 

due to PDL while the pump is not affected. As can be seen, the resulting PDG due to the 

scrambling of the pump has the same value as the measured PDL of the emulator. Also, 

scrambling the signal alone gave similar results as when both the pump and signal input 

polarizations were scanned. The implication is that when the PDL is high the PDG becomes 

independent of pump input polarization, similar to the case of high PMD fibre. In figure 6.2b 

the PDL emulator was connected at position two immediately after the input WDM coupler 

so that both the pump and signal experience attenuation due to PDL. In this case, the sum of 

PDG and PDL generated by scanning the signal input SOP is similar to the emulator PDL 
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value. The PDG value obtained with the pump scrambled is less because of pump losses at 

the PDL emulator. We also note that the sum of PDG and PDL measured while scanning both 

the pump and signal input SOPs is less than that obtained in figure 6.2a for the same reason. 

Results in figure 6.2c were obtained by connecting the emulator at position three which is 

immediately before the output WDM coupler. The results show that the sum of PDG and 

PDL measured while scanning the signal input SOP is similar to the global PDL. This 

corresponds to a situation where the signal PDG is completely eliminated after it passes 

through the PDL emulator. In the same figure, scanning the pump or both the pump and 

signal result in the weighted sum of PDG and PDL. There is also the evidence of amplifier 

saturation as the input signal power increased, signifying large PDG contributions to the 

weighted sum. Similarly, in figure 6.2d the contribution of the scanned pump to the weighted 

sum of PDG and PDL is very small compared to that due to pump-signal scrambling. The 

results in figure 6.2 imply that the weighted sum of PDG and PDL cannot be less than the 

emulator PDL. That is to say in a practical system the PDL associated with the optical 

components used to configure RFA always add to the Raman PDG. We can understand this 

behaviour if we consider the transmission properties of a component with PDL when 

subjected to an optical field and the nature of PDG in a Raman amplifier. An optical element 

exhibiting PDL has two mutually orthogonal axes which correspond to axes of maximum and 

minimum power transmission. On the other hand, PDG emerges as a result of changing 

orientation of the pump and signal SOPs which is caused by time variation of PMD in the 

fibre. The overall effect of PDL and PDG is to increase power fluctuation at the output so that 

a maximum-minimum power meter will measure the weighted average of the two. 

6.2 Statistics of RFA gain in the presence of PDL 
In this case we investigate the effects of PDL on Raman on-off gain statistics using the fibre 

of length 24.06 km and PMD coefficient 0.011 pskm
-1/2

. The gain statistics become important 

in understanding simulation model(s) which would best represent the interaction between 

PDG and PDL. The same PDL emulator used in section 6.1 was involved and the source 

wavelength was set at 1550 nm. Using the same setup as depicted in figure 6.1, the gain was 

determined while scanning the input SOPs of the pump and signal simultaneously. 
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Figure 6.3: Raman on-off gain distribution in the presence of PDL. Fibre PMD, Dp=0.011 pskm
-1/2

. 

Figure 6.3 represents the distribution profiles which were obtained with the PDL emulator 

connected at positions 1-4. The overlaid Gaussian fit reveals the deviations of the gain 

distributions that were caused by the PDL of the emulator. The negative gain (which is 

actually a loss) was due to high power attenuation of the loss axis of the PDL emulator. It is 

clear from the figure that the gain distributions depend on the position where the PDL is 

placed. Figure 6.3a is a comparison of the profiles obtained when the signal loss was 

followed by gain (position 1) and when the signal gain was followed by loss (position 4). In 

these two cases, the PDL emulator affects the signal power while the pump power remains 

unclipped during SOPs scrambling. As can be seen, the gain profiles are different even 

though the means of the distributions are almost equal. In particular, we find that a power loss 

occurring after signal amplification would depopulate the centre of the distribution as well as 

enhance the tails. Figure 6.3b shows a similar comparison where the emulator is connected 

after the input coupler (position 2) and before the output coupler (position 3). This second 

situation represents a case where the pump and signal paths plus the input and output WDM 

couplers have high PDL. With the PDL emulator at position 2 the profile shifts to a low mean 

value and appears to be bimodal. This behaviour is due to attenuation of the pump by the 

PDL which results in varying pump power. Thus the pump SOPs that are least attenuated 

result in gain that is distributed about the right peak while the left peak is associated with 

signal gain when the pump power is most attenuated. This effect is enhanced in the low PMD 

fibre which causes the pump and signal SOP to remain in the same orientation over a long 

distance because of poor polarization mixing. A relatively high PMD (appendix I) would 
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ensure efficient SOP mixing resulting in reduced PDG. It was observed that the on-off gain 

decreases more when the pump encounters high PDL. In practice, both the fibre birefringence 

and the principal axes of the optical component vary with time because of environmental 

changes (Kogelnik et al, 2002). It is therefore not possible to minimize PDL effects by 

alignment of the signal and pump with the axes of maximum transmission. Instead, optical 

components with very low PDL have been fabricated using modern technology (Eldada, 

2001) and offer the best solution. It has been mentioned that the effect of PDG is equivalent 

to polarization independent gain followed by PDL (Yaman et al, 2006). However, we have 

seen that PDL more often than not always enhances PDG effects. 

6.3 Simulation of PDL/PDG interaction in the presence of PMD 
In an effort to gain a better understanding of PDL effects during Raman amplification, 

simulations were performed using commercially available software VPI 8.6. The issue here 

was to investigate the behaviour of Raman PDG and on-off gain at increasing values of PDL. 

 

Figure 6.4: Simulation schematic used for measuring the effects of PDL in a distributed RFA. (See an 

enlarged version in appendix VI) 

Two fibres of PMD coefficient 0.01 pskm
-1/2

 and 0.1 pskm
-1/2

 and length 25 km were used in 

the simulations. The component PDL was simultaneously introduced near the input WDM 

coupler and at the output of the fibre as shown in figure 6.4. The PDL module was set with 

the least attenuated axis corresponding to the horizontal (x-axis) while the most attenuated 

axis was the vertical (y-axis). The wavelengths of the pump and signal were set at 1450 nm 

and 1550 nm respectively, and their optical powers were correspondingly set at 22 dBm and  

-10 dBm. The input SOPs of the pump and signal were set using polarization controllers so 

that both were either orthogonal or parallel to the PDL axis (x-axis) at the input. 

Figure 6.5 shows the contribution of fibre PMD to the effects of PDL on RFA gain. Again, 

larger values of PDL than typically found in an optical fibre link were used in order to 
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emphasise the influence of PDL on Raman gain. Figure 6.5a represents the PDG/PDL 

obtained with the pump on (left scale) and the PDL measured at the output of the two fibres 

without the pump (right scale). 

