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ABSTRACT

Temperature changes due to the effects of climate change are evident on all continents and 

oceans. As a result, there is a growing concern over how marine ectotherms will respond to 

extreme or fluctuating environmental temperatures. Temperature changes have strong direct 

and indirect effects on individual, population, and ecosystem functioning traits. A multi-scale 

approach determining the thermal tolerance and performance of several marine ectotherms 

belonging to different coastal habitats is rarely considered in thermal physiology studies but is 

effective for an integrated ecosystem assessment. As such, for this thesis, I aimed to quantify 

and compare the thermal tolerance and performance of a range of coastal marine ectotherms 

(fish and macro-invertebrates) with different biogeographical distributions from estuarine, 

subtidal and rocky intertidal habitats to available and projected in situ temperature data. This 

was also undertaken to gauge the local vulnerability of each species across summer and winter 

in a warm-temperate region of South Africa. This was done using a multi-method physiological 

approach, which included the dynamic method (CTmax and CTmin) , static respirometry and 

maximum heart rate f Hmax).

Results of the dynamic method on several fish and macro-invertebrate species indicated that 

there are differences in thermal tolerance according to taxonomy, biogeography and habitat for 

both summer and winter. Macro-invertebrate species generally had higher CTmax endpoints, 

lower CTmin endpoints, higher upper and lower breadths in tolerance, higher upper and lower 

thermal safety margins and higher thermal scopes than the fish species. This could be a result 

of the macro-invertebrate species studied being less mobile compared with fish species (which 

are able to move to more favourable conditions) as well as having broader geographical 

distributions. In addition, macro-invertebrates from the intertidal rock pool habitat (Palaemon 

peringueyi; Pernaperna) were more tolerant of high and low temperatures compared with the 

macro-invertebrates from the estuarine habitat (Clibanarius virescens; Parasesarma 

catenatum; Upogebia africana). Overall, macro-invertebrates, with the exception of 

Parechinus angulosus, investigated in this study indicated that current temperatures and 

projected climate change scenarios across seasons would not have a significant impact on them 

and that they are highly adaptable to changing temperature regimes. This sign of high tolerance 

was further supported by the heart rates of P. perna and P. catenatum under an acute increase
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in temperature (1.0 °C.h-1) which showed individuals of each species physiologically 

depressing their metabolism until a final Arrhenius breakpoint temperature was reached (TAB).

Among the fish species investigated in this study, tropical species (Chaetodon marleyi; Kuhlia 

mugil) had the highest CTmax and CTmin endpoints when compared with the temperate 

(Diplodus capensis; Sarpa salpa), warm-water endemic (Chelon dumerili; Rhabdosargus 

holubi) and cool-water endemic (Chelon richardsonii) fishes. This suggests that due to their 

lower breadths in tolerance and thermal safety margins being small, tropical species may be 

less tolerant of cold temperatures and thermal variability, especially in the form of summer 

upwelling events which are expected to increase in intensity and frequency in this region as a 

result of anthropogenic climate change effects. On the other hand, however, if  a temperature 

increase of 2.0 - 4.0 °C takes place at the end of the century as predicted by the 

Intergovernmental Panel on Climate Change (IPCC), it is likely that tropical species such as C. 

marleyi will become more common. Temperate species such as D. capensis and S. salpa were 

able to tolerate a wide range of temperatures (wide thermal scope) compared with the other 

fish species. These findings may suggest that D. capensis and S. salpa are thermally resilient 

and may be the least vulnerable to climate change effects and temperature variability. When 

evaluating the different life stages of D. capensis, however, using the dynamic method 

(juveniles and adults), static respirometry (juveniles) and maximum heart rate (adults), results 

suggested that juveniles of this temperate species will be more resilient to increases in ocean 

temperatures compared with the adults because they have a higher thermal tolerance 

(CTmax/TCRIT) and a greater metabolic scope (TOPT) at higher temperatures. For both juveniles 

and adults, temperatures beyond 28.0 °C (upper Tp e j; Ta r r) will have a significant impact on 

their physiology. Using a multi-scale and multi-method approach thus helped to identify which 

species or community may be vulnerable to the effects of climate change within shallow coastal 

environments in this warm-temperate climate change hotspot. Adopting this type of approach 

will assist policy makers in developing comprehensive climate change management 

frameworks for coastal ecosystems globally and around South Africa.
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GLOSSARY

CTmax -  critical thermal maximum; upper thermal limit of performance.

CTmin -  critical thermal minimum; lower thermal limit of performance.

Tc r it  -  critical temperature; temperature at which an organism’s performance is critical.

To p t  -  optimum temperature; temperature at which an organism’s performance is optimal.

Tp e j  -  pejus temperature; “getting worse” temperatures that border the thermal optimum 
temperature.

RMR -  routine metabolic rate; mean metabolic rate of a fish in a resting state but exhibiting 
minor activity.

MMR -  maximum metabolic rate; maximum amount of energy that can be metabolized 
aerobically.

RAS -  relative aerobic scope; the difference between the MMR and RMR of aerobic 
metabolism.

f  Hmax/HRmax -  maximum heart rate; maximum number of beat made by a heart in one minute 
of effort.

Tb p 1 -  first breakpoint temperature; the first temperature that initiates a temperature-insensitive 
metabolism.

Tb p2 -  second breakpoint temperature 2; the upper limit for a temperature-insensitive 
metabolism.

Ta b  -  final Arrhenius breakpoint temperature; maximum heart rate stops increasing at a 
temperature just beyond the optimum temperature.

Tq b 1 -  first breakpoint temperature for Q 10 of f Hmax; temperature that initiates temperature 
sensitivity of a physiological process due to an increase by 10.0 °C.

Tq b 2 -  second breakpoint temperature for Q 10 of f Hmax; the upper limit for temperature 
sensitivity of a physiological process due to an increase by 10.0 °C.

Tq b  -  final breakpoint temperature for Q 10 of f Hmax; temperature at which the incremental Q 10 

of maximum heart rate decreases below a certain value.

TARR -  arrhythmic temperature; cardiac collapse that occurs just before the critical 
temperatures.
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CHAPTER ONE: GENERAL INTRODUCTION

1.1 OVERVIEW

Covering 71% of the Earth’s surface, oceans are complex ecosystems responsible for regulating 

the world’s climate and providing essential services for the maintenance of life (Bounama et 

al., 2007). Recently, however, there has been overwhelming evidence to suggest that global 

anthropogenic climate change is threatening our oceans (Hoegh-Guldberg and Bruno, 2010; 

IPCC, 2014) and life in it. Rising carbon dioxide (CO2) emissions are globally pervasive and 

irreversible on ecological timescales (Doney et al., 2012; Munday et al., 2012). The CO2 in the 

atmosphere has increased from approximately 280 ppm at the start of the industrial revolution 

(1750) to over 390 ppm (2012) (IPCC, 2014), and has caused the Earth’s mean surface 

temperature to rise by 0.9 °C between 1880 and 2012. Depending on the magnitude of future 

CO2 emissions, these averages are expected to rise by an additional 2.0 -  4.0 °C by the year 

2100 (IPCC, 2014). Besides changes in temperature, other climate change impacts include a 

decrease in the extent of sea-ice, sea-level rise, increased ocean stratification, ocean 

acidification, altered patterns of ocean circulation and currents, changes in wind strength and 

direction, increased frequency of extreme weather events, and changes in precipitation 

(Roessig et al., 2004; Rijnsdorp et al., 2009; Hoegh-Guldberg and Bruno, 2010; Doney et al., 

2012).

Temperature is one of the primary factors controlling the physiology and life history functions 

of marine organisms (Crashaw and O’Connor, 1997). It affects individual traits such as growth, 

behaviour, longevity, recruitment, reproduction, feeding, swimming ability, development, 

mortality and distribution (Beaugrand et al., 2003; Perry et al., 2005; Madeira et al., 2012a). 

Many marine organisms are obligate poikilotherms (ectotherms) and, since they are unable to 

regulate their body temperature physiologically (Madeira et al., 2012a), they are required to 

remain in areas within their thermal preference (Portner and Peck, 2010). As such, temperature 

is seen as the most important variable that influences the distribution of marine organisms 

(Francour et al., 1994). It is predicted that, as temperature rises, the distribution and abundance 

of species will shift according to their thermal tolerance and ability to adapt (Harley et al., 

2006).
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If environmental changes such as increasing sea temperature are physiologically intolerable, 

some marine ectotherms may be capable of acclimatization through the adjustment of 

physiology within individuals or adaptation through the increased abundance and reproduction 

of tolerant genotypes over generations (Gunderson and Stillman, 2015). While many species 

will not acclimate or adapt, others that are physiologically tolerant may be exposed to reduced 

competition or predation and be the “winners” in a changing world (Somero, 2010; Fulton, 

2011; Doney et al., 2012). If increasing sea temperatures are, however, physiologically 

unfavourable, shifts in distributional ranges (by individuals or populations) (Perry et al., 2005; 

Cheung et al., 2009; Sunday et al., 2011, 2012), changes in phenology (timing of annual events) 

(Edwards and Richardson, 2004), death, local extinctions and ultimately species extinctions 

may take place (Roessig et al., 2004; Parmesan, 2006; Hoegh-Guldberg and Bruno, 2010; 

Portner and Peck, 2010). This would result in these marine ectotherms being the “losers” in a 

changing world (Somero, 2010; Fulton, 2011; Doney et al., 2012).

Thus far, experimental and theoretical research of thermal tolerance has improved the 

predictions of species composition and richness in a region. Generally, these studies suggest 

that marine ectotherms in tropical (nearer to the equator) or polar latitudinal ranges, where 

climate is relatively stable (with minimal seasonal variation), are considered to have narrow 

thermal breadths of tolerance and are highly sensitive to temperature change (Cheung et al., 

2009; Portner and Peck, 2010; Nguyen et al., 2011; Sunday et al., 2012; Payne and Smith, 

2017). In contrast, marine ectotherms inhabiting temperate regions, which are characterized by 

seasonal variability (Cheung et al., 2009; Sunday et al., 2011, 2012), generally have broader 

thermal breadths of tolerance and are less sensitive to temperature changes. The predicted 

poleward shift of tropical species in response to warming is expected to result in increases in 

the richness of species in the temperate regions (Cheung et al., 2009; Hoegh-Guldberg and 

Bruno, 2010; Doney et al., 2012).

Distributional shifts of marine ectotherms are frequently predicted by developing thermal 

performance curves (TPCs) (Deutsch et al., 2008; Sunday et al., 2012; Schulte, 2015; Sinclair 

et al., 2016; Speers-Roesch and Norin, 2016). These performance curves, also referred to as 

Fry aerobic scope curves (derived from the oxygen- and capacity-limited thermal tolerance 

hypotheses, i.e. OCLTT, and is the difference between standard and maximum metabolic 

rates), are assumed to be a proxy for fitness. Performance curves represent thermal tolerance 

or physiological performance of organism’s across a range of environmental conditions, such
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as temperature, but they also provide further insight into the differentiation between the thermal 

range of active survival through temperature-dependent performance and the range of time- 

limited passive tolerance to temperature extremes (Fry, 1947; Portner, 2001, 2002, 2010, 2012; 

Portner and Knust, 2007; Portner and Peck, 2010; Payne et al., 2016; Sinclair et al., 2016) 

(Figure 1.1). These curves also explain the transitions between those ranges (Portner and Peck, 

2010). Performance curves imply that physiological performance rises slowly with temperature 

up to a maximum/peaked level, referred to as the optimum temperature (To p t), and declines 

rapidly at higher and lower temperatures, where physiological performance usually reaches 

zero at the upper and lower critical temperatures (CTmax and CTmin, i.e. Tc r it) (Portner and 

Knust, 2007; Portner, 2012; Clark et al., 2013; Payne et al., 2016; Sinclair et al., 2016) (Figure 

1.1). Beyond To p t , and prior to CTmax and CTmin, are pejus (getting worse) temperatures (Tp e j), 

which reflect the reduction in aerobic/metabolic scope (the top ~10% of the To p t  curve), 

limiting the energy available for activity, growth and other vital rates (Portner and Knust, 2007) 

(Figure 1.1).

Figure 1.1. Hypothetical thermal performance curve (TPC) for marine ectotherms redrawn 
from Sinclair et al. (2016) and Speers-Roesch and Norin (2016). TPCs are usually left-skewed 
such that the distance between the optimal temperature (To p t) for any given performance trait 
is closer to the maximum critical temperature (CTmax/ upper Tc r it) than the minimum critical 
temperature (CTmin/lower Tc r it).
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There is a general expectation that optimal (To p t) and critical (CTmin and CTmax) values will 

align with the environmental temperatures a marine ectotherm experiences within its 

distributional range, otherwise referred to as the climate variability hypothesis or Rapaport’s 

Rule (see Stevens, 1989; Gaston et al., 1998) (Payne et al., 2016). This is a result of marine 

ectotherms having the capacity to phenotypically acclimate and adapt to thermal change 

(Angilletta and Angilletta, 2009). Some marine ectotherms may, however, tolerate greater 

temperature extremes than those to which they are exposed, or may respond behaviourally to 

avoid critical extreme temperatures in their thermal environment (Kordas et al., 2011; Sunday 

et al., 2012). Despite this, the identification of the thermal optimum and the critical 

temperatures of marine ectotherms will nonetheless provide valuable information about the 

degree of thermal specialization and the width of the thermal range (upper and lower Tp e j) of 

a species in relation to its biogeographical distribution (Lannig et al., 2004). Frederich and 

Portner (2000) and Portner (2001) proposed that an understanding of the width of the thermal 

pejus window (thermal range between lower Tp e j  and upper Tp e j) is relevant for predicting 

future distributions as metabolic and oxygen limitation at cold or warm temperatures sets in 

prior to function failure, which finally develops beyond critical temperatures (CTmax and 

CTmin).

A range of methods and experimental approaches to estimate appropriate physiological 

parameters to make predictions have been used. Some of the common methods used include 

the dynamic method, the measurement of maximum heart rate (/Hmax) and respirometry. The 

dynamic method determines the critical thermal tolerance limits (CTmax and CTmin) by either 

increasing or decreasing water temperature at a specific rate until an endpoint is reached, which 

is commonly a loss of equilibrium (fish) or righting response (macro-invertebrates). The 

measurement o ffHmax and respiration commonly determines To p t  and Tp e j. Cardiac function is 

an important determinant of thermal tolerance and performance because, for a number of 

marine ectotherms, maximum heart rate has been shown to decrease quickly from the upper 

Tp e j  and begin to collapse as critical thermal limits are reached (Stillman and Somero, 1996; 

Hochachka and Somero, 2002; Stillman, 2003). In turn, around the upper Tp e j, oxygen supply 

(respiration) is also impaired, contributing to a reduction in aerobic scope (Portner, 2002; 

Portner and Knust, 2007; Portner and Farrell, 2008). A mechanistic connection thus exists 

between all three experimental approaches (Stillman, 2002, 2003). The hierarchy of optimal, 

upper and lower pejus and critical temperatures and the scope between these thermal margins 

awaits quantification for many marine ectothermic organisms, especially comparatively, for
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marine ectotherms from stable and unstable environments (regions and habitats) (Portner, 

2001).

Evidence suggests that the rate of thermal change in the ocean is not uniform. Considerable 

regional differences occur in the rate of temperature change, with localized areas of increased 

warming or thermal variability commonly referred to as “climate change hotspots” (Hobday 

and Pecl, 2014; Pecl et al., 2014; Vergés et al., 2014). In their global review, Hobday and Pecl 

et al. (2014) identified 24 discrete climate change hotspots (Figure 1.2a) many of which are 

associated with western boundary currents (WBCs). They suggested that these areas would 

provide ideal laboratories for assessing impacts and evaluating adaptation options for marine 

ecosystems, fisheries and aquaculture. Ecological and environmental hotspots can enhance 

regional adaptation and their identification can facilitate the advancement of adaptation science 

globally (Giorgi, 2006; Diffenbaugh et al., 2008; Frusher et al., 2014), just as the identification 

of biodiversity hotspots has focused conservation efforts in the ocean (e.g. Worm et al., 2003; 

Renema et al., 2008; Tittensor et al., 2010). Ramirez et al. (2017) identified six hotspots of 

marine biodiversity, where the impacts of climate change are also the highest (there is also 

considerable overlap between biodiversity hotspots and climate change hotspots), potentially 

threatening the survival of many marine ectotherms (Figure 1.2b). One of these threatened 

hotspots is the south-eastern coastline of Africa (Figure 1.2b).
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Figure 1.2. Map of ocean warming and biodiversity showing (a) 24 discrete climate change 
hotspots and (b) six biodiversity hotspots globally. The red circle in (a) and the blue circle in 
(b) indicate the south-eastern coastline of Africa’s climate and biodiversity overlapping 
hotspots, which is relevant for this study. Map adapted from Hobday and Pecl (2014) (a) and 
Ramirez et al. (2017) (b).

The south-eastern coast of southern Africa is a complex hotspot as it hosts marine fauna from 

four bioregions, including: 1) the south-western Cape bioregion which extends from Cape 

Columbine to Cape Point; 2) the Agulhas bioregion which extends from Cape Point to the 

Mbashe River; 3) the Natal bioregion which extends from the Mbashe River to Cape Vidal; 

and 4) the Delagoa bioregion which extends from Cape Vidal into Mozambique (Lombard et 

al., 2004) (Figure 1.3). Under this classification, the south-western Cape bioregion is cool- 

temperate, the Agulhas bioregion warm-temperate, the Natal bioregion subtropical and the 

Delagoa bioregion tropical (Whitfield, 2005; Griffiths et al., 2010) (Figure 1.3).
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Figure 1.3. Map illustrating the five inshore bioregions for various fauna and flora (Namaqua 
Bioregion, South-western Cape Bioregion, Agulhas Bioregion, Natal Bioregion, and Delagoa 
Bioregion) as defined by the South African National Spatial Biodiversity Assessment report 
(Lombard et al., 2004) and the four biogeographical regions (warm-temperate, cool-temperate, 
subtropical and tropical) as defined by Whitfield (2005) and Griffiths et al. (2010).