  

Figure 6.5: Variation of (a) PDG and (b) on-off gain for a RFA, as PDL at the input and output WDM 

couplers increase. 

This is the worst case scenario where the pump and signal input SOPs are linearly polarized. 

The results clearly show that when the pump is on, the PDL adds to PDG in a weighted 

manner and the resultant value is asymptotic when the PDL become predominantly high. This 

behaviour is attributed to the interaction of PMD with PDG/PDL. It is known that PMD will 

rotate the SOPs of light in the fibre during propagation. As a result the orientation of light 

with the PDL component changes with time, which leads to a varying PDL. At the same time 

PMD will rotate the SOPs of the two waves (pump and signal) resulting in PDG. Since PDG 

and PDL are known to be stochastic in nature their interaction through PMD is also 

stochastic. Conversely, in the absence of the pump, the PDL at the output increases almost 

linearly as the applied PDL increases. The results show a significant difference between the 

values of output PDL (pump off) obtained for the two fibres with the high PMD fibre having 

the higher values. This difference is a manifestation of PMD polarization scrambling in 

optical fibres. A high PMD fibre is more efficient in polarization scrambling so that the 

output SOP is independent of the input SOP. On the other hand, a low PMD fibre will barely 

influence the orientation of the signal SOP as it propagates and consequently enhances 

alignment with the principal axes of the PDL elements, thus reducing PDL effects. That is to 

say, it requires a much longer fibre for polarization scrambling to be complete when the fibre 

PMD is low. Results in figure 6.5b indicate that the on-off gain decreases as the PDL 

increases and approaches some asymptotic value when the PDL is high. This is in agreement 

with the fact that the pump loses power every time it traverses a PDL component which 
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results in less power available for signal amplification. It is important to note that a PDL 

element changes the SOP of light traversing it, so that in an event where the PDL is 

increasing, the SOP after each PDL will be different (Huttner et al, 2000; Damask, 2005). 

The decrease in the on-off gain with increasing PDL cannot be linear because the pump and 

signal SOPs are changing due to the increase in PDL. 

6.3.1 Wavelength dependence of RFA gain in the presence of PDL 

One of the most important characteristics of the RFA is that of broadband amplification 

which has found practical application in dense WDM transmission. The contribution of 

optical components with PDL to the nature of the RFA broadband gain is an important aspect 

in understanding the factors that influence the amplifier efficiency. The setup in figure 6.4 

was used to investigate the effects of PDL on the signal gain while sweeping the source 

wavelength between 1525-1570 nm. Two fibres, each of length 25km and respective PMD 

coefficients of 0.01 pskm
-1/2

 and 0.1pskm
-1/2

 were used in the simulations. To ensure small-

signal amplification, the input signal power was set at –10 dBm and the pump power at  

22 dBm. 

  

  

Figure 6.6: (a) and (b) represent Raman on-off gain variation with wavelength of two fibres in the 

presence of PDL, while (c) and (d) are the global PDL variations with wavelength in the absence of 

the pump. 
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Figure 6.6a and 6.6b shows the effects of PDL on Raman on-off gain, evaluated by setting 

the PDL modules at 0 dB, 2 dB and 5 dB. These curves were obtained with the input SOPs of 

the pump and signal right circularly (RC) polarized. Similar gain curves were obtained for the 

other five degenerate SOPs. As can be seen there is a general decrease in the gain across the 

signal spectrum as the PDL increases. In figure 6.6a, there is a gradual tilt in the slope of the 

gain curve as the PDL increases. This is attributed to the weak dependence of PDL on the 

signal frequency when the fibre PMD is small. Also observed is a systematic decrease in gain 

as the PDL increases which is again related to the low PMD of the fibre. As explained in the 

last section, the weak birefringence associated with this fibre allows the light waves to 

maintain their alignment over long distances of propagation, in the absence of external 

perturbations. As a result, the input SOP of the signal into the PDL elements will maintain the 

same orientation during the wavelength sweep. This explanation is firmly supported in figure 

6.6b, which shows the global PDL of the concatenation in the absence of the pump. Results 

in figure 6.6b imply that in a concatenation consisting of fibre and PDL components, the 

output SOP of the signal will be less dependent on signal frequency if the fibre PMD is very 

small. Alternatively, this behaviour can be explained by considering the PMD vector 

bandwidth which is known to depend inversely on the DGD of the fibre (Poole et al, 1991; 

Betti et al, 1991; Bruyère, 1996 and Aso, 1998). Figure 6.6c reveals the role of the fibre PMD 

in the interaction between PDG and PDL. Apart from gain clipping, the presence of PDL 

introduces gain tilting which can be clearly seen in the signal wavelengths that are further 

away from the pump. In this case the fibre birefringence is strong enough to rotate the SOPs 

of the pump and signal as both propagate in the fibre. In the frequency domain this implies 

that for a fixed input SOP of the signal, the output SOP changes as the source frequency is 

scanned (Poole and Wagner, 1986). This causes the relative orientation between the PDL axis 

of the elements at the RFA input and the ones at the output to change continuously with 

frequency sweep which leads to frequency dependent PDL. (Amari et al, 1998). Figure 6.6d 

illustrates the behaviour of global PDL in the absence of the pump and confirms our 

explanation reasonably well. The results show that the global PDL fluctuates with frequency 

when a high PMD fibre is involved in the concatenation. We also observe that the fluctuation 

of global PDL increases as the local PDL increases. 

In summary it is clear that the interaction of Raman PDG and optical component PDL will 

result in even more signal fluctuations than when only one of the two is involved. The nature 

of gain fluctuation depends on the value of the PDL and its location in the system. The 

overall effect of PDL is to reduce Raman gain and this can even result in signal loss. 



82 
 

Simulation results have shown that in a RFA the interaction of PDG and PDL is mediated by 

PMD in the fibre. High PMD enhances this interaction and results in wavelength dependent 

tilting of the signal gain. Simulations also revealed that both PDG and PDL effects tend to 

dominate each other depending on their relative magnitudes. This simply means that in an 

event where the PDL is small the PDG effects will dominate, and vice versa. Finally, it is 

important to note that optical components used in the RFA configuration and optical 

communication systems have moderate PDL, and the effects observed in this study will 

obviously be less severe. However, this study provides an excellent experimental framework 

that can be used to support and give insight into the development of accurate theoretical and 

numerical models incorporating PDG, PDL and PMD. 
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Chapter Seven 

Polarization pulling during Raman 
amplification in fibres 

The need to control the polarization of light in optical communication and photonic 

applications has recently been a subject of great interest. It is a fact that one of the most 

useful passive devices in the study of polarization in optical fibres is the fibre-based 

polarization controller (PC) which is manually operated. Many different solutions to 

polarization control have been emerging which are mostly to alleviate its effects. In this 

chapter we investigate polarization pulling occurring in RFA. 

7.0 Introduction  
The random nature of the SOP of light in fibre has been a challenge in every development 

stage of an optical communication system (Garnier et al 2002). Although a direct detection 

receiver is insensitive to polarization changes, some new applications demand proper control 

of the input SOP. Among other things, there is the need to implement more efficient signal 

processing techniques such as coherent detection (Walker and Walker 1990; Ip et al, 2008), 

as well as the application of advanced data formats such as polarization division multiplexing 

(PolDMX) of channels (Hill et al, 1992; Noé et al, 2001). The success and realization of 

these applications demand predictable polarization of light with long term stability. The 

principal behind PMD compensation in high bit rate (> 10 Gb/s) systems is based on active 

tracking of the polarization of channels (Heismann et al, 1998; Sunnerud et al, 2002). Many 

optical amplifiers and optical devices are polarization sensitive and their full potential can 

only be achieved if we find some means of stabilizing the polarization. Solutions seeking to 

address the control of the polarization of light have been reported by several groups. Heebner 

et al (2000) demonstrated the design of a non linear photorefractive crystal which converts 

unpolarized light into linearly polarized light with unit efficiency. In a different approach 

Pitois (2004), demonstrated the control of light polarization in isotropic fibres by the 

nonlinear process of four-wave mixing of two counter propagating beams. More recently, 

Pitois (2008), designed a polarization attractor for telecommunication applications using 

highly nonlinear fibre (HNLF). Around the same time Martinelli et al (2006), theoretically 

and experimentally developed an active electro-optic feedback technique for polarization 
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control. Polarization attraction induced by stimulated Brillouin scattering (SBS) has also been 

demonstrated in fibre where the input SOP of the signal was found to match the SOP of a 

counter-propagating pump at the output (Thevenaz et al, 2008). Brillouin gain in fibre is 

polarization dependent such that maximum gain occurs when the signal is aligned with the 

pump and zero gain when they are orthogonal. It has been found that PDG due to SBS and 

the weak random birefringence in modern fibre is the cause of polarization pulling (van 

Deventer and Boot, 1994). 

Polarization attraction occurring during stimulated Raman scattering (SRS) in fibre was 

recently demonstrated by Martinelli (2009). In their experiment a pump and a signal were co-

propagated in a 2.1 km dispersion shifted (DS) fibre of PMD coefficient 0.075 pskm
-1/2

. It 

was found that a scrambled signal was attracted to the pump SOP at the output. The level of 

attraction increased as the pump power increased. Further numerical and experimental 

analyses were carried out by Ferrario et al (2010) with the aim of establishing the optimum 

conditions that would provide effective polarization pulling for application in optical 

communication. In their work they evaluated the contribution of pump power, fibre length 

and PMD in determining the effectiveness of polarization pulling. It was found that pulling 

increased as the PMD of the fibre decreased and that it also depended on fibre length. Their 

analysis involved pump powers above 500 mW and fibre lengths below 20 km. Numerical 

simulations reported by Ursini et al (2011) showed that Raman polarization pulling in fibre is 

limited by pump depletion at high pump power due to increasing nonlinear polarization 

rotation (NPR). All these reports show various aspects of Raman polarization pulling while 

assuming nonlinear effects such as XPM and SPM to be negligible. Besides, there is a need to 

investigate polarization pulling at lower pump power and longer fibre lengths than the ones 

that have been recently reported. Our aim here is to consolidate the various aspects of 

polarization pulling with the view of gaining deep insight into the subject as well as to 

compare our results with the previous findings. Using simulations and experiments we 

explore the subject of polarization attraction in single mode fibres during Raman 

amplification. 

Similar to the case of SBS, polarization attraction due to SRS in fibre is caused by the strong 

PDG and the small fibre birefringence in the modern fibres. PMD in fibre causes signal 

polarization randomization and is therefore a limiting factor in polarization pulling. There is 

also the aspect of NPR which is caused by power dependent nonlinear birefringence. Its 

effects on signal SOPs emerge as soon as the linear birefringence is too small. Some 
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manifestations of NPR are the nonlinear SPM and XPM which result in polarization 

scattering. The theory of polarization pulling is derived from the vector theory of stimulated 

Raman scattering (Lin and Agrawal, Aug 2003). The dynamic equations governing the pump 

and the signal SOPs during Raman amplification were included in chapter 3 of this thesis for 

quick reference. 

7.1 Measurement setup 
Figure 7.1 shows the experimental setup that was used in the measurement of polarization 

pulling effects of the pump on the signal. The source wavelength was set at 1550 nm and the 

signal power at -10 dBm while the pump could provide a maximum power of 25 dBm. 

 

Figure 7.1: Schematic diagram for the measurement of polarization attraction. (Sw-refers to 

optical switch and T-filter refers to tunable filter). 

The SMF in a cable of length 24.06 km was used in the measurement. At the output the signal 

was filtered of excess noise and connected to the polarization analyzer via an optical switch. 

Similar connections were performed on the pump without filtering. We noted that the excess 

pump power at the output was still high and needed to be attenuated before connection to the 

polarimeter. This made it unnecessary to filter the pump because the noise magnitude and the 

signal leaking into the pump output port is negligibly small to affect the measurements. 

7.1.1 Effects of scrambled pump on signal pulling 

In previous experiments the input signal was scrambled to provide all possible SOPs at the 

input while the input SOP of the pump is fixed. In our case the pump was scrambled instead 

and the input signal was set in turn to each of the six degenerate SOPs. The purpose here is to 

address the fundamental issues that result in polarization pulling in low PMD fibres. The 

pump power was set at either 200 mW or 360 mW and the signal output SOP was 

determined. 
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Figure 7.2: Poincaré sphere representation of the output signal SOPs when the pump is scrambled. (a), 

(b) and (c) represent the fibre of PMD coefficient 0.011 pskm
-1/2

, (d) 0.113 pskm
-1/2

.RCP refer to right 

circular polarization, LCP -left circular polarization, LHP- linear horizontal polarization and LVP- 

linear vertical polarization; of the signal at the input of the fibre  

Figure 7.2 illustrates the effect of the scrambled pump on the signal when the input SOP of 

the signal is fixed. The signal output SOP executed a controlled motion on the sphere tracing 

the patterns shown. The positioning of the patterns on the Poincaré sphere depended on the 

input SOP of the signal which is a characteristic of random birefringence in the fibre. It is 

also observed that there is similarity in the patterns of each pair of orthogonal input SOPs on 

the Poincarè sphere and therefore one can be mapped onto the other by a rotation while 

observing the handedness of polarization. However the simple Jones and Mueller matrix 

formalism cannot be used to analyse the relation between input and output signal SOPs in this 

case, because one input SOP maps into many output SOPs. It was observed that the shapes of 

the patterns were determined mainly by the strength of the linear birefringence when the 

pump power is low. When the pump power was increased to 25 dBm which was the highest 

power available, the patterns increased in size but their shapes remained the same as is 

evident in figure 7.2a and 7.2b. In an event where the pump power is sufficiently high, 
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polarization pulling will be complete and the signal SOPs would fill the whole sphere. 