Within the Agulhas bioregion, the warm-temperate south-east and south coasts of South Africa 

are characterized by a large annual thermal range when compared with the cool-temperate and 

subtropical coasts (south-western Cape and Natal bioregions). This is a result of the retention 

and cooling of the Agulhas Current’s water on the Agulhas Bank; the presence of current- 

driven upwelling cells (e.g. Port Alfred cell) along the shoreward side of the Agulhas Current 

in this coastal section (Maree et al., 2000; Roberts, 2005; Lutjeharms, 2007); and the effects of 

embayments and capes throughout the region (Schlegel et al., 2017). In addition, analysis of 

inshore (in situ) and offshore (optimally interpolated SST -  OISST; Reynolds et al., 2007) 

temperature data spanning a 21 year time series (in situ -  40 years; OIST -  33 years) indicates 

that warm (marine heat waves -  MHWs) and cold (marine cold spells -  MCSs) events along 

the warm-temperate region are more intense and longer in duration than those along the cool- 

temperate and subtropical regions (Schlegel et al., 2017). Furthermore, MHWs have been 

increasing every decade in this warm-temperate region, while MCSs have been decreasing,
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with exceptions near Port Elizabeth and north of the Cape Peninsula where the count of MCSs 

is increasing very near to the coast (Schlegel et al., 2017). This suggests that the warm- 

temperate region, particularly near Port Elizabeth, may experience increases in warm and cold 

events (that are on par with the intensity and duration of similar events known to have 

ecological effects elsewhere in the world) and that the development of some coastal MCSs may 

be attributed to an increase and intensification of upwelling events (Miranda et al., 2013; 

Schlegel et al., 2017).

Upwelling events are defined by periodic occurrences of cold water of deep origin brought to 

the surface near the coast, causing maximum drops in SST of ~10.0 °C within a few hours, 

followed by a slower relaxation over several days (Ganachaud et al., 2010). The warm- 

temperate south-east coast of South Africa experiences localized upwelling from the Port 

Alfred permanent upwelling cell and easterly or westerly winds during spring and summer 

(Rouault et al., 1995). In the Tsitsikamma region on the south-east coast of South Africa, for 

example, SST can drop from 24.0 °C to 12.0 °C in less than 12 hours as a result of upwelling 

(Duncan et al., 2019). Recent climate modelling consensus predicts that within this region, the 

frequency and intensity of upwelling is increasing, which in turn will drive increases in sea 

temperature variability (Duncan et al., 2019). Although mean sea surface temperatures are 

increasing (1.5 °C SST increase of the Agulhas Current since the 1980s), there has been 

seasonal cooling associated with an increase in the frequency of upwelling (Rouault et al., 

2010). In addition to an increase in upwelling and temperature variability, this region is also 

experiencing changes in air temperature and sea level rise (Mead et al., 2013). In South Africa, 

mean annual air temperature increased by 0.13 °C per decade between 1960 and 2003 (Kruger 

and Shongwe, 2004) and sea level on average has risen by 1.48 mm.y-1 along the warm- 

temperate south coast from 1957 to 2006 (Mather et al., 2009).

Marine associated biodiversity within this warm-temperate region comprises a mixture of 

species with different biogeographic affinities including tropical species at the edge of their 

distribution, warm-water endemic species, cool-water endemic species, temperate species and 

widespread species (Harrison and Whitfield, 2006; Figure 1.4). Extreme increases or decreases 

in temperature associated with climate change may result in mortality for tropical and cool- 

water endemic species, respectively, if  their pejus and critical thermal limits are reached 

(Rijnsdorp et al., 2009; Horta e Costa et al., 2014). This is particularly likely if they are unable 

to escape extreme MCSs or MHWs (Dulvy et al., 2008).
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Figure 1.4. South African estuarine fish faunal groupings based on temperature preferences in 
accordance with their biogeographical region (warm-temperate, cool-temperate, subtropical) 
affinities (modified from Harrison and Whitfield, 2006).

Shallow habitats, such as rocky intertidal habitats and estuaries have little thermal inertia and 

wide daily and seasonal amplitudes (Madeira et al., 2012a). It has been suggested that research 

into climate change in the marine environment should focus on these shallow habitats along 

with their associated fauna, because marine species in estuaries and rock pool habitats may be 

the first to reflect changes in temperature (Madeira et al., 2012a). Marine ectotherms inhabiting 

intertidal and supratidal shallow habitats, in particular, are thought to be living close to their 

lower and especially upper thermal tolerance limits (Stillman and Somero, 1996; Vinagre et 

al., 2018). As such, even small changes in temperature could result in dramatic changes in 

community structure in these shallow habitats, putting them at risk to the effects of climate 

change (Bertness et al., 1999; Vinagre et al., 2018). Furthermore, shallow intertidal macro­

invertebrate organisms from rock pools and estuaries, unlike subtidal and demersal (open sea) 

fish, experience variations in body temperature between immersion and emersion, and, as such, 

both air and seawater temperature can affect their physiological functions and biogeographic 

distributions (Helmuth et al., 2006a; Tagliarolo and McQuaid, 2015). Species with different 

biogeographic and habitat affinities as well as faunal groupings, therefore, may respond 

differently to climate change, and, as such, this south-east temperate region may serve as a
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natural laboratory providing an ideal setting to assess these particular marine ectotherms’ 

thermal tolerance and performance.

1.2 RATIONALE, AIM  OF THE STUDY, AND STRUCTURE OF THE THESIS

Recent literature has emphasized the importance of examining the physiological limits of 

species at levels relevant to that experienced in their native habitat, otherwise there may be 

mismatch between species range (realized niche) and the range predicted by physiological 

tolerance (physiological niche) (Helmuth et al., 2002; Sánchez-Fernández et al., 2012). In 

South Africa, there is increasing evidence of rising water temperatures and increased thermal 

variability (Rouault et al., 2010; Lima and Wethey, 2012; Schlegel et al., 2017), but limited 

information on the thermal performance of marine ectothermic fishes (Marais, 1978; Kemp, 

2009; Duncan, 2018) and macro-invertebrates (Baldanzi et al., 2015; Fusi et al., 2015; Mostert 

2015; Tagliarolo and McQuaid 2015, 2016) from the warm-temperate region and especially 

from shallow habitats.

Different shallow habitats in this region include several estuaries and a number of rock pools 

and gullies along the adjacent intertidal rocky shores (Mucina et al., 2006). There are two major 

types of estuaries in this region, namely permanently open and temporarily open/closed which 

comprise different zones (Whitfield 2019). Within these shallow habitats, a large diversity of 

ectothermic fish (e.g. Beckley, 1985; Harrison, 2002; Whitfield, 2005; Harrison and Whitfield, 

2006; James et al., 2007) and macro-invertebrates (e.g. McQuaid and Branch, 1984; Teske and 

Wooldridge, 2004; Richoux and Froneman, 2007; Griffiths et al., 2010; Richoux et al., 2014) 

are present. Estimating the physiological limits of selected marine ectotherms (fish and macro­

invertebrates) in these shallow habitats and comparing the resulting information with available 

and predicted temperature data may be important to examine intra-species tolerance in order to 

gauge the local vulnerability and adaptability of different species. It may also provide a 

platform for localized thermal tolerance and performance research in South Africa. The overall 

aim of this thesis is, thus, to quantify and compare the thermal tolerance and performance of a 

range of coastal marine ectotherms (taxonomic, habitat and biogeographical) to predict what 

potential effects climate change would have on them.

To achieve this, the thesis is presented in six chapters. The study area is described in Chapter 

two. This second chapter synthesises the important morphological and biological details of the
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habitats (estuarine, subtidal, gully and intertidal rock pools) and marine ectotherms (fish and 

macro-invertebrates) of focus, as well as air and water temperature variability for the various 

shallow habitats within this warm-temperate region. This second chapter, thus, provides 

important baseline information for the remaining data chapters.

Chapter three reports on the exploration of the upper and lower thermal tolerance limits (CTmax 

and CTmin) of juvenile fish and adult macro-invertebrates from different habitats (estuarine, 

rock pool, and subtidal gully) in both summer and winter, and compares these thermal limits 

to the summer maximum and winter minimum habitat temperatures measured in situ.

The focus of Chapter four is on the measurement of the thermal tolerance limits of a model fish 

species, Diplodus capensis, at the juvenile and adult life stages. The thermal performance of 

juveniles and adults was also assessed using static respirometry on the juveniles and using 

implantable heart rate loggers on the adults to measure maximum heart rate (/Hmax) under 

conditions of acute warming.

Chapter five provides further information on the effects of cardiac activity under increasing 

thermal stress for two intertidal macro-invertebrate species, the brown mussel Pernaperna and 

the estuarine crab Parasesarma catenatum, when submersed in seawater and compared 

between summer and winter using non-invasive infrared technology.

The final chapter, Chapter six, provides a synthesis of what has been evaluated in this thesis 

and discusses the global relevance of the findings. In doing so, it outlines the observed effects 

of temperature change on the thermal tolerance and performance of several fish and macro­

invertebrate species from different habitats in the warm-temperate climate change hotspot, and 

provides information on appropriate methodology for different species and life stages using a 

multi-scale, multi-method approach.

1.3 PERM ISSION FO R  SPECIM EN COLLECTION AND ETHICAL CLEARANCE

All specimen collections and experimental trials were carried out by me in person, with 

assistance from fellow students. The sampling methods, experimental setup and experimental 

protocols for working with fish and macro-invertebrates were researched, developed and built 

by me and were approved by the ethics committee of the South African Institute for Aquatic 

Biodiversity (SAIAB) (REF#: 2016/02) and Rhodes University (DIFS van der Walt 2017).
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Permits for collection and transport of fish and macro-invertebrates for research purposes were 

issued by the Department of Environmental Affairs (DEA), Republic of South Africa and are 

listed: Permit N o’s. RES2017/26; RES2018/26.
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CHAPTER TW O : STUDY AREA AND STUDY SPECIES

2.1 STUDY AREA

2.1.1 Coastal zone and climate variability

The coastal zone is the interface between land (continental shelf) and water (low tide mark) 

and presents 7.6% of the world’s ocean habitat (Yool and Fasham, 2001). Coastal zones are 

important because they provide vital ecosystem services, such as habitat and food, for a host 

of marine organisms along with commercial and recreational opportunities for human 

populations (Potts et al., 2015). Coastal zones are therefore considered to be one of the most 

ecologically and socio-economically important systems on the planet (Harley et al., 2006). 

Globally, coastal zones are responsible for generating high levels of productivity that support 

over 90% of the global fish catches (Pauly et al., 2002). In addition, coastal zones provide a 

diverse range of habitats such as rocky coasts, beaches, barrier islands, reefs, atolls, estuaries 

and tidal flats that make these areas important for biodiversity, with a majority of described 

marine taxa found in this ocean zone (Ray, 1991).

Of these coastal habitats, rocky shores and estuaries are considered the most dynamic and are 

characterized by rapidly fluctuating parameters (Richardson et al., 2006; Vinagre et al., 2018). 

Intertidal environments, such as rocky shores, are distinctive, highly variable habitats which 

can range from a few meters to hundreds of kilometres of unbroken rock-based substrate (Horn 

and Martin, 2006). In South Africa, most rocky shores can be divided into four zones occupied 

by distinctive species, i.e. Littorina Zone, Upper Balanoid Zone, Lower Balanoid Zone and the 

Infratidal Zone (Branch and Branch, 2018). Few species live in the Littorina Zone, on the 

highest part of the shore. This zone is occupied mostly by littorinid periwinkles (Branch and 

Branch, 2018). The Upper Balanoid Zone lies at the mid-tide mark, where animals such as 

limpets and barnacles are present (Branch and Branch, 2018). Further down the shore, in the 

Lower Balanoid Zone, different species of algae, limpets, and mussels are supported (Branch 

and Branch, 2018). Lastly, at the bottom of the shore, algal beds form an obvious band called 

the Infratidal Zone (Branch and Branch, 2018). This zone is the most diverse and consists of 

mixed beds of algae, red bait and isolated corals (Branch and Branch, 2018). Bio-physical 

drivers that determine where a species can live on the lower shore include wave action and
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species interactions. On the higher shore, temperature and water loss (desiccation) play a major 

role in determining the survival and abundance of organisms (Branch and Branch, 2018).

Rock pools within these zones comprise of indentations and depressions within the rock 

substratum that retain water during low tide, acting as a refuge from most predators (low depth 

excludes large consumers) or nursery area for intertidal marine organisms or transient larvae 

and juveniles of marine fish species (Zander et al., 1999; Dias et al., 2014, 2016; Vinagre et 

al., 2016, 2018). Pools are usually patchily distributed along the intertidal rocky shores, highly 

variable both spatially and temporarily like the adjacent intertidal rocky shore (Martins et al., 

2008; Firth et al., 2013). Even though rock pools have been acknowledged as important 

microhabitats, there is some debate as to whether they represent a “true intertidal habitat”, as 

marine organisms are submerged for the full tidal cycle and are thus not subj ect to the full range 

of environmental fluctuations seen in adjacent habitats (Huggett and Griffiths, 1986; 

Underwood et al., 1991). There is nevertheless clear evidence that, like the surrounding rocky 

shore habitat and unlike subtidal habitats such as gullies (generally covered by water at all 

states of the tide and have a higher degree of water turnover and mixing; Purchase, 2017), 

conditions in rock pool habitats are highly regulated by the tidal cycle and environmental 

variability (temperature, salinity, oxygen and pH) (Branch and Branch, 2018) (Figure 2.1).

Further factors that influence the rock pools environment are latitude, the intertidal height along 

the shore (location), wave exposure, degree of shading, volume and depth of the pools, duration 

of isolation from the ocean at low tide, the degree of low tide exposure (air temperature, solar 

radiation intensity, wind activity and humidity), freshwater input, precipitation, and 

evaporation (Ganning, 1971; Daniel and Boyden, 1975; Morris and Taylor, 1982; Huggett and 

Griffiths, 1986; McMahon, 1990; Metaxas and Scheibling, 1993; Kemp, 2009; Little et al., 

2009) (Figure 2.1). Water temperatures in tropical/low latitude rock pools, for instance, can 

reach maximums of up to 40.0 °C, whereas in temperate/high latitudes rock pools temperatures 

can drop below freezing during cooler months (Vinagre et al., 2018). Rock pools higher along 

the intertidal rocky shore coast (high-shore rock pools) are exposed to greater external 

environmental extremes such as temperature, salinity, and oxygen compared with those lower 

on the shore (low-shore rock pools) which are flushed by waves more frequently. This indicates 

a degree of isolation (driven by tides) that is key for physical environment changes as well as 

species diversity (Gibson, 1972; Huggett and Griffiths, 1986) and survival (i.e. mass mortalities
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of different marine ectotherms due to desiccation can occur higher on the rocky shore) (Little 

etal., 2009; Firth etal., 2015; Vinagre etal., 2016) (Figure 2.1).

Low spring tide (LWS)

Midtide

Low neap tide

High-shore pool
• Extreme

tide (HWS)

High tideneap

Mid-shore pool
• High temperature 

and salinity stress
• Small oxygen 

fluctuations
Few species

temperature and 
salinity
Oxygen high in day, 
very low at night 
Few hardy species

Fringe pool
• Temperature,

salinity, and oxygen 
the same as the
ocean
Life very diverse

I a :

Low-shore pool
Temperature and
salinity moderate
Oxygen high in day
very low at night
Many plants and
animals

Figure 2.1. Characteristics of the rock pools in terms of temperature, salinity, oxygen, and 
species diversity according to the position along the shoreline (redrawn from Branch and 
Branch, 2018).

Estuaries are also dynamic shallow habitats where marine and fresh waters meet and, as such, 

are characterized by fluctuating environmental conditions (e.g. Harrison and Whitfield, 2006). 

More recently, Whitfield and Elliott (2011) globally define estuaries as “a semi-enclosed 

coastal body of water which is connected to the sea either permanently or periodically, has a 

salinity that is different from that of the adjacent open ocean due to freshwater inputs, and 

includes a characteristic biota” . They are mostly shallow, calm and turbid environments which 

are strongly influenced by tidal action, freshwater inflow, wind, wave action, rainfall as well 

as physical environmental variations in air and water temperature, salinity, dissolved oxygen, 

and turbidity (James et al., 2013). Changes in the environmental conditions within an estuary 

may be fairly predictable, or alternatively, they may be caused by short- and/or long-term
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unpredictable climatic fluctuations, all of which may modify the physical and biological 

characteristics (James et al., 2013). This in turn may place considerable physiological demands 

on fish and invertebrates occupying these systems (Whitfield, 1999), who rely heavily on them 

for food resources, protection from predators, and as nursery areas (Beck et al., 2001; Martinho 

et al., 2009; Sheaves et al., 2015), which may ultimately affect their abundance and distribution 

(Flint, 1985; Desmond et al., 2002).

O f the environmental fluctuating conditions influencing estuaries, temperature and salinity 

have been found to be major factors affecting the abundance and distribution of fish species in 

South African estuaries (Harrison and Whitfield, 2006). The temperature regime of individual 

estuarine systems is directly related to biogeography (i.e. tropical, subtropical, warm-temperate 

and cool-temperate regions) (Heydorn and Tinley, 1980). For example, estuaries within 

tropical regions may have higher water temperatures in comparison to estuaries from warm- 

temperate and cool temperate regions (Whitfield, 2019). Temperature variability can also differ 

greatly depending on whether an estuary is permanently open to the sea or temporarily 

open/closed (Whitfield, 2019). During the closed phase, solar heating and evaporative cooling 

of the estuarine water body are the major determinants of the prevailing temperature regime 

(Whitfield, 2019). Floods and droughts also influence the temperature regime in estuaries with 

temperatures reflecting riverine conditions during floods and the sea having a stronger 

influence during normal river flows/tides or droughts (Whitfield, 2019). Salinity, another 

important physical variable of estuaries, also varies greatly biogeographically and plays an 

important role in characterizing individual estuaries and describing transition zones within a 

particular system, such as being either oligohaline (0.5 -  4.9 units), mesohaline (5.0 -  17.9 

units), polyhaline (18.0 -  29.9 units), euhaline (30.0 -  39.9 units) or hypersaline (> 40.0 units) 

(Whitfield, 2019).