Similar results were obtained for backward pumping but the pulling pattern occupied a 

smaller area, as shown in figure 7.2c. In this case the PDG is small which translates into less 

SOP pulling. The role of linear birefringence in defining the location of the pattern is clearly 

evident. Results in figure 7.2d were obtained for the fibre of PMD coefficient 0.113 pskm
-1/2

 

and show very small signal SOP excursion. The implication here is that the modal 

birefringence is strong enough to keep the signal SOP away from the pump. It was observed 

in all cases that orthogonally incident SOPs resulted in output SOP patterns that are 

symmetric about the diameter of the Poincaré sphere. It is noted here that polarization pulling 

is always present even at low pump power but cannot be observed when the input signal is 

scrambled and the pump SOP fixed. When the pump power is high a scrambled signal will 

converge to the pump SOP at the fibre output; this has already been confirmed (Pitois et al, 

2008). 

7.2 Pump-signal orientation on the Poincaré sphere 
In this case we investigate experimentally the effect of increasing the pump power on the 

relative angle between the pump and the signal as determined on the Poincaré sphere. The 

output SOPs of the pump and signal were initially set at known states on the Poincaré sphere. 

This was accomplished by setting the corresponding input SOPs using the manual PC. The 

pump power was then varied over the range between 50 mW and 350 mW while measuring 

the SOPs of both the pump and signal. 

Figure 7.3 shows the change in the relative angle between the SOPs of the pump and signal at 

the output of the RFA, with increasing pump power. Several combinations of the six 

degenerate SOPs were evaluated, of which only a few of these cases are illustrated. It should 

be noted that orthogonal SOPs in Jones space are 180
o
 apart in Stokes space. Thus, two points 

on the surface of the Poincaré sphere that are oriented at 90
o
 to each other are 45

o
 in Jones 

space. (Goldstein and Collett, 2003). The projection angle of two SOPs is therefore equal to 

half the relative angle between them on the Poincaré sphere. Results in figure 7.3a were 

obtained for the fibre of length 12.03 km and demonstrate polarization pulling when the 

output SOPs of the pump and the signal are initially orthogonally polarized (180
o
) and when 

both are at 90
o
 in Stokes space. Similar results were obtained for the fibre of length 24.06 km 

as illustrated in figure 7.3b. The later results show that increasing the length of the fibre 

enhances the pulling. Figure 7.3c represents the behaviour in the 12.03 km fibre when the 

output SOPs of the pump and the signal are initially parallel in Stokes space. 
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Figure 7.3: Relative angle between the pump and signal as a function of pump power for a fibre of 

PMD coefficient 0.011 pskm
-1/2

. The length of the fibre in (a), (b) is 12.03 km and in (c), (d) is 24.06 

km. 

This is a clear manifestation of polarization scattering due to the small linear birefringence. 

The power dependent nonlinear birefringence is known to interact with linear birefringence 

but the effect is negligible in this case. Figure 7.3d shows similar results when the length of 

the fibre is doubled. As can be seen, doubling the length of fibre enhances SOP scattering. 

However, if the pump power is sufficiently high equilibrium can be reached where the signal 

SOP becomes attracted again to the pump. This is clearly demonstrated in figure 7.3d for the 

case when the pump and the signal are initially horizontally polarized (LH-LH). The nature 

of the results in figure 7.3 can be understood from a theoretical model given by Martinelli et 

al (2009). That is, polarization attraction is dictated by the mutual orientation of the pump 

and signal to the local birefringence vector. In this case, the nonlinear birefringence is 

negligibly small compared to the linear birefringence. When the pump and signal are 

copolarized the scattering effect of the linear birefringence is maximum because the pump 

power is still very small to maintain pulling. If the two are orthogonally polarized then the 

resultant birefringence acts in the favour of polarization pulling. Alternatively, we can 
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explain the same results using equation 3.2 in chapter three. The second term in the equation 

represents the SRS process and is responsible for polarization pulling which manifests when 

linear birefringence is very weak. The third term causes the signal SOP to rotate as dictated 

by the interaction between the linear and nonlinear birefringence. This rotation keeps away 

the SOPs of the signal from the pump as long as the weak linear birefringence dominates the 

power dependent birefringence (Agrawal, 2007 chapter 6). 

A clear visualization of Raman polarization attraction can be obtained by representing both 

the SOPs of the pump and signal on the Poincaré sphere. Figure 7.4 shows the behaviour of 

these SOPs in the case of the 24.06 km fibre when pump power is increased. It should be 

noted that the pair of SOPs used in figure 7.4 are the same used to obtain figure 7.3b and 

7.3d. 

 

Figure 7.4: Pump and signal SOP trajectories on a Poincaré sphere as pump power is increased. The 

SOPs indicated mark the beginning of a trajectory. 

In figure 7.4 the signal SOPs are seen moving toward the pump and also away from the pump 

(depending on the initial SOPs setting on the Poincaré sphere). In particular, figure 7.4 a, b 

and c illustrates polarization pulling when the initial SOPs of pump and signal are 

orthogonally polarized. Note that the signal SOPs are displaced from their initially set 

positions on the Poincaré sphere because they would shift the location after switching on the 

pump. The pump SOP is also seen to execute almost a circular trajectory as pump power 

increases. The behaviour is related to SPM and is due to self polarization evolution. Figure 

7.4d, e and f shows the behaviour of the SOPs of pump and signal when both are initially 
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parallel. In these cases both SOPs are seen moving away from each other but along their 

respective circular tracks. This phenomenon reveals that polarization scattering observed 

earlier in figure 7.3c and d is actually due to the SOPs of the pump and signal assuming 

opposite directions (handedness) along their paths when pump power is increased. If the 

pump power continues to increase the signal SOP would trace out a complete circle so that it 

finally aligns with the pump. The phenomenon of polarization evolution has been observed 

during XPM (Collings and Boivin 2000) and has been discussed in details by Agrawal, 

(2007). However there is a clear difference when Raman amplification is taken into account 

and also the spacing between the pump and signal. It was observed that the DOP of the signal 

remained high as the pump power increased while the pump DOP decreased slightly 

depending on the input SOP. This decrease in the pump DOP was attributed to the 

phenomenon of self-polarization evolution which is clearly seen in figure 7.4. Such 

depolarization of signals due to the nonlinear Kerr effects has been reported and is known to 

be polarization dependent (Bononi and Vannucci, 2003). 