2.2 SAMPLING LOCATION

The permanently open Kariega Estuary and adjacent intertidal rocky low-shore, in the form of 

intertidal rock pool and subtidal habitats, were selected as the locations in which to identify 

thermal variability patterns and to see how these patterns may impact the performance of 

selected juvenile fish and adult macro-invertebrates along the south-east warm-temperate 

coastal zone of South Africa.
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2.2.1 Kariega Estuary

The Kariega Estuary (33°40'46.6" S, 26°40'57.9" E), situated between Port Alfred and Port 

Elizabeth, enters the sea at Kenton-on-Sea (Paterson and Whitfield, 2000) (Figure 2.2). The 

estuary is 18 km in length and can be subdivided into lower, middle and upper transition 

reaches and drains a catchment of 686 km2 (Grange and Allanson, 1995) (Figure 2.2). The main 

channel averages 2.3 m in depth and has an average width of 110 m in the mouth region, 

narrowing to 40 -  60 m in its upper reaches, with a water depth of 1 -  4 m (James and Harrison, 

2010) (Figure 2.2).

Figure 2.2. Map of the Kariega Estuary, showing the head, upper, middle and lower reaches 
and adjacent coastline situated between Port Alfred and Port Elizabeth, in the Eastern Cape, 
South Africa.

The estuary has a spring tidal range of approximately 1.6 m in the lower reaches (Grange and 

Allanson, 1995; Grange et al., 2000). The estuary receives negligible mean annual runoff of ± 

15 x 106 m3, which is attributed to the combined effect of the semi-arid climate of the Eastern
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Cape, the small catchment area, three large dams (Settlers, Moss and Assegai) and numerous 

weirs within the catchment that impound much of the runoff (Hodgson, 1987; Allanson and 

Read, 1995; Grange and Allanson, 1995). With very little riverine influence, the estuary is 

marine dominated and is well-mixed with no salinity stratification of the water column at any 

stage of the tidal cycle (Grange and Allanson, 1995; Whitfield and Paterson, 2003). During 

extended periods of no river flow (times of drought), hypersaline conditions can occur in the 

upper reaches of the estuary (45 units), with a reverse salinity gradient in the system. During 

low flow conditions salinity is usually uniformly marine (35 units) along the length of the 

estuary (Nodo et al., 2018). Water temperatures in the estuary do not deviate significantly from 

the natural state, since considerable tidal exchange of marine water in the lower and middle 

reaches prevents adverse warm conditions developing in these regions (Allanson and Read, 

1995). As a result of the marine influence, there is low turbidity in the lower reaches of the 

Kariega Estuary (>10 NTU) (Bailey and James, 2013). The sediment in the upper reaches is 

dominated by coarse material and silt, the middle reaches by sand and fine sediment particles, 

and the lower reaches by sand and a small clay and mud component (Richardson et al., 2006).

For this study, the lower reaches of the Kariega Estuary extending from the mouth (33° 40' 

58.92" S, 26° 41' 10.90" E) to 5.27 km upstream (33° 36’ 53.72” S, 26° 39’ 15.93” E) were 

sampled and temperature data from the lower, middle and upper reaches were evaluated (Figure 

2.3).
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Figure 2.3. Map of the Kariega Estuary showing locations of SAEON HOBO loggers in the 
upper, middle and lower reaches (round circles) and Ibutton thermal loggers (black stars) in 
the lower reach.

Atmospheric temperature recorded from the closest weather station (Port Alfred) between 2012 

and 2018 from the South African Weather Service indicated a mean monthly minimum 

temperature of 6.0 °C (R2 = 0.01) and a mean monthly maximum temperature of 27.0 °C (R2 

= 0.00) (Figure 2.4a). Between 2017 and 2018, the minimum temperature recorded was 0.0 °C 

and the maximum temperature recorded was approximately 35.0 °C (Figure 2.4b). Within this 

period, temperature reached 0.0 °C on two separate occasions (28 June and 19 July 2017) and 

temperature was above 35.0 °C on five separate occasions (28 February 2017, 22 March 2017, 

30 March 2017, 4 September 2017, 3 October 2017).
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Figure 2.4. Atmospheric temperature data measured from the Port Alfred station showing (a) the mean monthly maximum and minimum air 
temperatures (°C) for the years 2013 -  January 2018 (South African Weather Service, in litt.) and (b) the maximum and minimum air temperatures 
recorded in the sampling period, 2017 and 2018. In Figure (a), regression lines are indicated by a black dotted line for the average monthly 
maximum temperatures and a grey dotted line for the average monthly minimum temperatures. In Figure (b), black outlined squares indicate dates 
in 2017 where temperatures reach 0.0 °C and 35.0 °C.
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2.2.2 Rocky shore coastal environment

Adjacent to the warm-temperate Kariega Estuary and extending to the Bushman’s Estuary 

(±3.0 km to the west) are sections of rocky coastline (Figure 2.2). This rocky coastline consists 

of three major geological units. The oldest of these units are the sandstone and shale deposits 

of the Bokkeveld Group, which are over-lain with sandy limestone and marine deposits made 

up of the Alexandria Formation, and above this unit are later tertiary to quaternary deposits of 

the Aeolian beach and dune sands (Fraser, 2003). The Aeolianite or dune rock also forms a 

number of wave-cut rocky platforms or promontories, which often shield or surround gullies 

and a number of rock pools. Within this rocky coastline, Sydney’s Hope Gully (33° 41’ 43.92” 

S, 26° 39’ 56.07” E) and a low-shore intertidal rock pool (33° 41’ 44.46” S, 26° 39’ 57.84” E) 

were evaluated for this study (Figure 2.5, Figure 2.6).

Sydney’s Hope Gully is situated 250 m from the mouth of the Bushman’s Estuary (Figure 2.5). 

The subtidal gully has a maximum depth of 2.5 m at low tide, a maximum width of 21.3 m and 

a maximum length of 64 m with one end open to the sea at both low and high tide (Figure 2.6). 

Although the gully is exposed to tidal regimes, it always has a large volume of water entering 

it from the seaside (Figure 2.6).

The low-shore rock pool situated close to Sydney’s Hope Gully has a depth range of 0.5 -  0.8 

m at low tide, a maximum width of 7.4 m and a length of 15 m (Figure 2.5, Figure 2.6). The 

west and south sides of the rock pool are covered by mussel beds and the north and east sides 

are vertically surrounded by wave-cut rocky walls or ridges, providing shaded shelter to the 

area (Figure 2.6). Furthermore, the pool is exposed to semi-diurnal tide cycles of immersion 

(high tide) and emersion (low tide). Salinity in both the low shore rock pool and Sydney’s Hope 

Gully, during the sampling period (2017 and 2018) always measured 35.0.
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Figure 2.5. Map of the adjacent coastline showing the location of the SAEON HOBO and 
Ibuttons thermal loggers placed within the Sydney’s Hope Gully and low-shore rock pool 
where intertidal fish and macro-invertebrates were collected.

Figure 2.6. Low-shore rock pool (left) and Sydney’s Hope Gully (right).
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2.3 THERM AL VARIABILITY

2.3.1 Kariega Estuary

Temperature data were provided by the Algoa Bay Sentinel Site for LTER of the South African 

Environmental Observation Network (SAEON). Data were obtained from HOBO temperature 

loggers deployed at three stations [upper (33° 36’ 53.72” S, 26° 39’ 15.93” E), middle (33° 37’ 

32.99” S, 26° 38’ 21.36” E) and lower (33° 39’ 36.03” S, 26 ° 38’ 53.84” E)] in the Kariega 

Estuary since November 2012 (Figure 2.3). In addition, two constantly immersed Ibuttons 

(ColdChain ThermoDynamics, Fairbridge Technologies) were placed in the lower reaches 

close to the mouth of the Kariega Estuary (0.6 m depth on low tide and 1.2 m depth on high 

tide) (33° 40’ 40.45” S, 26° 40’ 47.19” E; 33° 40’ 20.10” S, 26° 40’ 29.50” E) (Figure 2.3) to 

assess temperature fluctuations in shallow water. The Ibuttons recorded temperature every hour 

and were retrieved every six months over the one-year sampling period (2017). Unfortunately, 

one of the Ibuttons (Ibutton 2) was lost in a large tidal event and temperature data was only 

available from the beginning to the middle of 2017.

Water temperatures in the estuary showed clear seasonal trends between 2013 and 2018. 

Lowest temperatures were recorded in autumn and winter months (March - August), and 

highest temperatures in spring and summer (September - February) (Figure 2.7). Daily water 

temperature variability was greatest in the lower reaches (Figure 2.7a) compared with the 

middle (Figure 2.7b) and upper (Figure 2.7c) reaches. In winter, average water temperatures 

were highest in the upper (16.1 °C) and lower (16.1 °C) reaches followed by the middle reaches 

(15.8 °C) (Figure 2.7) presumably as a factor of depth. The coldest temperatures, however, 

recorded over the five-year period, occurred from the upper reaches (10.9 °C -  3 August 2015) 

followed by the middle (11.7 °C -  28 July 2015) and upper (12.2 °C -  22 June 2014) reaches, 

most likely influenced by colder air temperatures (Figure 2.7).

In summer, average water temperatures were highest in the upper reaches (27.1 °C) followed 

by the middle reaches (26.6 °C) and the lower reaches (23.9 °C) (Figure 2.7). The hottest 

temperature recorded in the estuary over the five-year period was from the middle reaches (31.9 

°C) and the upper reaches (31.1 °C) in February of 2014 followed by the lower reaches in 

December 2015 (30.1°C) (Figure 2.7). Alternatively, the coldest temperatures recorded were
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from the lower reaches compared to the middle and upper reaches of the Kariega Estuary, with 

temperatures in the lower reaches reaching minimum temperatures of 14.6 °C in January 2018,

15.6 °C in February 2016, and 14.9 °C in December 2014 (Figure 2.7, Figure 2.8). Low 

minimum temperatures in summer in the lower reaches are associated with the movement of 

upwelled water into the estuary on the high tide.

In the lower reaches of the Kariega Estuary, shallow Ibutton temperature data for the sampling 

period of 2017-2018 matched relatively closely to the temperature data collected using the 

SAEON HOBO logger, especially for Ibutton 2 (Figure 2.7a). Ibutton 1, however, situated 

close to the mouth of the Kariega Estuary, had greater variations in temperature and 

demonstrated lower temperature records possibly as a result of the movement of cold upwelled 

water into the mouth of the estuary (Figure 2.7a).
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Figure 2.7. Local estuarine water temperatures (daily maximum and minimum recordings) 
recorded from the (a) lower reaches, (b) middle reaches and (c) upper reaches of the Kariega 
Estuary from 2013 to 2018 using SAEON (Elwandle Node) HOBO thermal loggers (blue). 
Shallow estuarine water temperatures (daily maximum and minimum recordings) recorded 
from the lower reaches (a) of the Kariega Estuary from February 2017 to January 2018 using 
Ibutton 1 (red) and from February to May 2017 (green) using Ibutton 2 are included.
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Figure 2.8. Hourly estuarine temperature data from the lower (green), middle (orange) and upper (purple) reaches of the Kariega Estuary for (a) 
December 2014, (b) February 2016 and (c) January 2018 indicating upwelling events and extreme drops in temperature with black arrows and the 
range and rate of temperature change over a period of eight days.
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2.3.2 Low-shore rock pool and gully

Hourly temperature data between 2013 and 2018 were provided by the Algoa Bay Sentinel Site 

for LTER of the South African Environmental Observation Network (SAEON) from a HOBO 

logger located in Sydney’s Hope Gully (33° 41’ 43.92” S, 26° 39’ 56.07” E) (Figure 2.5). To 

obtain temperature measurements from the intertidal low-shore rock pool, two Ibuttons (33° 

41’ 44.46” S, 26° 39’ 57.84” E; and 33° 41’ 29.17” S, 26° 40’ 32.29” E) were deployed (Ibutton 

1: 0.5 m depth on low tide and 0.9 m depth on high tide; Ibutton 2: 0.8 m depth on low tide and

1.2 m depth on high tide) (Figure 2.5). The Ibuttons were set to record hourly temperature from 

the beginning of 2017 until January 2018. Ibutton temperature data was retrieved every six 

months. Unfortunately, one of the Ibuttons was lost due to sand deposition and temperature 

data was irretrievable at the end of 2017, with temperature data from the beginning to the 

middle of the year successfully retrieved.

Water temperatures within Sydney’s Hope Gully and the adjacent intertidal low-shore rock 

pool showed seasonal variation, however, coldest daily water temperature values were recorded 

in summer and not in winter, especially for Sydney’s Hope Gully, as is evident in the three 

obvious sharp decreases in temperature during January/February 2013, 2014, 2016 and 2018 

and December 2014 (Figure 2.9, Figure 2.10). These drops in temperature during summer 

months are a result of upwelling events.

When comparing daily temperature recorded data between Sydney’s Hope Gully and the

adjacent low-shore rock pool, Sydney’s Hope Gully was more variable as a result of the gully

having an open connection to the sea (Figure 2.9). In summer, in Sydney’s Hope Gully, an

average temperature of 19.0 °C, a minimum temperature of 12.8 °C (7 February 2016) and a

maximum temperature of 25.1 °C (3 January 2016) was recorded (Figure 2.9). For winter, in

Sydney’s Hope Gully, an average temperature of 16.5 °C, a minimum temperature of 13.2 °C

(22 August 2017) and a maximum temperature of 20.0 °C (2 July 2014) was recorded (Figure

2.9). During the sampling period (2017-2018) in the low-shore rock pool, however, an average

temperature of 18.9 °C, a minimum temperature of 13.8 °C (10 December 2017) and a

maximum temperature of 23.7 °C (4 January 2018) was recorded for Ibutton 1 in summer

(Figure 2.9). In winter, Ibutton 1 had an average temperature of 16.4 °C, a minimum

temperature of 13.5 °C (23 August 2017) and a maximum temperature of 18.2 °C (2 June 2017)

(Figure 2.9). For Ibutton 2, an average temperature of 17.3 °C, a minimum temperature of 13.5
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°C (30 July 2017) and a maximum temperature of 22.9 °C (14 February 2017) occurred 

between February and the end of July 2017 in the low-shore rock pool habitat (Figure 2.9).

Figure 2.9. Local rocky shore water temperatures (daily maximum and minimum recordings) 
recorded from Sydney’s Hope Gully between 2013 and 2018 using SAEON (Elwandle Node) 
HOBO loggers (blue) and a shallow low-shore rock pool habitat between 2017 and 2018 using 
Ibutton 1 (red) and Ibutton 2 (green).
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Figure 2.10. Hourly sea temperature data from Sydney’s Hope Gully for (a) December 2014, (b) February 2016 and (c) January 2018 indicating 
upwelling events and extreme drops in temperature with black arrows and the range and rate of temperature change over a period of eight days.
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2.4 STUDY SPECIES

The study area is located in the centre of the warm-temperate region and as such contains 

marine ectothermic fish and macro-invertebrate species with overlapping northern and 

southern range affinities (temperate, cool-water, warm-water and tropical species) as well as 

widespread species. Harrison and Whitfield (2006) classified estuarine fish species into several 

groups based on their distribution and relationship to temperature and salinity (refer to Figure

1.4 in Chapter 1). These include tropical species that extend their distribution into subtropical 

estuaries in South Africa (Group 1, Figure 1.4, Table 2.1). A second group of tropical species 

extend their distribution from subtropical estuaries into warm-temperate estuaries (Group 2, 

Figure 1.4, Table 2.1). The third group was classified as warm-water endemic species that are 

found in warm-temperate and subtropical estuaries (Group 3, Figure 1.4, Table 2.1). The fourth 

group comprises cool-water endemic species that occur in both cool-temperate and warm- 

temperate estuaries that are uncommon in subtropical estuaries (Group 4, Figure 1.4, and Table 

2.1). The fifth group comprises temperate species that occur in the eastern Atlantic region and 

extend their distribution around the South African coast (Group 5, Figure 1.4, and Table 2.1). 

The sixth group comprises widespread species that occur in estuaries throughout South Africa 

(Group 6, Figure 1.4, and Table 2.1). Griffiths et al. (2010) classified macro-invertebrates into 

five bioregions based on their spatial patterns of species richness and endemism (refer to Figure

1.3 in Chapter 1).

For the purpose of this study, the Harrison and Whitfield (2006) classification system for 

estuarine fish species was adopted for fish and macro-invertebrates found in the lower reaches 

of the Kariega Estuary and rocky intertidal nearshore (Table 2.1). Where possible, species from 

these different groups were targeted as well as species that were present, abundant and easily 

accessible in each of the different habitats (estuary, gully, rock pool) (Table 2.1). Only species 

from Group 1 were not caught as these species were not obtained in sufficient numbers. The 

most abundant fish species were secondary resident/transient species that occurred as juveniles 

in rock pools and estuaries. In contrast, most macro-invertebrates were resident species that 

were present as both juveniles and adults.
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Table 2.1. Study species for the present study including their biogeographic distribution, life 
stage, environment and sampling area in which they were collected.

Biogeographic
affinity

Species Illustration Taxonomic
group

Life
stage

Environment Habitat Sampling area

Group 2 
Tropical

Chaetodon
marlevi # Fish Juvenile Subtidal,

littoral

Shallow coastal rocky 
waters, reefs, rock pools, 

estuaries
Estuary

Group 2 
Tropical Kuhlia mugil Fish Juvenile

Subtidal,
bentho-
pelagic,
demersal

Shallow coastal waters, 
reefs, rock pools Rock pool

Group 3 
Warm-water 

endemic

Chelon
dumerili Fish Juvenile Demersal,

littoral

Shallow coastal waters, 
estuaries, lagoons, tidal 

rivers
Estuary

Group 3 
Wann-water 

endemic

Rhabdosargns
hollibi

; . Fish Juvenile Demersal,
littoral

Inshore shallow rocky 
and sandy waters, 
lagoons, estuaries

Estuary

Group 4 
Cool-water 

endemic

Chelon
richardsonii Fish Juvenile Demersal,

pelagic
Offshore shallow coastal 

open waters, estuaries Estuary

Group 5 
Temperate Sarpa salpa Fish Juvenile

Bentho-
pelagic/

Demersal

Inshore shallow rocky 
and sandy waters, surf 

zone, rock pools, 
estuaries

Rock pool/Gully

Group 5 
Temperate

Diplodus
capensis

• * Fish
Juvenile

and
Adult

Demersal,
littoral

Inshore rocky coastal 
waters, surf zone, rock 

pools, estuaries

Rock pool, gully 
(juveniles) 

Sandy beach surf 
zone (adults)

Group 2 
Tropical Clibanarius

virescens
Invertebrate Adult Intertidal/

Subtidal

Inshore rocky shallow 
waters, sandy beaches, 

rock pools, estuaries
Estuary

Group 6 
Widespread Parasesarma

catenatum
Invertebrate Adult Intertidal/

Subtidal

Inshore rocky shallow 
waters, estuaries, 

saltmarshes, mangroves
Estuary

Group 6 
Widespread

Upogebia
africana X Invertebrate Adult IntertidaE

Subtidal
Inshore rocky shallow 

waters, estuaries Estuary

Group 6 
Widespread

Perna perna
§

Invertebrate Adult Intertidal
Inshore rocky shallow 

waters, rock pools, 
estuaries

Rock Pool

Group 6 
Widespread

Parechinus
angulosus • Invertebrate Adult Intertidal

Inshore rocky shallow 
waters, rock pools, 

estuaries
Rock pool

Group 6 
Widespread

Palaemon
peringueyi Invertebrate Adult IntertidaE

Subtidal
Inshore rocky areas, rock 

pools, estuaries
Rock pool

*Different colours represent the biogeographic distributions groupings in accordance to Figure 1.4 in 
Chapter 1, adapted from Harrison and Whitfield (2006) (Tropical -  orange, Warm-water endemic -  
green; Temperate -  dark blue; Cool-water endemic -  light blue, widespread - purple). This table was 
also constructed based on the following references: Branch and Branch (1981, 2018); Kensley (1981); 
McQuaid and Branch (1984); Hugget and Griffiths (1986); Smith and Smith (1986); Thomson (1986); 
de Villiers e t al. (1999); Randall and Randall, 2001; Heemstra and Heemstra (2004); Richoux and 
Froneman (2007); Muller (2011); Wait and Schoeman (2012); Emmerson (2016); Tagliarolo and 
McQuaid (2015, 2016).

31



The tropical fish species (Group 2) selected for this study included the doublesash butterflyfish 

Chaetodon marleyi (Regan, 1921) from the lower reaches of the Kariega Estuary and the barred 

flagtail Kuhlia mugil (Forster, 1801) from the rock pool habitat (Table 2.1). Both species are 

considered marine stragglers (Whitfield, 2019) and are found in shallow coastal waters where 

juveniles predominantly inhabit rock pools and lower reaches of estuaries seasonally (mainly 

summer), while adults mostly occur in rocky reef areas (Heemstra and Heemstra, 2004). 

Chaetodon marleyi belongs to the family Chaetodontidae (attains 200 mm TL) and are 

indigenous to South Africa, occurring from Lamberts Bay in the Northern Cape to Maputo in 

southern Mozambique where spawning takes place mostly between May and November (Vine, 

1998; Heemstra and Heemstra, 2004). Kuhlia mugil belongs to the family Kuhliidae (attains 

200 mm TL) and occurs throughout the tropical and subtropical Indo-Pacific, Red Sea and 

Oman to Cape Agulhas (Heemstra and Heemstra, 2004). Both species are considered 

stenothermal and stenohaline as adults, as they can only tolerate a narrow range of temperature 

and salinity in nearshore marine rocky or coral reefs. As juveniles, both species may be 

considered more eurythermal and euryhaline, as a result of them mostly occurring in shallow 

habitats such as rock pools and estuaries. Thus, they are able to tolerate a broader range of 

temperatures and salinity fluctuations, reducing the risk of predation and make use of a wider 

site range for settlement (Vine, 1998).

Warm-water endemic fish species (Group 3) included the groovy mullet Chelon dumerili 

(Steindachner, 1870) and the Cape stumpnose Rhabdosargus holubi (Steindachner, 1881) 

collected from the lower reaches of the Kariega Estuary and are both considered marine 

estuarine-dependent species (Whitfield, 2019) (Table 2.1). Chelon dumerili (max length = 400 

mm TL) belongs to the Mugilidae family (Whitfield, 1998). Juveniles are normally abundant 

in estuaries, with the adults occurring in both the estuarine and nearshore marine environment 

(Wallace, 1975; Whitfield, 1998; Whitfield, 2019). Chelon dumerili distribution extends from 

Senegal to Namibia and False Bay to Mozambique (Whitfield, 1998; Harrison, 2008). 

Rhabdosargus holubi is commonly found inhabiting shallow coastal rocky shore waters as 

adults (max length = 450 mm TL) and exclusively estuaries as juveniles (< 140 mm TL) 

(Whitfield, 1998; Whitfield, 2019). They are considered endemic to southern Africa, with 

distribution extending from St Helena Bay, Western Cape to Maputo, southern Mozambique 

(Whitfield, 1998; Whitfield, 2019). Both species are common in warm-temperate and 

subtropical estuaries but uncommon in cool-temperate estuaries as a result of their preference
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for warmer waters (Harrison and Whitfield, 2006). These species are eurythermal and strongly 

euryhaline as juveniles allowing them to inhabit the entire estuary (Whitfield, 1998). Chelon 

dumerili further exhibits these eurythermal and euryhaline qualities as adults, unlike R. holubi, 

using entire estuaries as a refuge throughout all life stages.

The only cool-water endemic fish species (Group 4) selected for this study was the southern 

mullet Chelon richardsonii (Smith, 1846) belonging to the Mugilidae family and which is 

considered a marine estuarine-opportunist (Whitfield, 2019) (Table 2.1). Juveniles and adults 

are commonly found in cool-temperate and warm-temperate estuaries but are most abundant 

in the nearshore marine environment and are considered euryhaline (Whitfield, 1998; 

Whitfield, 2019). They are endemic to southern Africa, with their distribution extending from 

Cunene River, southern Angola to St Lucia, northern KwaZulu Natal (Whitfield, 1998; 

Whitfield, 2019).

The temperate fish species (Group 5) included blacktail Diplodus capensis (Smith, 1844) and 

strepie Sarpa salpa (Linnaeus, 1758) collected from the rocky shore habitat (Table 2.1). Both 

species belong to the family Sparidae and are both considered marine estuarine-opportunist 

species. Adults (> 150 mm FL) of both species predominantly occur in the coastal surf zone, 

usually close to the inshore rocky areas while juveniles (25 - 100 mm TL) of both species are 

abundant in tide pools, gullies, reefs, sandy beach surf-zones and the lower reaches of estuaries 

(seagrass beds) (Christensen and Winterbottom, 1981; Beckley 1985; Smale and Buxton, 

1989). Diplodus capensis is endemic to southern Africa (Potts et al., 2014). Within southern 

Africa, there are two disjunct populations of D. capensis, one along the eastern seaboard 

extending from Cape Point to southern Mozambique (Smith and Heemstra, 1991; Mann, 1992) 

and the other from Namibia to southern Angola (Richardson, 2010). Sarpa salpa is distributed 

throughout the Mediterranean and parts of the eastern Atlantic around the South African coast 

to southern Mozambique (Fischer and Bianchi, 1984; Smith and Heemstra, 1991; Heemstra 

and Heemstra, 2004). Both species have evolved to be tolerant of fluctuating diel and seasonal 

temperature regimes, with a wide thermal tolerance (Heemstra and Heemstra, 2004; Potts et 

al., 2014) and prefer cooler water temperatures (winter months) for spawning (Mann and 

Buxton, 1998; Potts et al., 2014).

The widespread macro-invertebrates (group 6) collected from the low-shore rock pool habitat

included the shrimp Palaemon peringueyi (Stebbing, 1915), the Cape sea urchin Parechinus
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angulosus (Leske, 1778) and the brown mussel Perna perna (Linnaeus, 1758) (Table 2.1). 

Palaemon peringueyi (Arthropoda: Crustacea) occurs along the southern African coastline 

from Walvis Bay on the west coast to Kosi Bay on the east coast, although it tends to be more 

common toward the south-east and south coasts (de Villiers et al., 1999). Palaemon peringueyi 

has a marine adult phase and a juvenile phase that can either be completed in nursery habitats 

of estuaries or intertidal rock pools (Emmerson, 1985; Emmerson, 1986; de Villiers et al., 

1999). Within estuarine systems, the highest densities of P. peringueyi can be found within 

eelgrass beds (Zostera capensis) (Emmerson, 1986; Wooldridge, 1999). Furthermore, within 

estuaries, P. peringueyi forms a major component of the hyperbenthos of the lower and middle 

reaches of both permanently open and intermittently open systems (Bernard and Froneman, 

2004; Froneman, 2004; Kemp and Froneman, 2004), but, however, is almost completely absent 

from the upper reaches of these estuaries (Kibirige and Perissinotto, 2003; Bernard and 

Froneman, 2004). This suggests that this absence from the upper reaches of estuaries may 

reflect physiological constraints to temperature and salinity (Robertson, 1984; de Villiers et al., 

1999). Salinity extremes and lower temperatures may be tolerated, however, for limited periods 

only while temperatures greater than 30.0 °C tend to be lethal (Robertson, 1984; de Villiers et 

al., 1999).

Parechinus angulosus (Echinodermata) is considered the most widespread of the southern 

African echinoids with a distribution extending from Luderitz (just north of the Orange River 

mouth) to Umhlali in northern KwaZulu Natal (Branch et al., 2002; Day and Branch, 2002). 

They commonly inhabit intertidal rock pools, estuaries, reefs and kelp beds (Muller, 2011) 

forming very dense, sometimes continuous, populations of up to 90 animals m2 (Fricke, 1978). 

This high population density and herbivorous feeding pattern (Greenwood, 1975) make them 

key consumers in the ecology of kelp bed communities (Fricke, 1978, 1980; Stuart and Field, 

1981; Branch et al., 2002). Adults of P. angulosus can attain up to 60 mm total length (age of 

four - seven years) and vary in colour (Muller, 2011). Individuals within the same rock pool 

can display three distinct colour forms, namely pink, purple and red. Whether these colour 

polymorphisms represent distinct evolutionary lineages is currently unknown (Muller, 2011).

Perna perna (Mollusca) is native to South Africa and is abundant in upper and lower mussel 

zones (Bownes and McQuaid, 2006) along the entire east and south coasts, but less abundant, 

if  not absent, along the west coast due to intense competition with the invasive mussel Mytilus
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galloprovincialis (Lamarck, 1819) (Berry, 1978; van Erkom Schurink and Griffiths, 1993; 

Branch and Steffani, 2004) (Table 2.1). Two genetic lineages of P. perna with different 

geographic distributions have been identified, i.e. west and east (Zardi et al., 2007b). The 

western lineage includes individuals from both Namibia and the south coast of South Africa 

while the eastern lineage includes individuals from the south-east and east coasts of South 

Africa (Zardi et al., 2007b). The east and west lineages do, however, overlap for 200 km on 

the south-east coast of South Africa (convergence region) (Zardi et al., 2011). Perna perna are 

highly sedentary, long-lived (five to six years attaining a maximum size of 200 mm TL) and 

exhibit external fertilization (Bayne, 1976; Suchanek, 1985; Underwood and Fairweather, 

1989; Levitan, 1995; Underwood and Keough, 2001; McQuaid and Lindsay, 2000). The habitat 

in which they occur predominantly is highly dynamic due to strong wave action, currents and 

temperature extremes (both air and water) typical of the intertidal rocky shore (Berry, 1978; 

van Erkom Schurink and Griffiths, 1992) which allows them to tolerate a wide range of 

fluctuating temperatures (Tagliarolo and McQuaid, 2015).

From the lower reaches of the Kariega Estuary, the tropical yellow-banded hermit crab 

Clibanarius virescens (Krauss, 1843) (Group 2), the widespread crab Parasesarma catenatum 

(Ortmann, 1897) (Group 6) and the widespread mud prawn Upogebia africana (Ortmann, 

1894) (Group 6) were collected for this study (Table 2.1). Clibanarius virescens (Arthropoda: 

Crustacea) is one of the most abundant hermit crabs in southern Africa and in the Indo-West 

Pacific region with a tropical distribution extending from Cape Recife in the Eastern Cape 

(Wait and Schoeman, 2012) to northern Mozambique (de Grave and Barnes, 2001). They are 

associated mostly with mid-shore rocky zones (Branch and Branch, 1981; Barnes, 1997) and 

frequently make use of gastropod shells for protection. Wait and Schoeman (2012) identified 

that C. virescens commonly make use of Burnupena cincta and Burnupena pubescens 

gastropod shells in Cape Recife.

Parasesarma catenatum (Arthropoda: Crustacea) endemic to southern Africa is a small 

estuarine crab that has a temperate-subtropical widespread distribution which extends from the 

Breede River in the Western Cape through the Eastern Cape to KwaZulu Natal (Branch and 

Grindley, 1979; Kensley, 1981) and southern Mozambique (Macnae and Kalk, 1962; Kalk, 

1995) (Table 2.1). It is one of the most common estuarine crabs along the east and south-east 

coast of South Africa that is abundant along the length of estuaries (Taylor and Allanson, 1993).

35



Although this crab is mobile and moves according to low and high-water tides along the entire 

tidal gradient, it commonly inhabits mid-tidal zones among saltmarshes or mangroves, being 

either in Spartina (Day, 1974) or Arthrocnemum (Branch and Grindley, 1979; Vorsatz, 2009). 

This crab is rarely found above the high-water spring tide mark, as it shows a preference for 

saturated substrates and is capable of living and being active underwater (Emmerson, 2016). It 

is a detritivore and is not considered to be a burrowing crab, but rather uses very shallow holes 

that do not penetrate to water level because of the excellent respiratory and water-saving 

adaptations of these crabs (Emmerson, 2016). In the Kariega Estuary, this crab is dominant 

with a mean density of 47 crabs.m-2 in the lower and middle reaches (Hodgson, 1987; de 

Villiers et al., 1999) and has been considered an indicator species due to its central importance 

in the carbon flow of estuaries (Morant and Quinn, 1999).

In southern Africa, one of the most widespread and abundant endemic intertidal estuarine 

species is the burrowing mud prawn U. africana (Arthropoda: Crustacea) (Day, 1964; Day, 

1981) (Table 2.1) and is distributed from Langebaan Lagoon in the Western Cape to Inhambane 

in northern Mozambique (Cretchley, 1996). Upogebia africana is particularly abundant in 

many permanently open east and south Cape estuaries of southern Africa (Hill, 1967; Day, 

1981; Hodgson, 1987; Hanekom et al., 1988; Martin, 1988; Whitfield, 1988), as temperature 

may be a major factor limiting their distribution further north of the east coast (too warm) and 

west coast (too cold) (Hill, 1967). They commonly inhabit U-shaped burrows constructed by 

themselves (Hill, 1971; Schaefer, 1970) in the intertidal zone, found mostly among beds of 

eelgrass (Z. capensis) and are considered filter-feeders (Stamhuis et al., 1998). They have been 

considered “promoter” species (Reise, 1985) because of their capacity to increase sediment 

oxygenation and mineralization (Hines and Jones, 1985), and by controlling community 

structure of soft bottom estuarine habitats (Virnstein, 1977; Posey et al., 1991; Wynberg and 

Branch, 1994). They are popularly exploited, however, as a bait organism (Hanekom and 

Erasmus, 1988; Cretchley, 1996).
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CHAPTER THREE: THERM AL TOLERANCE OF M ARINE VERTEBRATES AND 

INVERTEBRATES IN W ARM -TEM PERATE ESTUARINE AND INTERTIDAL

ENVIRONMENTS

3.1 INTRODUCTION

A first step towards understanding the vulnerability of marine ectotherms to extreme 

temperatures is to determine which taxa currently live near their upper and lower thermal limits 

(thermal tolerance) and whether they have the ability to acclimatize to changing temperatures 

(Stillman, 2003; Somero, 2010, 2012). Thermal tolerance studies have focused on identifying 

and quantifying the thermal thresholds through two different experimental approaches, i.e. the 

static (incipient lethal) and dynamic (critical thermal) methods (e.g. Becker and Genoway, 

1979; Lutterschmidt and Hutchison, 1997a, 1997b; Currie et al., 1998).

The static or incipient lethal temperature (ILT) method determines the lower and upper thermal 

limits based on the temperature at which 50% of a sample of organisms die when acclimated 

and subjected to a range of temperatures (Fry, 1947; Beitinger and Bennett, 2000). The 

dynamic or critical thermal methodology (CTM) is characterized by the determination of the 

critical thermal maximum (CTmax) and critical thermal minimum (CTmin), which involves 

subjecting organisms to a constant temperature change until the upper and lower sub-lethal 

limits (i.e. a loss of equilibrium or the onset of muscular spasms for vertebrates and a loss of 

righting response for macro-invertebrates) are reached (Cowles and Bogert, 1944; Lowe and 

Vance, 1955; Cox, 1974). The dynamic method has largely replaced the static method as it has 

many advantages in determining thermal tolerance. It requires fewer animals and experiments 

are shorter than with the ILT method; partial acclimation during trials is allowed; it is sub­

lethal rather than lethal (i.e. animals are able to recover and survive, hence it is more ethical); 

it is effective across many species and individuals; it has been shown to explain the thermal 

distributions of many species; and it is comparable to natural conditions (i.e. good for aquatic 

systems where the properties of water change less abruptly than in air) (Becker and Genoway, 

1979; Lutterschmidt and Hutchison, 1997a; Beitinger et al., 2000; Sunday et al., 2012). 

Overall, the dynamic method is highly reliant, but is dependent on the implementation of an 

appropriate and taxon-tailored experimental protocol (Becker and Genoway, 1979).
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Recent physiological studies using coastal temperate marine ectotherms subjected to the 

dynamic method (CTmax) showed that the thermal niches of individual species are important in 

identifying their thermal limits (Mora and Ospína, 2001; Mora and Maya, 2006; Madeira et al., 

2012a, 2012b, 2013, 2014a, 2014b; Vinagre et al., 2013, 2015). These thermal niches can be 

biogeographically and/or habitat dependent (Somero 2002, 2010). Madeira et al. (2012a), for 

instance, demonstrated that critical thermal limits (CTmax) differed among crabs, shrimp and 

fish that occupied different biogeographic distributions found within a single temperate 

intertidal/subtidal habitat.

In addition, when determining the thermal limits for various fish and crustaceans from variable 

shallow habitats such as a temperate estuary and adjacent coastline (rock pools), where 

environmental variables change over a short space and time frame, intertidal and supratidal 

species have higher CTmax values than subtidal species (Madeira et al., 2012a), suggesting that 

intertidal species are able to cope better with thermal shock (Madeira et al., 2012a, 2012b, 

2014a, 2014b, Vinagre et al., 2013, 2015). It is not certain, however, whether intertidal and 

subtidal marine ectotherms in a temperate environment will be able to tolerate extreme climate 

events, such as marine heatwaves (MHWs) and cold spells (MCSs) that are predicted to 

increase in intensity, frequency and duration (Vinagre et al., 2015; Shultz et al., 2016) and, 

when comparing the two habitats (intertidal and subtidal), which one would be more 

vulnerable.