7.3 Effects of fibre length and PMD on polarization pulling 

Several factors come into play when polarization pulling and amplification occur 

simultaneously. A good understanding of the parameters influencing polarization pulling and 

their interplay is the key to effective polarization control. It has already been seen in section 

7.2 that the length of the fibre influences polarization pulling. Consequently this section is 

devoted to evaluating the aspect of fibre length and fibre PMD in polarization pulling. In this 

investigation simulations were performed using commercially available VPI 8.6 software 

which is capable of configuring any optical device and system. In the forward RFA 

configuration, a 1µw signal at source wavelength of 1550 nm was amplified using fibres of 

different lengths and PMD coefficients. The pump power was varied between 50 mW and 3 

W for each fibre arrangement while evaluating the SOPs of the pump and signal at the output. 

Figure 7.5 illustrates the nature of Raman polarization pulling when different lengths of the 

fibre and PMD coefficients are involved. This case represents the relative angle between the 

SOPs of the pump and signal as observed on the Poincaré sphere when both are orthogonally 

polarized at the input. Similar results were observed for initially copolarized pump and signal 

except that the later subtend a lower initial relative angle. Figure 7.5a shows that for a fibre of 

known PMD coefficient, polarization attraction depends on the length of the fibre as well as 

the pump power. The minimum relative angle of attraction is seen to decrease as the length of  
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Figure 7.5: Relative angles between the pump and the signal in Stokes space for: (a) fibres of different 

length but the same PMD coefficient, (b) fibres of varying PMD coefficient but the same length, as a 

function of pump power. 

the fibre is increased. At the same time, the pump power required to observe maximum 

polarization attraction decreases as the length of the fibre increases. However, the results 

suggest that there is a maximum length of the fibre above which the minimum relative angle 

of attraction begin to increase irrespective of the increasing pump power. It is also observed 

that polarization attraction decreases when the pump power is increased above the value at 

minimum relative angle of attraction for each fibre. This behaviour is attributed to pump 

depletion which causes the pump to transfer most of its energy to the signal thus reducing its 

polarization characteristics. It should be noted that Raman PDG, which is the main 

contributor to polarization attraction, increases with fibre length and therefore each fibre will 

saturate at a different pump power. At the same time there is pump attenuation which is 

proportional to the length of the fibre. These two attributes lead to the nature of the curves 

observed in figure 7.5a for pump powers above the value for minimum angle of attraction. In 

a practical scenario where the fibre length can be > 100 km, the onset of chromatic dispersion 

is inevitable (Menyuk 1999). This may limit polarization attraction for such long lengths of 

fibre, but for shorter lengths as used in this investigation such effects are negligible. The 

results in figure 7.5b were obtained using an arbitrary but reasonable length of the fibre of 30 

km. As can be seen, polarization attraction depends on the fibre PMD and decreases as the 

fibre PMD coefficient increases. At 0 pskm
-1/2

 PMD coefficient, polarization attraction 

becomes complete as soon as the pump power is sufficiently high to maintain the attraction. 

The implication here is that linear birefringence is actually the major cause of pump-signal 

SOPs misalignment in RFA and a perfect amplifier would result if PMD in fibre can be 

eliminated. This result implies that effective polarization attraction can only occur when fibre 

PMD is below 0.01 pskm
-1/2

. Modern fibres have PMD coefficients ranging between  
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0.1-0.01 pskm
-1/2

 but with improving fabrication techniques values as low as 0.005 pskm
-1/2

 

have been reported (Galtarossa et al, 2005). 

7.3.1 Dependence of pulling on signal wavelength 

The broadband nature of the RFA gain spectrum is another important aspect in understanding 

polarization pulling. The fact that RFA gain and fibre birefringence are wavelength 

dependent, intuitively leads to the idea of wavelength dependent polarization pulling. In this 

section we investigate by simulations and experiment the polarization pulling effect at 

different wavelengths. A fibre of length 25 km was used in the simulation while in the 

experiment a 24.06 km fibre was employed. In the simulation the PMD coefficient was set at 

0.01 pskm
-1/2

 while the PMD coefficient of the 24.06 km fibre was 0.011 pskm
-1/2

. Using 

forward pumping at a wavelength of 1450 nm, the Stokes angles between the pump and 

signal were determined at increasing pump power. 

  

Figure 7.6: The relative angle of pump and signal Stokes vectors as a function of pump power at 

different signal wavelengths: (a) simulations, (b) experiment. 

Figure 7.6 illustrates the dependence of relative pulling angle on the signal wavelength for 

orthogonally polarized pump and signal. Simulation results in figure 7.6a clearly show that in 

the linear region of RFA, the greater the frequency shift the lower is the pump power required 

for achieving the same pulling angle. This however is true only for wavelengths that are 

below the Raman peak frequency shift of 13.2 THz. As can be seen, the difference in relative 

angles for these three wavelengths is more evident for pump powers between 0.5-1 W. At the 

minimum achievable relative angle, each wavelength shows a different pump power with the 

lowest wavelength of 1520 nm having the highest power. This implies that more power is 

needed to align the signal SOPs with the pump when the frequency shift is small. At the same 

time, wavelengths near the peak of the gain spectrum display a much higher minimum 

pulling angle, as can be seen with the 1550 nm wavelength. This is because the high gain 
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causes the signal power to increase at the expense of the pump power, resulting in the 

reduction of the pulling effect. Consequently, pump power beyond the minimum pulling 

angle results in polarization scattering, as is evident in all the wavelengths. This SOP 

scattering phenomenon is a manifestation of a depleted pump and is a major drawback for 

polarization pulling using long fibres. Further simulations using fibres of the same length of 

25 km but lower PMD parameters resulted in similar results. It was observed that the 

wavelength dependence polarization pulling increased as PMD decreased. Experimental 

results in figure 7.6b were obtained following the same procedure as in section 7.2 for the 

two signal wavelengths. These results show variation at low pump power and were obtained 

using a Raman pump of maximum power of 360 mW. As can be seen the results compare 

well with the simulations in fig 7.6a (inset), over the small power range. The highlighted 

simulation results correspond to the range of pump power used in the experiment. Less 

pulling effect was observed in the simulation over this power range because the SOPs of the 

pump and signal were set orthogonal at the amplifier input to demonstrate the worst case 

scenario. 

7.4 Limitations of Raman polarization pulling in fibre 
It has been observed that the small PMD in modern transmission fibres is one of the factors 

that facilitate polarization attraction in a RFA. When such fibres are used for Raman 

amplification, the pump and the signal SOPs remain aligned over long distances because of 

the weak birefringence associated with these fibres. This alignment enables the signal to 

acquire more gain from the pump as both propagate in the fibre. If the length of the fibre is 

long as is usually the case with distributed RFA, the signal power can become very high. 

Simulation results have shown that high pump power does not guarantee effective pulling in 

the case of long lengths of fibre. In order to address the challenges underlying polarization 

attraction in the presence of Raman amplification, it is important to evaluate the pump and 

the signal power variations in relation to fibre PMD and length. While fibre parameters such 

as length can be fixed, other parameters such as PMD are subject to fabrication technology 

which may not deliver as low fibre PMD as may be required for pulling. On the other hand, 

the amount of experimental demonstrations which can be used to verify theoretical results is 

often limited by the availability of fibre and a pump which can deliver the appropriate optical 

power. For this reason it is important to resort to numerical simulations which can accurately 

predict the pulling behaviour in a RFA. In this section the power variations of RFA with 

pulling has been investigated. 
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Figure 7.7: Power variations in (a) the signal, (b) the output pump as a function of input pump power. 

Simulation results in figure 7.7 were obtained for three PMD coefficients using a fibre of 

length 25 km, when the pump and the signal were orthogonally polarized at the input. The 

signal wavelength was set at 1550 nm while that of the pump was set at 1450 nm. As can be 

seen in figure 7.7a the amplified signal power remains moderately low when the pump power 

is < 1 W. This is because the pump power is enough to compensate for signal attenuation 

during propagation in the fibre thus maintaining the signal power at the same level. Low 

amplified signal power is quite acceptable because other nonlinear effects are greatly reduced 

(Islam, 2002). Low signal power also guarantees that the amplifier operates in the linear 

region. However, the power of the signal cannot be too low because of the noise which is 

generated in the process of amplification (Bromage, 2004). When the power of the pump is  

> 1W it is seen that the signal power increases sharply to values that are above 0 dBm. This is 

because the pump is strong enough to overcome signal losses and also boost the power level 

of the signal. High signal power excites Kerr nonlinear effects and also results in pump 

depletion. Figure 7.7b shows what happens to the pump in the course of amplifying the 

signal. It is clear that there is a linear relationship between the input and output pump power 

as long as the signal is not strong enough to cause pump depletion. The pump completely 

transfers its power to the signal as soon as pump depletion sets in. When the amplified signal 

power becomes very large or equivalent to the pump power at the output, both waves begin to 

modify the SOPs of each other through XPM (Bononi and Vannucci, 2003). At the same 

time, Raman PDG decreases so that the polarization pulling effect is completely lost. It is 

noted that the PMD coefficient of the fibre influences the depletion of the pump. In this case 

the PMD coefficient of 0.005 pskm
-1/2

 seems to cause early pump depletion. We can ascertain 

why this is so if we consider the fact that, the fibre birefringence rotates the SOPs of optical 

waves during transmission. Since the two waves were orthogonally launched, the associated 
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birefringence corresponding to the 0.001 pskm
-1/2

 is too weak compared to the birefringence 

corresponding to 0.005 pskm
-1/2

, such that it will take longer transmission distance for the 

later to turn the signal SOPs so that it start gaining from the pump. As a result, the lower 

PMD would require a longer fibre to achieve the same amplification. On the other hand, the 

birefringence associated with a fibre having PMD coefficient of 0.01 pskm
-1/2

 is strong 

enough to cause considerable signal SOP rotations which in turn result in average signal gain. 

In summary, polarization attraction during Raman amplification is enabled by the small fibre 

PMD present in modern fibres. The extent to which a signal is attracted to the pump depends 

on the pump power. When a small signal co-propagates in the fibre with a high energy pump 

of appropriate wavelength, the signal becomes amplified through SRS. The SRS phenomenon 

is polarization dependent such that the gain is maximum when the pump and the signal are 

co-polarized and minimum when both are orthogonally polarized. The high energy pump also 

excites the power dependent refractive index in the silica fibre which results in a nonlinear 

birefringence. This power dependent birefringence begins to manifest as soon as the linear 

birefringence becomes very low. Polarization attraction in a RFA is based on Raman PDG 

and also the interaction of the linear and nonlinear birefringence. Pulling effect can be 

enhanced if the interaction of the two birefringence results in less birefringent fibre. High 

PDG which improves the pulling effect can be achieved by increasing the pump power and 

the length of the fibre. However, the pulling effect can be lost in an event where the power of 

the signal become very high, eventually leading to amplifier saturation. Thus effective 

polarization pulling would require stringent optimization of the fibre length, PMD and pump 

power. Polarization pulling at lower frequency shifts can be advantageous because lower 

pulling angles can be obtained but at the expense of more pump power. 
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Chapter Eight 

Discussions and concluding remarks 

Polarization effects in optical fibre and optical components have been a subject of great 

interest and concern to the fibre community. In this thesis, the effects of PMD and PDL in 

distributed RFA designed using modern optical fibres (Dp≤ 0.1 pskm
-1/2

) were investigated. 

The phenomenon of polarization pulling in the RFA which is quite significant has also been 

addressed. Unlike the fibre attenuation and dispersion mechanisms which are inherent to the 

glass material and are manageable to a great extent, polarization effects can be quite elusive. 

In particular, PMD effects have been recurring as optical transmission moves to higher bit 

rates. In an effort toward further improvement of fibre capacity and performance of optical 

devices, these effects have continued to be a centre of focus in the fibre industry. Modern 

fabrication technology has greatly reduced the intrinsic birefringence of the fibre to very 

small values. However, there is still interest in PMD which now centres on the small residue 

birefringence still present in optical fibres. In addition, transmission at high power has 

become inevitable due to the same reason as increasing fibre capacity. As a result there has 

emerged a power dependent birefringence which is now known to interact with the small 

linear birefringence leading to complex polarization behaviour in fibre. On the other hand, 

optical components form a large part of all optical systems and passive optical networks. 

These components have inherent PDL which is non negligible and which is known to interact 

with PMD, resulting in more severe effects than when only one of them is involved. 

In chapter 4, simulations and experimental results on the characterization of the RFA with 

respect to PMD revealed remarkable differences in the gain when low and high PMD fibres 

were used as medium for Raman amplification. In the low PMD regime (~ 0.01 pskm
-1/2

), 

Raman PDG and on-off gain increase exponentially as pump power increases and has a 

strong dependence on the pumping scheme employed. Backward pumping reduces PDG 

drastically and results in a similar on-off gain to forward pumping. Theoretical analyses show 

that the two pumping schemes have the same gain. However, the experimental results show a 

higher gain in the forward pumping which is attributed to different pump losses at the splices 

and connectors for both directions and also the dependence of the Raman gain coefficient on 

pump polarization. In applications where gain fluctuations can be a drawback, it would be 
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highly beneficial to apply moderate pump power and backward pumping which would 

minimize the PDG in a RFA. 