The resilience of different marine ectotherms to climate change, furthermore, may also be 

broadly categorized according to their taxonomy and limited by their mobility (Peck et al., 

2009; Somero, 2010; Tittensor et al., 2010), with mobile species (e.g. fish) having lower 

thermal tolerance than sessile/sedentary species (e.g. macro-invertebrates) (Somero, 2010). 

This is because vagile species can avoid unfavourable thermal conditions while sessile species 

are forced to experience and hence withstand harsh conditions (e.g. Hiddink and ter Hofstede, 

2008; Huang et al., 2015; Messmer et al., 2017).

Studies that concurrently test the effect of warming rate on CTmax and even more so the cooling

rate on CTmin over various marine ectotherms belonging to different taxonomic groups and

thermal niches (biogeographical and habitat) are still lacking (Vinagre et al., 2015). Within this

framework, the aim of this research was to: 1) determine the thermal limits (CTmax and CTmin)

of seven fish (three rocky shore species, four estuarine species) and six macro-invertebrate
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species (three rocky shore species, three estuarine species) in the warm-temperate region of 

South Africa to further determine differences in thermal scope based on taxonomic grouping, 

biogeography and habitat affinity; and 2) relate these thermal limits to current and projected 

water temperatures in an estuary, low-shore intertidal rock pool and subtidal gully between 

summer and winter.

3.2 M ATERIALS AND METHODS

3.2.1 Field sampling

Fish and macro-invertebrates were collected from the lower reaches of the Kariega Estuary, 

adjacent low-shore rock pool and subtidal gully (refer to Chapter 2 for details of the sampling 

localities and study species) (Table 3.1). Collections were done during the summer months 

(January, February, and December) of 2017 and 2018 and during the winter months (June, July, 

and August) of 2017 (Table 3.1). Temperature and salinity measurements and sampling 

localities are detailed in Chapter Two. Sampling techniques ranged from collection by hand 

(P. angulosus, P. perna) to dip nets (P. peringueyi), modified plastic nets (C. marleyi), cast 

nets (rock pool and gully juvenile fish), a 30 m x 1.7 m x 15 mm bar mesh seine net with a 5 

mm bar mesh purse (juvenile estuarine fish), and prawn pumps for adult U. africana.

3.2.2 Experim ental setup

After collection, all specimens were transported to the NRF-SAIAB Aquatic Ecophysiology 

Research Platform (AERP) laboratory at the Department of Ichthyology and Fisheries Science, 

Rhodes University, Grahamstown, in sealed aerated containers filled either with sea water or 

estuarine water from the collection site.

3.2.2.1 Fish

Up to 24 fish per species were caught on each sampling trip. Half of these fish were then 

randomly transferred into treatment and control recirculating systems for the first experiment, 

when CTmax was determined (Figure 3.1). The remaining half were transferred to an 

acclimation recirculating system, ready for the next experiment, to determine CTmin (Figure 

3.1). Acclimation temperatures varied between 16.0 and 23.0 °C depending on the ambient
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temperature during collection (Table 3.1). The treatment and control recirculating systems each 

consisted of three 90 L holding tanks, a 90 L filter tank (filter socks and biofilter beads), and a 

90 L return tank (protein skimmer and return pump) (Figure 3.1). The acclimation recirculating 

system consisted of four 90 L holding tanks, a 90 L filter tank, and a 90 L return tank (Figure 

3.1). Preliminary observations revealed high stress levels when smaller individuals were placed 

in tanks with larger individuals (which displayed aggressive behaviour towards smaller 

individuals) during pre-acclimation. All fish were thus placed into tanks according to similarity 

in length (mm SL) and weight (g). There was no observed difference in survival between male 

and females and, as such, individuals were not separated by sex. For all recirculating systems 

and experiments, salinity was maintained between 35 and 36 (to mimic natural conditions 

found at the study sites, refer to Chapter 2) and dissolved oxygen varied between 95% and 

100% (dependant on temperature).

Figure 3.1. Experimental setup for fish and macro-invertebrate critical thermal maximum 
(CTmax) and critical thermal minimum (CTmin) experiments. The blue lines indicate the flow of 
water leaving the 90 L holding tanks and flowing into the 90 L filter tank (filter socks and 
biofilter beads) and then into the 90 L return tank (protein skimmer and return pump). Water 
was then either heated or cooled by a hot rod or chiller before being returned, indicated by the 
red lines, to the 90 L holding tanks.
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3.2.2.2 Macro-invertebrates

Seventy-two individuals per species were placed in 100 ml plastic containers (one individual 

per container with a diameter and height of 10 cm) and covered with 1 mm fine mesh material 

using an elastic band (Figure 3.2). Half of these containers were then randomly placed into the 

treatment and control recirculating systems (six macro-invertebrate containers per species x 

three treatment/control tanks = 36 individuals) for the CTmax experiment (Figure 3.1). The 

remaining half were kept in the acclimation recirculating system (nine macro-invertebrate 

containers per species x four holding tanks = 36 individuals) (Figure 3.1) until required for the 

following CTmin experiment, where they were randomly transferred to the treatment and control 

recirculating systems. Animals were isolated individually to avoid competition/predation and 

any artefactual influence on CTmax by conspecifics (Paganini et al., 2014). Crabs and mud 

prawns were sexed into male and female. Tanks contained nine male crabs: nine female crabs. 

For the mud prawns, only males were used as most females sampled were carrying eggs. It was 

not possible to sex hermit crabs, mussels and sea urchins prior to the experiment. As a result, 

gender could only be attributed to each specimen at the end of each thermal endpoint trial.

Figure 3.2. Cape sea urchins Parechinus angulosus placed individually in 100 ml plastic 
containers (diameter and height of 10 cm) and covered with 1 mm fine mesh material using an 
elastic band (mesh material and elastic bands seen next to plastic containers in image).
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3.2.3 Acclimation

Animals in the treatment and control tanks were left to acclimate for a maximum of 36 hours 

at the water temperature in which they were collected. Field temperature at the time of the 

collection was measured consistently (every six hours) using a hand-held multi-parameter 

probe (Aqualytic water parameter, United Scientific, Germany) (Table 3.1). A 36-hour 

acclimation period was selected based on the findings of Mora and Maya (2006) and 

conveniently this time period was also appropriate to maintain a 12 L: 12 D photoperiod and 

setup of the experiments that followed. Marine and estuarine organisms were not fed during 

the acclimation period.
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Table 3.1. Taxonomic group, habitat, biogeographic affinity, sample size, mean standard length (SL), weight (g) and acclimation/field 
temperatures for different species in the present study according to season (winter and summer) and treatment (CTmax and CTmin).

Species
Taxonomic

group Habitat
Biogeographic

affinity
Season and 
treatment

Sample
size

Length (mm) 
mean ± SD

Range
(mm)

Weight (g) 
mean ± SD

Range
(g)

Acclimation/field 
temperature (°C)

D iplodus
capensis Fish

Rocky
shore Temperate Summer CTmax 12 63.11 ± 18.53 43-100

12.18 ± 
16.16 3-53 20.0

Winter CTmax 12 87.33 ± 17.01 60-100 9.42 ± 10.75 3-30 16.0
Summer CTmin 12 50.92 ± 7.13 44-63 3.28 ± 1.66 1-5 20.0
Winter CTmin 12 72.33 ± 1.15 52-73 4.39 ± 1.85 2-6 16.0

Sarpa salpa Fish
Rocky
shore Temperate Summer CTmax 6 61.33 ± 3.21 59-73 2.30 ± 0.52 2-4 20.0

Winter CTmax 12 80.00 ± 7.21 74-88 4.82 ± 1.24 4-6 18.0
Summer CTmin 6 74.33 ± 2.52 65-82 3.56 ± 0.08 3-6 20.0
Winter CTmin 12 81.00 ± 8.19 66-90 5.19 ± 2.11 4-8 18.0

K uhlia  m ugil Fish
Rocky
shore Tropical Summer CTmax 6 27.33 ± 6.12 19-33 0.19 ± 0.15 0-0.3 20.0

Winter CTmax 6 24.83 ± 3.13 22-30 0.09 ± 0.09 0-0.2 18.0
Summer CTmin 6 25.50 ± 5.09 19-32 0.15 ± 0.14 0-0.3 20.0
Winter CTmin 6 29.00 ± 5.25 24-37 0.25 ± 0.15 0-0.5 18.0

P alaem on
peringuey i Invertebrate

Rocky
shore Widespread Summer CTmax 36 22.53 ± 7.91 3-42 0.15 ± 0.14 0-0.5 21.0

Winter CTmax 36 22.28 ± 4.68 7-33 0.55 ± 0.30 0-2 16.0
Summer CTmin 36 24.75 ± 6.67 13-36 0.15 ± 0.15 0-1 21.0
Winter CTmin 36 26.17 ± 6.88 12-38 0.46 ± 0.39 0-1 16.0

P arechinus
angulosus Invertebrate

Rocky
shore Widespread Summer CTmax 36 39.83 ± 4.61 26-49 13.95 ± 4.35 7-27 21.0

Winter CTmax 36 40.69 ± 3.60 35-50 31.56 ± 7.76 20-54 16.0
Summer CTmin 36 39.54 ± 3.92 31-48 13.19 ± 4.40 4-22 21.0
Winter CTmin 36 42.72 ± 4.33 34-52 15.85 ± 4.08 8-25 16.0
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Rocky
P ern a  p ern a Invertebrate shore Widespread Summer C T m a x  

Winter C T m a x  

Summer C T m in 

Winter C T m in

C helon
dum erili Fish Estuarine Warm-water Summer C T m a x

Winter C T m a x

Summer C T m in  

Winter C T m in

R habdosargus
holubi Fish Estuarine Warm-water Summer C T m a x  

Winter C T m a x  

Summer C T m in

Winter C T m in

C helon
richardsonii Fish Estuarine Cool-water Summer C T m a x  

Winter C T m a x  

Summer C T m in  

Winter C T m in

C haetodon Estuarine/
m arleyi Fish subtidal Tropical Summer C T m a x  

Summer C T m in

C libanarius
virescens Invertebrate Estuarine Tropical Summer C T m a x  

Winter C T m a x  

Summer C T m in  

Winter C T m in



36 79.31 ± 12.27 28-95 18.61 ±6.02 8-36 21.0
36 70.81 ± 8.00 57-90 30.64 ±9.04 13-54 16.0
36 76.75 ±8.17 59-93 17.21 ±5.19 8-30 21.0
36 79.61 ± 8.09 63-93 20.18 ± 6.15 11-37 16.0

12 83.50 ± 18.92 
116.08 ±

60-111 6.45 ± 6.03 1-23 22.0

12 29.06 
135.67 ±

80-150 11.87 ± 8.54 4-24 16.0

12 22.63 70-180 20.10 ± 8.62 2-36 22.0
12 97.25 ± 20.04 68-132 6.60 ±4.29 0-16 16.0

12 64.42 ± 18.08 31-85 8.06 ±7.35 2-27 22.0
12 67.50 ±27.22 43-117 6.78 ±7.14 0-12 16.0
12 60.75 ± 11.82 45-88 2.81 ± 1.21 

13.45 ±
1-5 22.0

12 65.67 ±34.30 40-116 16.40 1-47 16.0

12 54.00 ±5.20 44-60 1.04 ±0.25 0-1 18.0
12 118.25 ±9.12 106-132 12.92 ±2.50 9-13 18.0
12 65.33 ± 15.31 44-83 2.50 ±2.02 0-4 18.0
12 86.25 ± 24.04 61-123 6.98 ±5.57 0-20 18.0

28 33.47  ±9.49 18-45 1.65 ± 1.66 0-5 23.0
25 48.07 ±7.65 30-61 2.33 ± 1.72 0-5 23.0

36 21.28 ±5.60 12-35 0.41 ±0.29 0-1 21.0
36 20.94 ±9.26 5-48 0.76 ±0.85 0-4 17.0
36 21.58 ±5.63 12-32 0.91 ± 1.59 0-10 21.0
36 14.25 ±3.50 8-22 0.49 ±0.33 0-1 17.0
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P arasesarm a
catenatum Invertebrate Estuarine Widespread Summer C T m a x

Winter C T m a x  

Summer C T m in 

Winter C T m in

U pogebia
africana Invertebrate Estuarine Widespread Summer C T m a x

Winter C T m a x  

Summer C T m in  

Winter C T m in



36 18.03 ±3.15 11-24 1.66 ±0.85 0-5 21.0
36 18.33 ±3.27 11-23 1.55 ±0.92 0-4 17.0
36 19.33 ±3.49 13-29 1.84 ± 1.09 0-4 21.0
36 17.89 ± 3.13 11-22 1.69 ± 1.07 0-4 17.0

36 36.18 ± 6.12 24-48 0.57 ±0.29 0-1 21.0
36 46.78 ± 8.45 30-73 1.13 ±0.58 0-3 17.0
36 37.39 ±5.46 24-47 0.87 ± 1.67 0-11 21.0
36 42.36 ±7.08 30-58 2.59 ±2.04 1-8 17.0
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3.2.4 Dynamic method (CT max and CTmin)

The dynamic method used to determine thermal tolerance was the critical thermal maximum 

(CTmax) (upper thermal limit) and critical thermal minimum (CTmin) (lower thermal limit). 

Once the acclimation period was completed, each treatment tank was exposed either to a 

constant rate of temperature increase (CTmax) or decrease (CTmin) by 1.0 °C. hour-1, using a 

combination of a submerged hot rod (heater reaching 100.0 °C, Metalquip, The Hot Rod) or 

chiller (Hailea, HS-90 A), or cold finger (Lauda ETLC-30, Germany) and the temperature 

control room air conditioner. This heating rate of 1°C.hour-1 was also selected based on the 

findings of Mora and Maya (2006) who found that increasing or decreasing from an 

intermediate heating rate of ~1.0 °C.hour-1 as opposed to rapid or slow heating rates was 

successful for several marine ectotherms, resulting in this heating rate being preferred in 

thermal tolerance studies. The vitality of the animals was checked hourly until the experimental 

specimens reached either their upper or lower thermal endpoint respectively, after which the 

specimens were placed in a recovery tank.

The endpoint of each experiment (CTmax and CTmin) in fish was measured by a loss of 

equilibrium (LOE) (Cowles and Bogert, 1944; Becker and Genoway, 1979; Lutterschmidt and 

Hutchison, 1997a, 1997b). Behaviour of the fish was noted every hour during the experiments. 

Fish behaviour indicative of temperature stress included aggressive behaviour (fish chasing or 

biting another fish), disorientated swimming, gulping at the water surface and swimming into 

the sides of the tank (van der Vyver et al., 2013).

The endpoint of each experiment (CTmax and CTmin) in macro-invertebrates was measured by

a loss of righting response according to the methods of Collin et al. (2016), in which animals

were stimulated with a plastic tweezer and flipped upside down until they were able to right

themselves in an upright position (P. angulosus, P. catenatum). The righting response was

measured by recording the time it took for the individual to return to its upright position using

a stopwatch. Measurements were taken every second hour for both treatment and control

specimens throughout the experiments. For P. angulosus a maximum period of 20 minutes

(Collin et al., 2016) and for P. catenatum a maximum period of one minute was allowed for

righting response to occur (Hopkin et al., 2006). The CTmax / CTmin was considered to be the

highest/lowest temperature at which the animal was unable to right itself. The endpoint for P.

perna was measured by a loss of gaping (Anestis et al., 2007). Here, the posterior mantle edge
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or siphons were rubbed gently with a pair of plastic tweezers. If the tactile stimulation did not 

elicit a valve closure response, the mantle edges and siphons were more vigorously probed. If 

this more vigorous tactile stimulation still did not elicit valve closure, the individual was 

considered to have reached its endpoint. The endpoint for C. virescens was measured by the 

complete emersion of crab from its shell, according to Bertness (1981). When stimulated with 

tweezers, if  it did not retreat back into its shell, it was considered to have reached its endpoint. 

The endpoint for U. africana and P. peringueyi was marked by a collapse of the animal when 

they rolled over onto their sides. Sometime after collapse, the time varying with the degree of 

stress, the scaphognathite (thin leaf-like appendage of the second maxilla of decapod 

crustaceans) beat ceased (Hill and Allanson, 1971).

3.2.5 Physical measurements

During CTmax and CTmin experimental trials, temperature (°C), oxygen (%) and pH were 

monitored every hour with a hand-held multi-parameter probe (Aqualytic water parameter, 

United Scientific, Germany). The temperatures in the tanks were also measured continuously 

using Ibuttons. Salinity was measured every hour with a hand-held refractometer (Hannah 

Instruments, Germany). At the beginning, during (every fourth hour), and end of the 

experimental trials, water quality measurements (nitrate and ammonia) were taken (Salifert 

Test Kit).

To prevent any additional handling stress, the length and weight of all specimens were recorded

at the end of the trials using a slide calliper (to the closest 0.01 mm) and a scale (AEADAM,

PGL 2002, 0.01 g) respectively. Weight was recorded as living/whole weight (g), with no roe

removed. No soft tissues were removed, but rather the organism was weighed as a whole (g).

Standard length (mm, SL) and wet weight (g) were measured for all fish (Eme et al., 2011).

For the mussel, P. perna, the total shell length (mm TL) was measured from the posterior

margin of the shell to the anterior tip of the umbo (McMahon and Ussery, 1995). Shell weight

was measured by draining the mantle cavity water. For the sea urchin, P. angulosus, the

maximum total height (mm TL) and maximum total width (mm TL) were recorded

(Siikavuopio et al., 2006; Peck et al., 2009; Collin et al., 2016). Palaemonperingueyi and U.

africana were measured using total length (mm TL), which started at the tip of the rostrum and

extended to the tip of the tail (Hill and Allanson, 1971; Allan et al., 2006) and whole wet weight

was further recorded (g). For P. catenatum, the widest part of the body (width of carapace) was
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measured from the tip of the spine to the other tip of the spine (mm TL) of the carapace 

(Cuculescu et al., 1998; Hopkin et al., 2006) and whole wet weight was also recorded (g). For 

C. virescens, each hermit crab was removed from its shell by heating the apex with a flame and 

measured from apex to siphonal canal (cephalothorax length) with callipers (nearest 0.1 mm) 

and wet weight was measured (g) (Bertness, 1981). Fish and macro-invertebrate individuals 

were then euthanized using an overdose (> 0.2 ml. L-1) of clove oil.