High fibre PMD (~ 0.1 pskm
-1/2

) reduces the Raman PDG substantially but at the expense of 

on-off gain and net gain. This is also a disadvantage in long haul applications because PMD 

accumulates as a function of square root of fibre length. In addition, the small Raman gain 

coefficient in SMFs requires a very long length of amplification fibre in order to compensate 

for signal losses. Thus even for a fibre of PMD coefficient of 0.1 pskm
-1/2

, the length would 

contribute significantly to undesirable DGD of the signal. 

The gain saturation is also dependent on the PMD coefficient of the fibre. Since low PMD 

results in high average gain, the RFA tends to saturate at a lower signal power than when a 

high PMD fibre is used. That is for a given pump power, the high gain fibre will start to 

deplete the pump at lower signal power, resulting in RFA saturation. On the other hand, when 

the input signal power is very low there is considerable interference with amplifier noise. 

Thus in an event where several channels are to be amplified simultaneously, their total power 

can take a range of values with the maximum determined by the power at saturation and the 

minimum defined by the power level of the amplifier noise. 

The OSNR of a Raman amplified system is gain dependent and therefore influenced by the 

fibre PMD. As a result, OSNR increases with pump-signal wavelength shift with forward 

pumping having the highest OSNR. The performance of a Raman amplified system which is 

best evaluated using the BER improves with increasing OSNR at the receiver input. 

Spontaneous noise which is generated throughout the amplified transmission fibre degrades 

the OSNR at the fibre output end. At the same time the system BER is partly degraded when 

the dominant source of noise is due to signal-ASE beating. Forward pumping has superior 

ASE noise performance compared with backward pumping. The quality of a signal at the 

receiver is consequently determined by the Raman amplification process and PMD effects. A 

low OSNR manifests itself as high BER and decreases the eye opening. A fibre with high 

PMD would perform better in the case of backward pumping. However, in a high bit rate 

system (>40 Gb/s), high PMD would cause inter-symbol interference thereby reducing the 

quality of the signal. It is important to point out here that system performance depends on 

data modulation formats and may show varying performances for other advance formats. 

In chapter 5 it was shown that the statistics of Raman gain in single mode fibres depend on 

both the pumping scheme and PMD coefficient of the fibre. The length of the fibre plays an 
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important role and for short fibre where pump power remains high and signal losses are less, 

the gain is normally distributed for both high and low PMD fibres. For very low PMD 

coefficients, polarization mixing is poor even in long fibres and therefore when analysing the 

gain distributions, both the pump and signal should be scrambled at the input to provide full 

Poincaré sphere coverage. Backward pumping shows the lowest average gain and gain 

fluctuation for low and high PMD fibres, while forward pumping shows the highest PDG and 

gain fluctuation for fibres of PMD coefficient <0.03 pskm
-1/2

. The three pumping 

configurations exhibit almost similar statistics when high PMD fibres are involved. Despite 

the requirement of two pumps bidirectional pumping configuration seems to be a good 

candidate for Raman amplification in fibres of PMD > 0.03 pskm
-1/2

. It was observed on a dB 

scale that there exists a linear relationship between PDG and signal on-off gain which is in 

agreement with the analytical model. Because of this linear dependence it is possible to 

extract the fibre PMD coefficient simply by measuring these two gain quantities in the 

forward pumping. The PMD values obtained by this method compare well with the standard 

JME measurements. Further analysis showed that for fibres of PMD coefficient between 

0.01- 0.1 pskm
-1/2

, reliable results can be obtained by maintaining high SNR and low system 

PDL during the measurements. For values of PMD coefficient < 0.01 pskm
-1/2

, Raman 

techniques may excite nonlinear birefringence if the pump power is very high. Such high 

power should be avoided since linear and nonlinear birefringence interacts in a complex 

manner changing the overall fibre PMD. 

In chapter 6 we showed that Raman PDG and PDL interact causing more severe effects than 

when only one of them is involved. However, this interaction depends on the PMD of the 

fibre and is less at low PMD. High PMD greatly reduce PDG such that when component PDL 

is large the effects of PDL dominate in the system. Similarly, when PMD is low PDG effects 

tend to dominate in the interaction with PDL. Optical components PDL not only reduce the 

gain of the signal but also interact with PMD resulting in gain tilting of the Raman spectrum. 

A polarized RFA has unique characteristics which translate into its potential for new 

applications. Chapter 7 demonstrated the potential of RFAs in polarization control when the 

fibre PMD is very low. Raman PDG which is an inherent phenomenon of SRS in fibre is a 

cause of polarization pulling in RFA. In modern fibre the linear birefringence can be very 

small due to improved fabrication technology. When such fibre is used in the RFA 

configuration the pump SOP pulls the signal SOP to an extent that depends on the power of 

the pump. The PMD coefficient of the fibre and the fibre length are the two parameters that 
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play a vital role in enabling Raman polarization pulling. When the fibre PMD is  

> 0.01 pskm
-1/2

, pulling is not easily observed and would require very high power to be 

realized. On the other hand, the length of a fibre influences the pulling effect in that both the 

attenuation and PDG increase with length. When the fibre is very long, attenuation indirectly 

limits polarization pulling by reducing the power of the pump. For a short length of fibre, 

PDG is very small unless a special type of fibre is used. In a short SSMF fibre it would 

require very high pump power to achieve pulling. Again, polarization pulling is limited by 

gain saturation which occurs in RFA as a result of pump depletion. Thus low signal power is 

a requirement for effective pulling and can be achieved through optimization of the fibre 

length. Finally, we can conclude that polarization effects in RFA, though detrimental in 

optical communication, bear significant potential for future applications. 
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Appendix I 

PDG-PDL interaction in the presence of PMD 

  

Fig AI.1 Raman on-off gain distribution in the presence of PDL. Fibre PMD (Dp) =0.113 pskm
-1/2

 

  

  

Figure AI.2: Raman PDG variation with input signal power in the presence of PDL 
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Appendix II 

Pump and signal SOPs variation with pump power  

  

Figure AII.1: Experimental results showing the output signal and pump SOP as a function of input 

pump power. The length of fibre is 24.06 km and PMD (Dp) 0.011 pskm
-1/2

.while the initial output 

SOP in (a) is RC and (b) LC 

   

Figure AII 2: Simulations results showing the output SOPs of signal and pump as a function of pump 

power. The length of fibre is 25 km and PMD Dp 0.01 pskm
-1/2

. In this case the SOPs were initialized 

at the input (a) RC and (b) LC 
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Appendix III 

Equipment and components used in experimental work 

Equipment/component Specification 

WDM laser source 

THORLABS Pro8000 

Wavelength 1550 nm 

Optical power (max) 13 dBm 

Tunable laser source Agilent 8164A 

Optical spectrum analyser (OSA) Agilent 86142B 

Laser Module (Raman pumps) 

34-GVT074 and 34-GXW864  

Power (max) 360 mW 

Peak wavelength (nm) 1449.1 and 1449.2  

 

Power meter -EXFO IQS -1722X 

Wavelength range (nm) 800 to 1660  

Power range (dBm) 21 to -53 

Polarization controller -Adaptif A3200 Insertion loss: <3 dB 

PDL: <0.3 dB 

DGD: <0.1ps 

Wavelength range 1520-1580 nm 

 

Polarization scrambler -EXFO IQS 5100B Wavelength 1260 nm to 1650 nm 

Activation dependent loss (dB) 0.006 (typ.) 