3.2.6 Data analysis

The upper (CTmax) and lower (CTmin) thermal limits for each species were calculated as the 

arithmetic mean of the collective thermal points at which the endpoint is reached using the 

following equation:

CTmax /  CTmin (species) = £  (Tend-point n)/n

where Tend-point is the temperature at which the endpoint was reached for each individual, 

and n stands for sample size. To determine intraspecific variability of CTmax and CTmin for each 

season, the coefficient of variation (in percentage) was calculated for each species:

%CV = (SD/Mean CTmax/CTmm) x 100

Thermal scope or thermal resistance range was estimated for each species (CTmax -  CTmin) for 

summer and winter (Portner and Farrell, 2008). Upper (CTmax -  acclimation temperature) and 

lower (acclimation temperature -  CTmin) breadth in tolerance for each species across seasons 

was also calculated to determine which season each species may be more at risk of exceeding 

their critical thermal limits (Shultz et al., 2016). A small breadth in tolerance indicates that a 

species may be at risk to warmer or cooler temperatures in a given season (Shultz et al., 2016). 

Thermal safety margins (TSM) of each species across summer (summer CTmax -  summer 

maximum environmental temperature) and winter months (winter minimum environmental 

temperature - winter CTmin) were also calculated. Positive TSM values indicate that 

environmental temperatures do not exceed tolerance limits. Negative values indicate that 

present-day environmental temperatures currently exceed tolerance limits.

T-tests were performed for each fish and macro-invertebrate species to compare CTmax, CTmin, 

thermal scope, upper breadth in tolerance, and lower breadth in tolerance between seasons
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(summer and winter). In addition, two-way repeated measures ANOVA tests of P. angulosus’ 

righting response for CTmax (summer and winter) and CTmin (summer and winter) between 

treatment and control groups; temperature intervals; and treatment and control groups versus 

temperature intervals were performed. Significant results were further tested using Holm-Sidak 

post hoc comparisons. All data analysis was performed in SigmaPlot 12.5 except where 

otherwise specified. Normality of distributions was tested using a Shapiro-Wilk test and 

homoscedasticity was tested using the Levene’s test. When the normality and homogeneity 

assumptions were not satisfied, Mann-Whitney U tests were performed in place of the 

parametric tests.

3.3 RESULTS

3.3.1 Rocky shore species

3.3.1.1 Fishes

3.3.1.1.1 Diplodus capensis

The CTmax (34.9 °C summer, 33.2 °C winter) and the CTmin (8.0 °C summer, 6.5 °C winter) of 

the temperate blacktail D. capensis differed significantly between seasons (Figure 3.3a, Table 

3.2). Intraspecific variability (% CV) was low for CTmax for both summer (1.6%) and winter 

(0.6%), and intraspecific variability for CTmin was higher for summer (2.5%) than winter 

(0.9%) (Table 3.4). The thermal scope in tolerance between seasons for both upper (14.5 °C 

summer, 17.2 °C winter) and lower (12.0 °C summer, 9.5 °C winter) thermal scope was 

significantly different (Table 3.2, Table 3.5). The maximum summer environmental 

temperature of 25.1 °C in the low shore rock pool did not exceed the summer CTmax of D. 

capensis (34.5 °C), resulting in a positive upper TSM of 9.4 °C (Table 3.5). The minimum 

winter environmental temperature of 13.2 °C was higher than the winter CTmin (6.5 °C) of D. 

capensis, resulting in a positive lower TSM of 6.7 °C (Table 3.5). The CTmax was higher than 

the maximum temperature predicted for 2100 (Figure 3.3a).
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3.3.1.1.2 Sarpa salpa

The CTmax of the temperate strepie S. salpa, differed significantly between seasons, with CTmax 

approximately 1.5 °C higher in summer (33.9 °C) than in winter (32.4 °C) (Figure 3.3b, Table 

3.2). The CTmin differed significantly between seasons, with CTmin 0.7 °C higher in summer 

(7.8 °C) than in winter (7.1 °C) (Figure 3.3b, Table 3.2). Intraspecific variability for CTmin was 

very low for both seasons (0% for summer and winter) compared with CTmax for both seasons 

(1.1% summer, 0.8% winter) (Table 3.4). Thermal scope for S. salpa was significantly higher 

in summer (26.1 °C) than in winter (25.3 °C) (Table 3.2, Table 3.5). The summer CTmax (33.9 

°C) was higher than the maximum summer environmental temperature of 25.1 °C, resulting in 

a positive upper TSM of 8.8 °C (Table 3.5). The winter CTmin (7.1 °C) was lower than the 

minimum winter environmental temperature of 13.2 °C, resulting in a positive lower TSM of

6.1 °C (Table 3.5). The maximum temperature predicted for 2100 was lower than the CTmax 

(Figure 3.3b).

3.3.1.1.3 Kuhlia mugil

The CTmax (37.8 °C summer, 37.1 °C winter), CTmin (8.7 °C summer, 8.2 °C winter), thermal 

scope (29.1 °C summer, 28.9 °C winter), upper breadth in tolerance (17.8 °C summer, 19.1 °C 

winter) and the lower breadth in tolerance (11.3 °C summer, 9.8 °C winter) of the tropical 

barred flagtail K. mugil did not differ significantly between seasons (Table 3.2, Table 3.5). 

Intraspecific variability was very low for CTmax (0.3%) in summer and winter (0.6%), and 

CTmin (1.8%) in summer was low compared with CTmin (2.5%) in winter (Table 3.4). The 

maximum summer environmental temperature of 25.1 °C did not exceed the summer CTmax of 

K. mugil (37.8 °C), resulting in a very high positive upper TSM of 12.7 °C (Table 3.5). The 

minimum winter environmental temperature (13.2 °C) was higher than the winter CTmin (8.2 

°C), resulting in a positive lower TSM of 5.0 °C (Table 3.5). CTmax (37.8 °C summer, 37.1 °C 

winter) was higher than the maximum temperature (26.9 °C) predicted for 2100 (Figure 3.3c).
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3.3.1.2 Macro-invertebrates

3.3.1.2.1 Palaemon peringueyi

The CTmax and CTmin of the widespread caridean shrimp P. peringueyi differed significantly 

between seasons, with CTmax 0.8 °C higher in summer (35.7 °C) than in winter (34.9 °C); and 

CTmin 1 °C lower in winter (3.7 °C) than in summer (4.7 °C) (Figure 3.3d, Table 3.2). 

Intraspecific variation for CTmax (1.4%) in summer was similar to the CTmax (1.5%) in winter, 

and the same trend was observed for CTmin (4.1% summer, 4.2% winter) (Table 3.4). For both 

upper and lower breadth in tolerance there was a significant difference between seasons, with 

upper breadth in tolerance 4.2 °C higher in winter (18.9 °C) than in summer (14.7 °C); and 

lower breadth in tolerance 4°C higher in summer (16.3 °C) than in winter (12.3 °C) (Table 3.2, 

Table 3.5). The winter CTmin (3.7 °C) was lower than the minimum winter environmental 

temperature of 13.2 °C, resulting in a positive lower TSM of 9.5 °C (Table 3.5). The CTmax 

was higher than the maximum temperature predicted for 2100 (Figure 3.3d).

3.3.1.2.2 Parechinus angulosus

For the widespread and sedentary Cape sea urchin P. angulosus, CTmax (31.3 °C summer, 27.0 

°C winter), CTmin (7.9 °C summer, 4.5 °C winter), thermal scope (23.4 °C summer, 22.5 °C 

winter), upper breadth in tolerance (10.3°C summer, 11.0 °C winter) and lower breadth in 

tolerance (13.1 °C summer, 11.5 °C winter) were all significantly different between seasons (p 

< 0.01), with summer being higher than winter, except for the upper breadth in tolerance where 

winter was higher than summer (Figure 3.3e, Table 3.2, Table 3.5). Parechinus angulosus had 

a low intraspecific variation for CTmin in summer (2.7%) and a high CTmin (3.4%) in winter 

(Table 3.4). CTmax intraspecific variation was low for both summer (0.7%) and winter (0%) 

(Table 3.4). The maximum summer environmental temperature of 25.1 °C in the rock pool did 

not exceed the summer CTmax (31.3 °C) of P. angulosus, resulting in a positive upper TSM of

6.2 °C (Table 3.5). The minimum winter environmental temperature of 13.2 °C was higher than 

the winter CTmin (4.5 °C) for P. angulosus, resulting in a positive lower TSM of 8.7 °C (Table 

3.5). The CTmax for winter (27 °C) was at the maximum temperature predicted for summer in 

2100 (26.9 °C) (Figure 3.3e).
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3.3.1.2.3 P erna  p ern a

For the widespread and sedentary brown mussel P. perna, CTmax (38.9 °C summer, 37.9 °C 

winter), CTmin (4.3 °C summer, 4.0 °C winter), thermal scope (34.6 °C summer, 34.0°C winter), 

upper breadth in tolerance (17.9 °C summer, 21.9 °C winter) and lower breadth in tolerance 

(16.7°C summer, 12.0 °C winter) were all significantly different between seasons (p < 0.01), 

with summer being higher than winter, except for the upper breadth in tolerance, where winter 

was higher than summer (Figure 3.3f, Table 3.2). Intraspecific variability for CTmin in summer 

(3.4%) and winter (4.7%) was high and intraspecific variability for CTmax in summer (0.5%) 

and winter (0.6%) was low (Table 3.4). The maximum summer environmental temperature of

25.1 °C did not exceed the summer CTmax (38.9 °C), resulting in a positive upper TSM of 13.8 

°C (Table 3.5). The minimum winter environmental temperature of 13.2 °C was 9.2 °C higher 

than the winter CTmin (4 °C), resulting in a positive lower TSM (Table 3.5). CTmax was higher 

than the maximum temperature predicted for 2100 (Figure 3.3f).
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Figure 3.3. Critical thermal limits of rocky shore fish species: (a) D ip lodus capensis, (b) Sarpa salpa, (c) K uhlia  m ug il; and macro-invertebrates: (d) P alaem on  
p eringuey i, (e) P arechinus angulosus, ( f  P erna  p ern a  acclimated in laboratory conditions in the summer (20.0 - 21.0 °C) and winter (16.0 - 18.0°C). Letters 
(a) and (b) denote significant differences in CTmax / CTmin between seasons for each species. Error bars represent ± SD. A solid horizontal line indicates minimum 
water temperature recorded in winter (13.2 °C). A dashed horizontal line indicates maximum water temperature recorded in summer (25.1 °C). A dotted 
horizontal line represents potential maximum water temperatures in the rock pool in 2100 [maximum summer temperatures plus the Inter-Governmental Panel 
on Climate Change (IPCC, 2014) decadal increase in sea surfaces temperatures (0.2 °C per decade x 9 decades = 1.8 °C)]. Horizontal line bar graphs represent 
temperate biogeographic affinity; diamond bar graphs represent tropical biogeographic affinity, and no patterned bar graphs represent widespread distributions.
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Table 3.2. Results of Mann-Whitney U tests comparing the seasonal variation (summer vs winter) in thermal scope (CTmax -  CTmin), CTmax, upper 
breadth in tolerance (CTmax -  acclimation temperature), CTmin, and lower breadth in tolerance (acclimation temperature -  CTmin) of rocky shore 
fish and macro-invertebrate species. Significant differences indicated in bold whenp  < 0.05.

D iplodus capensis Sarpa salpa K uhlia m ugil Palaemon peringueyi Parechinus angulosus Perna perna
Mann Mann Mann Mann Mann Mann

Whitney Whitney Whitney Whitney Whitney Whitney
Variable Season N U p N U p N U p N U p N U p N U p
Thermal
scope summer

winter
CTmax

Upper 
breadth in

summer
winter

tolerance summer
winter

CTmin

Lower 
breadth in

summer
winter

tolerance summer
winter

6 11.50 0.31
6
6 0.00 < 0.01

6

6 0.00 < 0.01

6
6 0.00 < 0.01

6

6 0.00 < 0.01

6

3 0.00 0.02

6
3 0.00 0.02

6

3 1.00 0.05

6
3 0.00 0.02

6

3 0.00 0.02

6

3 2.00 0.10
3
3 0.00 0.10
3

3 0.00 0.10
3
3 0.00 0.10
3

3 0.00 0.10
3

18 113.00 0.12
18
18 31.50 < 0.01

18

18 0.00 < 0.01

18
18 0.00 < 0.01

18

18 0.00 < 0.01

18

18 0.00 < 0.01

18
18 0.00 < 0.01

18

18 0.00 < 0.01

18
18 0.00 < 0.01

18

18 0.00 < 0.01

18

18 31.50 < 0.01

18
18 0.00 < 0.01

18

18 0.00 < 0.01

18
18 36.00 < 0.01

18

18 0.00 < 0.01

18
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3.3.2 Estuarine species

3.3.2.1 Fishes

3.3.2.1.1 Chelon dumerili

The CTmax and CTmin of the warm-water groovy mullet C. dumerili differed significantly 

between seasons, with CTmax 2 °C higher in summer (37.7 °C) than in winter (35.6 °C); and 

CTmin 4 °C higher in summer (9.3 °C) than in winter (5.3 °C) (Figure 3.4b, Table 3.3). 

Intraspecific variability of CTmin in summer (1.1%) was lower than in winter (2.9%), and 

intraspecific variability of CTmax for both summer (1.1%) and winter (1.8%) was both relatively 

low (Table 3.4). Thermal scope for C. dumerili was significantly greater in winter (30.3 °C) 

than in summer (28.4 °C) (Table 3.3, Table 3.5). In addition, there were significant differences 

in upper (15.7 °C summer, 19.6 °C winter) and lower (12.7 °C summer, 10.7 °C winter) breadth 

in tolerances between seasons for this species (Table 3.3, Table 3.5). The summer CTmax (37.6 

°C) exceeded the maximum summer environmental temperature of 30.1 °C in the estuarine 

habitat, resulting in a positive upper TSM of 7.6 °C (Table 3.5). Furthermore, the winter CTmin 

(5.3 °C) was below the minimum winter environmental temperature of 12.2 °C, resulting in a 

positive TSM of 6.9 °C (Table 3.5).

3.3.2.1.2 Rhabdosargus holubi

For the warm-water Cape stumpnose R. holubi, the CTmax was significantly higher in summer 

(35.6 °C) than in winter (32.3 °C), with the winter CTmax relatively close to the maximum 

summer temperature predicted for 2100 (31.9 °C) (Figure 3.4c, Table 3.3). Moreover, CTmin 

was significantly higher in summer (8.1 °C) than in winter (5.8 °C) (Figure 3.4c, Table 3.3). 

Intraspecific variations of CTmin and CTmax in winter (2.3%; 2.2%, respectively) were higher 

than in summer (0.0%; 0.4%, respectively) (Table 3.4). The thermal scope was significantly 

higher in the summer (27.5 °C) than in winter (26.5 °C) (Table 3.4, Table 3.5). Additionally, 

the upper breadth in tolerance in summer (17.6 °C) was 3.3 °C, significantly higher than in 

winter (14.3 °C) and the lower breadth in tolerance in winter (12.2 °C) was 2.3 °C, significantly 

higher than in summer (9.9 °C) (Table 3.3, Table 3.5). The maximum summer environmental 

temperature of 30.1 °C did not exceed the summer CTmax (35.6 °C), resulting in a positive upper
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TSM of 5.5 °C (Table 3.5). The minimum winter environmental temperature of 12.2 °C was 

above the winter CTmin (5.8 °C), resulting in a positive lower TSM of 6.3 °C (Table 3.5).

3.3.2.1.3 Chelon richardsonii

The CTmax and CTmin of the cool-water southern mullet C. richardsonii were significantly 

higher in summer (34.9 °C CTmax, 5.7 °C CTmin) than in winter (34 °C CTmax, 4.6 °C CTmin) 

(Figure 3.4a, Table 3.4). Intraspecific variation for CTmin in summer (1.0%) and winter (1.8%) 

was very similar and intraspecific variation for CTmax was lower in winter (0.2%) than in 

summer (0.4%) (Table 3.4). Moreover, the upper breadth in tolerance was significantly higher 

in winter (18.0 °C) than in summer (12.9 °C) and the lower breadth in tolerance was 

significantly higher in summer (16.4 °C) than in winter (11.4 °C) (Table 3.3, Table 3.5). The 

maximum summer environmental temperature of 30.1°C did not exceed the summer CTmax 

(34.9 °C), resulting in a positive upper TSM of 4.8 °C (Table 3.5). The CTmax for both seasons 

(34.9 °C summer, 34.0 °C winter) was relatively close to the maximum temperature predicted 

for 2100 (31.9 °C) (Figure 3.4a).

3.3.2.1.4 Chaetodon marleyi

The tropical doublesash butterflyfish C. marleyi was only caught during summer and had a 

CTmax of 35.2 °C and a CTmin of 11.2 °C, with CTmin being higher than the other species (Figure 

3.4d). Intraspecific variation for CTmax in summer was high (1.7%) and intraspecific variation 

for CTmin in summer was very high (3.6%) (Table 3.4). The maximum summer environmental 

temperature of 30.1 °C did not exceed the summer CTmax, resulting in a positive upper TSM of

5.1 °C (Table 3.5). The minimum winter environmental temperature of 12.2 °C was one degree 

below the summer CTmin (Figure 3.4d).

3.3.2.2 Macro-invertebrates

3.3.2.2.1 Clibanarius virescens

The CTmax for the tropical yellow-banded hermit crab C. virescens was 0.3 °C significantly 

higher in winter (38.6 °C) than in summer (38.3 °C), and CTmin was 1.6 °C significantly higher 

in summer (5.6 °C) than in winter (4.0 °C) (Figure 3.4e, Table 3.3). Intraspecific variation for
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CTmin in winter was high (4.4%) compared with summer, which was low (0.9%); and 

intraspecific variation for CTmax in winter (0.4%) was higher than in summer (0.1%) by 0.3% 

(Table 3.4). The thermal scope (32.7 °C summer, 34.6 °C winter), upper breadth in tolerance 

(17.3 °C summer, 21.6 °C winter) and lower breadth in tolerance (15.4 °C summer, 13.03 °C 

winter) were significantly different between seasons (Table 3.3, Table 3.5). The maximum 

summer environmental temperature of 30.1 °C did not exceed the summer CTmax of 38.3 °C 

and the minimum winter environmental temperature of 12.2 °C was above the CTmin of 4 °C, 

resulting in a positive upper and lower TSM of 8.2 °C (Table 3.5). The CTmax was above the 

maximum temperatures predicted for 2100 (31.9 °C) and CTmin was below the minimum 

temperatures observed during the study period (Figure 3.4e).

3.3.2.2.2 Parasesarma catenatum

For the widespread crab P. catenatum, CTmax (39.8 °C summer, 39.2 °C winter), CTmin (6.0 °C 

summer, 4.9 °C winter), thermal scope (33.8 °C summer, 34.3 °C winter), upper breadth in 

tolerance (18.8 °C summer, 22.2 °C winter) and lower breadth in tolerance (15.0 °C summer,

12.1 °C winter) were all significantly different between seasons (p < 0.01), with summer being 

higher than winter, except for thermal scope and upper breadth in tolerance where winter was 

higher than summer (Figure 3.4f, Table 3.3, Table 3.5). Intraspecific variation during summer 

and winter was very low for both CTmax (0.3% summer, 0.4% winter) and CTmin (0.0% summer, 

1.7% winter) (Table 3.4). The CTmax in summer (39.8 °C) exceeded the maximum summer 

environmental temperature of 30.1 °C, resulting in a positive upper TSM of 9.7 °C (Table 3.5). 

The maximum temperature predicted for 2100 (31.9 °C) was lower than this species CTmax 

(39.8 °C summer, 39.2 °C winter) (Figure 3.4f).

3.3.2.2.3 Upogebia africana

For the widespread estuarine mud prawn U. africana, CTmax (38.3 °C summer, 36.2 °C winter), 

CTmin (6.0 °C summer, 4.5 °C winter), thermal scope (32.3 °C summer, 31.7 °C winter), upper 

breadth in tolerance (17.3 °C summer, 19.2 °C winter) and lower breadth in tolerance (15.0 °C 

summer, 12.5 °C winter) were all significantly different between seasons (p < 0.01) (Figure 

3.4g, Table 3.3, Table 3.5). Intraspecific variation for both CTmin and CTmax in winter (2.0% 

CTmin, 0.9% CTmax) was higher than in summer (0.0% CTmin, 0.1% CTmax) (Table 3.4). The
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maximum summer environmental temperature of 30.1 °C did not exceed the summer CTmax 

(38.3 °C) and the minimum winter environmental temperature of 12.2 °C was above the CTmin 

(4.5°C), resulting in a positive upper TSM of 8.2 °C and a positive lower TSM of 7.6 °C (Table 

3.5).
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Figure 3.4. Critical thermal limits of estuarine fish species: (a) C helon dum erili, (b) C helon richardsonii, (c) R habdosargus ho lubi, (d) C haetodon m arley i; and 
macro-invertebrates: (e) C libanarius virescens, (f) P arasesarm a catenatum , (g) U pogebia a fricana  acclimated in laboratory conditions in the summer (18.0 -  
23.0 °C) and winter (16.0 - 18.0 °C). Letters (a) and (b) denote significant differences in CTmax and CTmin between seasons for each species. Error bars represent 
± SD. A solid horizontal line indicates minimum water temperature in winter (12.2 °C). A dashed horizontal line indicates maximum water temperature in 
summer (30.1 °C). A dotted horizontal line represents potential maximum water temperatures in the estuary in 2100 [maximum summer temperatures plus the 
Inter-Governmental Panel on Climate Change (IPCC, 2014) decadal increase in sea surface temperatures (0.2 °C per decade x 9 decades = 1.8 °C)]. Dotted bar 
graphs represent warm-water biogeographic affinity; diagonal bar graphs represent cool-water biogeographic affinity; diamond bar graphs represent tropical 
biogeographic affinity, and no patterned bar graphs represent widespread distributions.
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Table 3.3. Results of Mann-Whitney U tests comparing the seasonal variation (summer vs winter) in thermal scope (CTmax -  CTmin), CTmax, upper 
breadth in tolerance (CTmax -  acclimation temperature), CTmin, and lower breadth in tolerance (acclimation temperature -  CTmin) of estuarine fish 
and macro-invertebrate species. Significant differences indicated in bold whenp  < 0.05.

Chelon dumerili Chelon richardsonii Rhabdosargus holubi Clibanarius virescens Parasesarm a catenatum Upogebia africana
Mann Mann Mann Mann Mann Mann

Variable Season N
Whitney

U p N
Whitney

U p N
Whitney

U p N
Whitney

U p N
Whitney

U p N
Whitney

U p
Thermal
scope summer 6 0.00 < 0.01 6 9.50 0.18 6 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01

winter 6 6 6 18 18 18
CTmax summer 6 0.00 < 0.01 6 0.00 < 0.01 6 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01

winter 6 6 6 18 18 18
Upper 
breadth in 
tolerance summer 6 0.00 < 0.01 6 0.00 < 0.01 6 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01

winter 6 6 6 18 18 18
CTmin summer 6 0.00 < 0.01 6 0.00 < 0.01 6 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01

winter 6 6 6 18 18 18
Lower 
breadth in 
tolerance summer 6 0.00 < 0.01 6 0.00 < 0.01 6 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01 18 0.00 < 0.01

winter 6 6 6 18 18 18
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Table 3.4. The intraspecific variability of CTmax and CTmin for both summer and winter given by the coefficient of variation (in percentage) for a 
range of rocky shore and estuarine fish and macro-invertebrate species.

Summer Winter
Species CTmax CV (%) CTmin CV (%) CTmax CV (%) CTmin CV (%)

Diplodus capensis 1.6 2.5 0.6 0.9
Sarpa salpa 1.1 0.0 0.8 0.0
Kuhlia mugil 0.3 1.8 0.6 2.5
Palaemon peringueyi 1.4 4.1 1.5 4.2
Parechinus angulosus 0.7 2.7 0.0 3.4
Perna perna 0.5 3.4 0.6 4.7
Chelon dumerili 1.1 1.1 1.8 2.9
Chelon richardsonii 0.4 1.0 0.2 1.8
Rhabdosargus holubi 0.4 0.0 2.2 2.3
Chaetodon marleyi 1.7 3.8 - -
Clibanarius virescens 0.1 0.7 0.4 4.4
Parasesarma catenatum 0.3 0.0 0.4 1.7
Upogebia africana 0.1 0.0 0.9 2.1
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Table 3.5. Seasonal observations in thermal scope (°C), upper and lower breadth in tolerance (°C), and upper and lower thermal safety margins 
(TSM) (°C) for rocky shore and estuarine fish and macro-invertebrate species.

Summer Winter

species
Thermal

scope

Upper 
breadth in 
tolerance

Lower 
breadth in 
tolerance

Upper
TSM

Thermal
scope

Upper 
breadth in 
tolerance

Lower 
breadth in 
tolerance

Lower
TSM

Diplodus capensis 26.5 14.5 12.0 9 4 26.7 17.2 9.5 6.7
Sarpa salpa 26.1 13.9 12.2 8. 8 25.3 14.4 10.9 6.1
Kuhlia mugil 29.1 17.8 11.3 12.7 28.9 19.1 9.8 5.0
Palaemon peringueyi 31.0 14.7 16.3 10.6 31.2 18.9 12.3 9.5
Parechinus angulosus 23.4 10.3 13.1 6.2 22.5 11.0 11.5 8.7
Perna perna 34.6 17.9 16.7 13 .8 34.0 21.9 12.0 9.2
Chelon dumerili 28.4 15.7 12.7 7. 6 30.3 19.6 10.7 6.9
Chelon richardsonii 29.3 12.9 16.3 4. 8 29.4 18.0 11.4 7.6
Rhabdosargus holubi 27.5 17.6 9.9 5. 5 26.5 14.3 12.2 6.3
Chaetodon marleyi 24.0 12.2 11.8 5. 1 - - - -
Clibanarius virescens 32.7 17.3 15.4 8.2 34.6 21.6 13.0 8.2
Parasesarma catenatum 33.8 18.8 15.0 9. 7 34.3 22.2 12.1 7.3
Upogebia africana 32.3 17.3 15.0 8 2 31.7 19.2 12.5 7.6

62



3.3.3 Fish behaviour

Approximately three hours prior to fish reaching their upper and lower thermal limits 

(characterized by disorientated swimming and a loss of equilibrium), all fish species began 

displaying aggressive behaviour, which included biting and chasing the other individuals in the 

tank (Table 3.6). Roughly by the second last hour prior to reaching their thermal limits for both 

CTmax and CTmin experiments (summer and winter), all fish species, in addition to displaying 

aggressive behaviour, began showing signs of disorientation by swimming into the sides of the 

tank and coming to the surface of the tank where increased gulping was observed (Table 3.6). 

For the last hour of the CTmax experiments, all fish species displayed disorientated swimming, 

increased gulping at the water surface, and finally a loss of equilibrium at the surface (Table 

3.6). Furthermore, within the last hour of the experiments, it was observed that all specimens 

for both mullet species shed more scales from the epidermal layer of the skin than the other 

fish species, and some individuals, particularly C. dumerili, would jump out from the treatment 

tanks (Table 3.6). During the last hour of the CTmin experiments, all specimens of all fish 

species almost went into a state of dormancy, where swimming was minimal and was limited 

to the bottom of the tank where they would finally lose equilibrium (Table 3.6).

3.3.4 M acro-invertebrate righting response

Righting response was measured for P. catenatum and P. angulosus, while the other macro­

invertebrates such as P. perna, P. peringueyi, U. africana and C. virescens were checked hourly 

for their endpoint behaviours. For P. catenatum, during each measurement (every two hours), 

specimens were able to right themselves within two seconds of being flipped upside down 

(treatment and control). When the specimens within the treatment plastic containers were 

unable to right themselves after a minute, they were considered to have reached their upper and 

lower thermal limits. These observations were consistent for both CTmax (summer and winter) 

and CTmin (summer and winter). For P. angulosus, for both CTmax (summer and winter) and 

CTmin (summer and winter) treatments (n =18), the time it took the specimens to right 

themselves during each measurement (every two hours) increased with both an increase and 

decrease in temperature. For the control specimens (n = 18), however, time remained fairly 

consistent and low (approximately three minutes) for each measurement (Figure 3.5). In 

addition, the results of the two-way repeated measures ANOVA for CTmax (summer and winter)

and CTmin (summer and winter) between treatment and control groups; temperature intervals;
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and treatment and control groups versus temperature intervals all revealed significant 

differences in righting response time for P. angulosus (Figure 3.5, Table 3.7).
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Table 3.6. Behavioural observations and the associated temperatures of rocky shore and estuarine fish species with the last three hours of either 
CTmax or CTmin experiments for both summer and winter.

Species

Hour 
prior to 

limit
Behaviour at

CTmax

Summer
temperature

(°C)

Winter
temperature

(°C)
Behaviour at

CTmin

Summer
temperature

(°C)

Winter
temperature

(°C)
D ip lodus capensis 3 AG 32.0 31.0 AG 6.0 5.0

2 AG, DS 33.0 32.0 AG, DS 7.0 6.0
1 DS, IG, LOE 34.5 33.2 SD, LOE 8.0 6.5

Sarpa  sa lpa 3 AG 32.0 30.0 AG 6.0 5.0
2 AG, DS 33.0 31.0 AG, DS 7.0 6.0
1 DS, IG, LOE 33.9 32.4 SD, LOE 7.8 7.1

K uhlia  m ugil 3 AG 36.0 35.0 AG 7.0 6.0
2 AG, DS 37.0 36.0 AG, DS 8.0 7.0
1 DS, IG, LOE 37.8 37.1 SD, LOE 8.7 8.2

C helon dum erili 3 AG 35.0 34.0 AG 7.0 3.0
2 AG, DS 36.0 35.0 AG, DS 8.0 4.0
1 DS, IG, LS, LOE 37.7 35.6 SD, LS, LOE 9.3 5.3

C helon richardsonii 3 AG 33.0 32.0 AG 4.0 3.0
2 AG, DS 34.0 33.0 AG, DS 5.0 4.0
1 DS, IG, LS, LOE 34.9 34.0 SD, LS, LOE 5.6 4.5

R habdosargus holubi 3 AG 34.0 30.0 AG 6.0 4.0
2 AG, DS 35.0 31.0 AG, DS 7.0 5.0
1 DS, IG, LOE 35.6 32.3 SD, LOE 8.1 5.8

C haetodon m arleyi 3 AG 33.0 - AG 9.0 -
2 AG, DS 34.0 - AG, DS 10.0 -
1 DS, IG, LOE 35.2 - SD, LOE 11.2 -

AG = Aggressive behaviour, DS = disorientated swimming; IG = Increased gulping; LS = loss of scales; SD = State of dormancy; LOE = Loss of equilibrium
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Figure 3.5. Righting response of Parechinus angulosus to two-hour temperature intervals for (a) summer CTmax, (b) winter CTmax, (c) summer 
CTmin, and (d) winter CTmin (n =18). Error bars indicate SD and letters (a) and (b) indicate significant difference (p < 0.05) between treatments and 
controls.
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Table 3.7. Two-way repeated measures ANOVA tests of Parechinus angulosus righting response for CTmax (summer and winter) and CTmin 
(summer and winter) between groups (treatment and control); temperature intervals (2 hours); and groups and temperature intervals. Holm-Sidak 
post hoc tests used. Significant differences indicated in bold whenp  < 0.05.

Summer CTmax Winter CTmax Summer CTmin Winter CTmin
DF F p DF F p DF F p DF F p

Group (Treatment/control) 1 84.26 < 0.01 1 431.77 < 0.01 1 404.39 < 0.01 1 194.31 < 0.01
Temperature interval 4 90.40 < 0.01 5 87.11 < 0.01 6 164.72 < 0.01 5 111.94 < 0.01
Group (Treatment/control) x 
Temperature interval 4 94.16 < 0.01 5 86.31 < 0.01 6 157.60 < 0.01 5 160.96 < 0.01
Error 136 170 204 170
Total 179 215 251 215
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3.4 DISCUSSION

Major results from the study using the dynamic method on several fish and macro-invertebrate 

species indicated that there were differences in thermal tolerance according to taxonomic 

grouping, habitat affinity and biogeography between summer and winter. Taxonomically, 

widespread adult macro-invertebrates generally presented higher CTmax, lower CTmin, higher 

upper and lower breadths in tolerance, higher upper and lower thermal safety margins, higher 

thermal scopes and higher intraspecific variability for CTmin than the fish. Thermal tolerance 

results according to habitat indicated that marine ectotherms (fish and macro-invertebrates) 

from the intertidal estuarine habitat had higher thermal tolerances than marine ectotherms from 

the intertidal rocky low-shore habitat (intertidal rock pool and subtidal gully) for both summer 

and winter. Biogeographically, tropical (Group 2) and warm-water endemic juvenile fish 

species had the highest thermal tolerance (CTmax), however, tropical species demonstrated the 

lowest thermal resilience (high CTmin) to decreases in temperature.

Adult macro-invertebrates generally presented a higher thermal tolerance and thermal scope 

compared with the juvenile fish species in this warm-temperate region for both summer and 

winter. This trend may be a result of their widespread distributions and limited mobility, 

allowing them to tolerate a wide range of temperatures. A widespread distribution suggests that 

species need to function over a wide scope of temperatures (Spicer and Gaston, 1999; Madeira 

et al., 2012a). Most macro-invertebrates are not as mobile as fish and many are sedentary, if 

not sessile, with limited capacities of moving to more favourable conditions, hence often living 

closer to their upper and lower thermal limits in intertidal environments (Madeira et al., 2012a). 

As a result, many benthic macro-invertebrates have evolutionarily adapted to a sedentary 

lifestyle through advanced ventilation and circulation for physiological acclimation and 

behavioural thermoregulation (Thompson et al., 2002; Anestis et al., 2007; Somero, 2010). For 

instance, macro-invertebrates from the low rocky shore (e.g. Mollusca) and living at the 

interface of marine and terrestrial systems, such as adjacent coastlines and estuaries (e.g. 

Crustacea), make use of the above mechanisms to allow them to cope with the stresses 

associated with alternating tidal immersion and emersion (air exposure) and extreme daily 

temperatures during low tides (see Newell, 1979; Davidson and Pearson, 1996; Karsten et al., 

1996; Portner, 2002; Helmuth et al., 2002, 2006; Kelly et al., 2012). These adaptations to an 

intertidal lifestyle hence fit well with the highest CTmax and lowest CTmin endpoints and the
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highest thermal scopes, breadths in tolerance and safety margins for both summer and winter 

for the sedentary brown mussel P. perna inhabiting the rocky shores and the mobile crab P. 

catenatum from the lower reaches of the Kariega Estuary.

The sedentary P. perna can behaviourally thermoregulate through gaping (opening and closing 

of shell valves) and acclimating physiologically by depressing its metabolism (Marshall and 

McQuaid, 1993; Nicastro et al., 2010; Tagliarolo and McQuaid, 2015). Previous studies also 

suggest that gaping behaviour allows P. perna to avoid accumulating metabolites during 

hypoxia and enables gas exchange so that aerobic respiration can be maintained in air (Coleman 

and Trueman, 1971; McMahon, 1988; Marshall and McQuaid, 1993). However, gaping 

increases water losses and the risk of desiccation (Nicastro et al., 2010) and, according to 

Marshall and McQuaid (1993), P. perna appear to have little control over the loss of mantle 

water. Their preferred mechanism to avoid extreme environmental temperatures and hypoxia 

in air and water is metabolic depression (Tagliarolo and McQuaid, 2015). Metabolic depression 

is a state characterized by a 60 -  100% reduction in the basal metabolic rate, which extends the 

time that an animal can survive on stored fuel supplies during periods of environmental stress 

(Guppy et al., 1994; Guppy and Withers, 1999). The relatively air-intolerant P. perna exhibits 

metabolic depression by closing their valves (or delaying gaping) and delaying bradycardia in 

order to activate anaerobic pathways in air (Widdows et al., 1979; Shick et al., 1986; 

McMahon, 1988). Tagliarolo and McQuaid (2015) further demonstrated that in water, P. perna 

(found along the east coast) can maintain higher metabolic rates through metabolic depression 

and can cope with thermal stress under conditions of acute temperature variability. The 

mechanism of metabolic depression for P. perna, may account for its high thermal tolerance 

and scope in this study.