0.01 (max.) 

Extinction ratio (dB) > 40 

Insertion loss (dB) < 0.1 

Scrambling (s) 1 to 99.9 s 

Poincaré sphere coverage 1 scrambling 

period: 98 %  

2 scrambling periods: 99 % 

Max Optical power 1W  

Polarimeter -Adaptif A1000 Wavelength 1460 nm to 1620 nm 

Optical Power(max) 7.5 dBm 

Tunable filter FWHM: 0.33 nm 

Tunable range 1520-1570 nm 

Insertion loss 4.12 dB 

PDL 0.07 dB 

 

WDM coupler-  

ThorLabs 202C 

Wavelength range(nm) 1480/1550 

Bandwidth (nm): ± 5nm 

PDL: <0.3 

Insertion loss (dB) (0.12 /0.08 

Directivity (dB) 50 dB 

Optical power (max) 500 mW  

Filter based WDM coupler 

WDM-F-1415-1-FA 

oeMarket.com 

Wavelength (nm) 1450-1490/1520-1580 

Insertion loss 0.26 

Isolation (dB) at 1550 nm > 15 

Directivity (dB) > 50 

PDL (dB) < 0.1 

Optical power (max) 500 mW 

 



103 
 

Appendix IV 

Polarization of light representation 

Selected SOPs 

Polarization 

state 

Azimuth ѱ Ellipticity χ Stokes vector  

S1 S2 S3 

Jones vector 

LHP 0 0 
 
 
 
 
  

 
 
 
  

LVP π/2 0 
 
  
 
 

  
 
 
 
  

L+45P π/4 0 
 
 
 
 
  

 

  
 
 
 
  

L-45P -π/4 or3π/4 0 
 

 
  
 

  
 

  
 
 
  

  

RCP 0 π/4 
 
 
 
 
  

 

  
 
 
 
  

LCP 0 -π/4 
 

 
 
  

  
 

  
 
 
  

  

Elliptical   

 
          
          

     
  

 

  
 
          

         
  

Where δ is the phase difference between the two components Comprehensive lists of Jones 

and Stokes vectors and the relationship between them is available in several text books. 

Azimuth       
 

 
      

  

  
  

Ellipticity       
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Appendix V 

An enlarged version of the simulated schematic of a distributed Raman amplified fibre link 

used in the determination of the effects of ASE on the performance of the system. 
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Appendix VI 

An enlarged version of simulation schematic used in the measurements of the effects of PDL 

in a distributed RFA. 
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Appendix VII 

Research outputs of the author 

2011: 

Muguro K.M., Gibbon T.B., Leitch A.W.R., “Polarization pulling during Raman distributed 

amplification in single mode fibres of low PMD”, Poster presentation at the 4
th

 African Laser 

centre (ALC) student Symposium, Zevenwacht wine estate, Stellenbosch, South Africa, Nov 

9-13
th

 2011 

Muguro K.M., Gibbon T.B., Waswa D.W., Leitch A.W.R. “Impact of PMD on distributed 

Raman amplifiers using modern transmission fibres,” Proc. Southern African 

Telecommunication Networks and Application conference (SATNAC), International 

conference centre (ICC) East London, South Africa Sept 4
th

 -7
th

 2011 

Rotich E.K., Waswa D., Muguro K., Leitch A.W.R., "Dual pump fibre optical parametric 

amplifier based on four-wave mixing in a highly nonlinear fibre," AFRICON, 2011, vol., no., 

pp.1-3, 13-15 Sept. 2011 

2010: 

Muguro K.M. Leitch A.W.R. “Characterisation of Raman Amplifier gain in optical single 

mode fibres with respect to polarisation mode dispersion” Oral presentation at the 3
rd

African 

Laser Centre (ALC) Student Symposium, Zevenwacht wine estate, Stellenbosch, South 

Africa 23- 26 September 2010 

Muguro K.M. Changundega J.M., Leitch A.W.R. “Influence of input state of polarisation of a 

signal on Raman amplification gain in single mode fibres” Poster presentation at the 55
th

 

South African Institute of Physics (SAIP) Conference, CSIR Pretoria, 27
th

 Sept.-1
st
 Oct. 2010 

Muguro K.M., Waswa D., Changundega J.M., Leitch A.W.R. “Comparison of gain statistics 

of different pumping configurations in distributed fibre Raman amplification” Proc. Southern 

African Telecommunication Networks and Application conference SATNAC Spier Estate, 

Stellenbosch, South Africa 5
th

 -8
th

 September 2010 

Changundega J.M., Muguro K.M., Leitch A.W.R. “Investigating depolarization of the probe 

in a two channel WDM system,” Poster presentation at Southern African Telecommunication 

Networks and Application conference (SATNAC) Spier Estate, Stellenbosch, South Africa 

5
th

 -8
th

 September 2010 

Changundega J.M., Muguro K.M., Leitch A.W.R. “Dependence of the DOP of a probe signal 

on various system parameters in a WDM system”, Poster presentation at the 55
th

 South 

African Institute of Physics (SAIP) Conference, CSIR Pretoria, 27
th

 Sept.-1
st
 Oct. 2010 

2009: 
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Muguro K.M., Wu L. and Leitch A.W.R “Investigation of Signal Power Variation in low 

PMD Single Mode Fibres during Raman Application” Poster presentation at the 54th South 

African Institute of Physics (SAIP) Conference, University of KwaZulu-Natal, 8 – 10 July 

2009. 

Muguro K.M., Wu L. and Leitch A.W.R “Comparative investigation of NRZ and RZ data 

formats with respect to PMD in a Raman amplified system” Poster presentation at the 2nd 

African Laser Centre (ALC) Student Symposium, Kariega Game Reserve, 2 – 5 May 2009. 
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