The high thermal tolerance and broad thermal scope of the mobile P. catenatum found in the 

intertidal estuarine habitat for this study may be a result of it successfully using the mechanism 

of behavioural thermoregulation as well as depressing its metabolism under thermally 

challenging periods (Newell and Branch, 1980). Although this species has a broader thermal 

scope when compared to the other sedentary estuarine macro-invertebrates C. virescens and U. 

africana, this result is not surprising, as P. catenatum spends a substantial amount of time 

exposed to air during low tides on the exposed mud flats actively moving around in search for 

food, unlike U. africana and C. virescens. As a result, to thermoregulate its body temperature,
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which can fluctuate by 25.0 °C or more in a matter of hours as demonstrated by Stillman and 

Somero (1996) using other intertidal crabs, it makes use of bimodal breathing (breathing in 

both air and water) (Emmerson, 2016). In air, P. catenatum recycles water within its branchial 

chambers by pumping water over the grooved and hairy branchiostegite surfaces or “chest” 

(Alexander and Ewer, 1969). Parasesarma catenatum is also able to avoid thermal stress 

during low tide air exposure by retreating frequently into their burrows which are normally 15­

20 cm deep, with one or more side entrances (Alexander and Ewer, 1969). These burrows do 

not penetrate the groundwater table, and are usually occupied by up to six crabs (Alexander 

and Ewer, 1969; Zoutendyk and Bickerton, 1988; Emmerson, 2016). Besides sheltering in 

burrows, P. catenatum may move to higher ground to prevent submersion and here they shelter 

amongst roots or tree trunks of mangrove trees (Fratini et al., 2005; Porri, pers. comm.).

In contrast, Upogebia africana predominantly burrows in mud and is submersed in water, while 

C. virescens rarely leaves the water (Bertness, 1981; Taylor, 1982; Wait and Schoeman, 2012). 

As such, these animals cope with heat stress in water (rather than both in air and water) using 

their mud burrow and shell (and to some extent mobility; Reese, 1969) respectively. The Uca 

burrows used by U. africana can be several degrees cooler than exposed mud flats (Edney, 

1961), allowing them to feed continuously in a thermally protected environment (Hill and 

Allanson, 1971). During high tide, when P. catenatum may become submersed unavoidably, it 

may decrease its aerobic performance by depressing its metabolism with its advanced 

ventilation and circulation, widening the boundaries of its thermal tolerance to cope with 

fluctuating water temperature extremes (e.g. De Pirro et al., 1999).

The Cape sea urchin P. angulosus, also from the intertidal low-shore rock pool habitat, had the 

lowest CTmax, the highest CTmin and the narrowest upper and lower breadth in tolerance 

compared with all other macro-invertebrates in this study. This finding may be a result of this 

marine ectotherm being unable to depress its metabolism, to cope with maximum temperature 

extremes, as reported by Guppy et al. (1994) who stated that in the face of environmental stress, 

all major invertebrate phyla, with the exception of Echinodermata, make use of metabolic 

depression. Adult echinoderms have a poor ability to regulate ion concentration in their 

extracellular fluids (Stickle and Diehl, 1987) and are considered to be hypometabolic 

(abnormally low metabolic rate) (Melzner et al., 2009), as they have low respiratory rates 

(Lawrence and Lane, 1982; Shick, 1983). Their oxygen uptake is dependent mostly on
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nutritional state, size, ambient temperature, oxygen tension, seasonality, salinity and pH, 

particularly more than other ectotherms (e.g., Hiestand, 1940; Farmanfarmaian, 1966; 

McPherson, 1968; Sabourin and Stickle, 1981; Lawrence and Lane, 1982; Brockington and 

Clarke, 2001; Talbot and Lawrence, 2002; Wood et al., 2008, 2010, 2011; Christensen et al., 

2011). This may explain why in this study P. angulosus may be able to tolerate low 

temperatures in winter, but not extreme temperatures (hot and cold events) in summer. This 

finding is similar to those for the temperate purple sea urchin Strongylocentrotus purpuratus, 

which could not tolerate temperatures higher than 25.0 °C and could not withstand 

temperatures as high as 23.5 °C for long periods of time (Farmanfarmaian and Giese, 1963).

Among the fish species investigated, transient marine fish species found in estuaries had a 

greater thermal scope in general than the low rocky shore transient fish species, being able to 

tolerate higher temperatures in summer. This suggests that juvenile marine fishes will not be 

directly affected by temperature increases occurring below their CTmax endpoint in the Kariega 

Estuary. To support this, Eme et al. (2011) found that juvenile squaretail mullet Chelon 

vaigiensis (Quoy and Gaimard, 1825) and crescent terapon Terapon jarbua (Forsskál, 1775) 

captured from shallow seagrass estuarine nursery habitats around Hoga Island in Indonesia had 

CTmax endpoints of ~45.0 °C and ~44°C when acclimated from 37.0 °C. For resident rock pool 

species, however, this trend may not be the same, as resident rock pool fish species tend to 

demonstrate decreased temperature sensitivity and euryhaline characteristics (Gibson, 1972; 

Zander et al., 1999). For example, Kemp (2009) demonstrated that the banded goby 

Caffrogobius caffer (Gunther, 1874) is capable of acclimatizing to extreme thermal variability 

and hypo- and hypersaline conditions, allowing it to penetrate the upper intertidal zone if 

required, unlike the transient juvenile D. capensis, which do not have the adaptive scope to 

cope with extended thermal stress and hypersaline conditions, especially in mid- to high-shore 

rock pools.

Although juvenile warm-water endemic and the temperate D. capensis fishes are able to 

tolerate low temperatures in winter they are less tolerant of cold temperatures (lower thermal 

tolerance) in summer. For example, R  holubi, C. dumerili and D. capensis had lower CTmin 

endpoints in winter (5.8, 5.3 and 6.5 °C) than in summer (8.1, 9.3 and 8.0 °C). This may suggest 

that for these juvenile fish species, a metabolic/physiological trade-off between thermal 

tolerance to colder temperatures in summer and growth/development may be taking place.
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Portner and Gutt (2016) refer to this strategy as a low cost of stenothermal versus high cost of 

eurythermal cold adaptation. For example, temperate eurythermic fish species may shift their 

thermal scopes between seasons to adjust their standard metabolic rates, from low cost during 

winter stenothermy, to high cost during spring cold eurythermy and lower cost in the summer 

when cold temperatures are generally excluded from this thermal scope (Wittman et al., 2008). 

As a result of losing tolerance to cold temperatures in summer, this excess energy turnover may 

allow eurythermic organisms to invest more energy into growth during the warmer time of the 

year (Portner and Gutt, 2016). Within this warm-temperate study region, where intermittent 

upwelling occurs, the juvenile warm-water endemic estuarine-dependent marine fish species 

may benefit from this strategy, as they are less likely to be influenced by upwelling in estuaries 

due to their broad eurythermic and euryhaline physiology, allowing them to escape 

unfavourable thermal conditions further upstream. This strategy, however, may ultimately be 

detrimental for the juvenile temperate estuarine-opportunist D. capensis, which has limited 

habitat choices as a result of its physiology (not strongly euryhaline as compared with R. 

holubi), requiring it to inhabit nearshore rocky habitats (rock pools and gullies) and the lower 

reaches of estuaries, which may be more exposed to drastic drops in temperatures during 

upwelling.

Biogeographically, for this study, the highest CTmax thermal endpoints were observed for the 

tropical juvenile K. mugil (Group 2) followed by the juvenile warm water endemic estuarine- 

dependent marine fish species (C. dumerili and R. holubi Group 3) and the tropical C. marleyi 

(Group 2). The lowest CTmax thermal endpoints were observed for the only juvenile cool-water 

endemic estuarine-opportunist C. richardsonii (Group 4). This data supported Madeira et al. 

(2012a) who found that cool-water fish species (with a northern distribution) had critical 

thermal maxima on average 1.1 °C below the maximum habitat temperature compared with the 

warm-water species (with a southern distribution) who had critical thermal maxima on average

3.5 °C above the maximum habitat temperature, making cool-water species more vulnerable to 

extreme increases in temperature.

Fish species with the highest CTmin were the tropical marine straggler species C. marleyi 

followed by K. mugil in the nearshore coastal environment showing that they had the lowest 

tolerance of cool temperatures. Figueira and Booth (2010) identified cool winter temperatures 

as a major factor preventing the establishment of tropical fishes such as chaetodons in the
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temperate regions of Australia. In the present study, C. marleyi was found only in the lower 

reaches of the Kariega Estuary during the summer months and, based on its narrow cold safety 

margins (5.0 °C), it is likely that they cannot survive the cold winter temperatures in this estuary 

as a result of thermal stress, starvation and predation (Hurst, 2007). In a study on a related 

Chaetodon species in the western North Atlantic, McBride and Able (1998) found that these 

fishes died from hypo-thermal conditions at the onset of winter in temperate waters. If water 

temperatures do increase in this warm-temperate region to within the tolerance range of C. 

marleyi as a result of climate change, however, it may allow for them to occur over winter. 

Figueira and Booth (2010) and Booth et al. (2018) also identified that winter water 

temperatures in Australia are increasing at a rate above the global average, allowing tropical 

transient species such as Chaetodontidae, Acanthuridae (surgeonfishes) and Pomacentridae 

(damselfishes) to recruit into these temperate waters and expand their range, potentially 

becoming more resident. Interestingly, the cool-water endemic C. richardsonii were more 

tolerant of low temperatures than the temperate species (D. capensis and S. salpa) and this may 

be due to the centre o f their distribution being the cool-temperate region of South Africa where 

summer upwelling is persistent.

When examining the fish species in this study at the level of family, it appears that Kuhliidae, 

followed by Sparidae, Mugilidae and Chaetodontidae, are the most thermally tolerant family 

in this warm-temperate region. Kuhliidae, even though tropically distributed (Indo-pacific and 

Eastern Pacific) (Floeter et al., 2008), seem to be highly thermally tolerant and this may be a 

result of this family mostly inhabiting dynamic rock pool habitats (Heemstra and Heemstra, 

2004). Sample sizes, however, need to be increased significantly for Kuhliidae to assess 

whether this high thermal tolerance does exist across seasons. Sparidae are considered to have 

evolved in the subtropical and temperate regions (Floeter et al., 2008) and along the South 

African coast they are distributed from the south Benguela region (Namibia and southern 

Angola) to the Agulhas region. As a result, Sparidae can tolerate a wide range of temperatures 

and salinities (Blaber, 1973), as well as occupy various habitats or niches (Heemstra and 

Heemstra, 2004). For example, the genus Diplodus is thought to have originated in the 

subtropical Cape Verde Islands (North Atlantic Ocean) (Summerer et al., 2001) and, according 

to Vinagre et al. (2010) who studied them between the temperate and subtropical waters of 

Portugal, they can colonize various habitats further north and south due to their wide thermal 

tolerance. Mugilidae are able to tolerate extreme temperatures, as many species within this

73



family are tropical and are able to tolerate temperatures exceeding 40.0 °C (Menasveta, 1981; 

Mora and Ospína, 2001; Rajaguru, 2002; Eme and Bennett, 2009). Tropical Chaetodontidae, 

originating from the western Indian Ocean and diversifying into the Atlantic and Eastern 

Pacific (Fessler and Westneat, 2007), are highly tolerant of warm temperatures in tropical and 

warm-temperate regions. Their diversification into cooler waters (mid-Atlantic), however, has 

shown that this family eventually perish because of declining winter temperatures (McBride 

and Able, 1998).

Intraspecific variability for this study was found to be highest for the CTmin thermal tolerances 

of mostly the intertidal sedentary macro-invertebrates P. angulosus, P. perna and P. peringueyi 

as opposed to their CTmax thermal tolerances in this warm-temperate region. This high CTmin 

intraspecific variability could be a result of phenotypic plasticity, natural selection and genetic 

diversity which may serve as drivers of individual variation and population differentiation as 

proposed by Tibblin et al. (2016). Phenotypic plasticity, defined as the ability of individual 

genotypes to produce different traits when exposed to altered environmental conditions 

(Pigliucci, 2005, Pigliucci et al., 2006), can change rapidly within a lifetime and over a few 

generations, especially across populations from dissimilar habitats (Des Roches et al., 2018). 

Populations with greater genetic diversity, specifically in unstable environments, will have 

greater resilience to environmental fluctuations, thus increasing their survival, growth and 

fecundity compared with those with lower genetic diversity, specifically in stable environments 

(Aguirre and Marshall, 2012). The increased intraspecific variation for CTmin thermal 

tolerances in macro-invertebrates found in the intertidal rocky shore habitat suggests that they 

display high genetic diversification to buffer the cold temperatures more, especially in this 

region where the impacts of summer intermittent upwelling are expected to irregularly 

intensify.

According to Lutterschmidt and Hutchison (1997a), the sequence of events for fish during an 

acute temperature increase is agitated behaviour, loss of equilibrium (LOE), onset of spasms 

(OS), heat rigor, coma, and death. For this study, fish behavioural changes such as disorientated 

swimming, aggressive behaviour, and a state of dormancy were evident for all species in this 

study prior to or very close to them reaching their critical upper and lower thermal limits, which 

was displayed by a loss of equilibrium. No muscular spasms, heat rigor, heat comas or death 

were observed as individuals of each species were removed prior to this in this study. Van der
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Vyver et al. (2013), also working on R. holubi, found that behavioural changes such as 

disorientated swimming and a loss of equilibrium were also only evident when the critical 

thermal endpoint was reached. Most individuals of the mobile species increased their responses 

to the increase in temperature by increasing their swimming speed, hence increasing 

disorientation. This was not surprising as several authors (e.g. Taylor et al., 1997; Peck et al., 

2009; Breau et al., 2011) have observed increases in swimming speed for temperate fauna 

exposed to warmer temperatures. In the natural environment, an increase in swimming 

performance in response to sustained thermal stress may be detrimental, making fish behave 

differently to oncoming fishing gear, and thus more vulnerable to capture (Portner and Peck, 

2010). Increased swimming performance also may increase their energetic requirements (food 

intake), and if in a thermally stressful environment, food resources may too be limited, and the 

mortality of these fishes may increase (Portner and Peck, 2010).

In contrast to the rapid swimming observed at warmer temperatures, most individuals of the 

mobile species went into a state of “dormancy” (remaining near the bottom of the tank with 

limited movement) as the temperature approached their CTmin. This mechanism is thought to 

be a behavioural strategy that fish use to reduce energetic expenditures and may be necessary 

for maintaining energetic costs and recycling waste products at low temperatures (Portner et 

al., 2006; Almeida et al., 2015). This dormant behaviour can, however, have negative 

consequences such as increased mortality by predation and indirect effects on population 

intrinsic growth rate (Almeida et al., 2015). It has been inferred, nonetheless, that climate 

driven changes in temperature can modify the behaviours of ectothermic organisms (Munday 

et al., 2009), which may alter migrations to feeding grounds, as already seen for some 

temperate marine species (Portner and Peck, 2010). Although these trials were run over a short 

period of time to simulate an extreme temperature event, the results do show the potential 

impacts of increasing or decreasing temperatures on ectothermic fish’s behaviour.

For the macro-invertebrates, the righting response method used in this study proved successful 

in estimating CTmax and CTmin. Specimens of P. catenatum remained on their back for the full 

one minute period without any signs of righting when approaching the upper and lower thermal 

endpoints, as demonstrated by Cuculescu et al. (1998) and Hopkin et al. (2006). Korhonen and 

Lagerspetz (1996) suggested that CTmax measured by a loss of righting response is an 

ecologically relevant index of the upper thermal tolerance of decapod crustaceans, as it is
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probable that it measures the tolerance of that part of the crab’s nervous system which controls 

the righting reflex. For P. angulosus, it was evident that the righting time response increased 

with both an increase and decrease in temperature. This type of bidirectional response has been 

reported for tropical (Lytechinus variegatus; Collin et al., 2016) and temperate sea urchins 

(Strongylocentrotuspurpuratus; Farmanfarmaian and Giese, 1963).

In conclusion, this study revealed that, for most species, with the exception of C. marleyi and 

P. angulosus, average critical maximum and minimum thermal tolerance endpoints were 

comfortably above the maximum summer and below the minimum winter environmental 

temperatures recorded in each habitat within this warm-temperate region. This suggests that 

water temperatures would have to increase or decrease substantially before deleteriously 

impacting any of the studied species. Extreme cold events, such as cold spells and summer 

upwelling, that are expected to increase in intensity, frequency and duration as a result of 

climate change, however, may significantly impact these species due to rapid decreases in 

temperature over a short period. To better explain the underlying physiological changes of 

these marine ectotherms, a comprehensive physiological phenotypic assessment of their upper 

and lower thermal performances needs to be investigated alongside their upper and lower 

thermal tolerances (CTmax/CTmin). In addition, these thermal performance assessments can 

provide the optimal (To p t) and pejus (Tp e j  -  getting worse) temperatures to mark the transition 

from one temperature range into the next, to better understand the effects of climate change 

based on an organism’s survival with a reduced scope for aerobic activity rather than the 

extreme evaluation of an organism’s death.
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CHAPTER FOUR: COM BINING TH E DYNAMIC M ETHOD, STATIC 

RESPIROM ETRY AND MAXIMUM HEART RATE TO UNDERSTAND THE 

THERM AL PHYSIOLOGY OF JUVENILE AND ADULT DIPLODUS CAPENSIS

(SM ITH 1844)

4.1 INTRODUCTION

A range of methods have been used to understand the thermal physiology of fishes. Each 

method has its own associated limitations and biases and may be more appropriate for certain 

species or for different life stages of a single species. Estimating thermal tolerance and 

performance of a species through its life history may therefore require the use of multiple 

approaches. Some of the most common techniques used to understand the thermal physiology 

of fishes are the dynamic method (critical upper and lower thermal endpoints, i.e. CTmax and 

CTmin), respirometry, and the measurement of maximum heart rate (/Hmax). These techniques 

stem from the pioneering physiological studies of thermal performances in fishes by Fry 

(1947), the recent concept of “oxygen- and capacity-limited thermal tolerance” (Portner and 

Knust, 2007; Portner and Farrell, 2008), and the recent finding that rate transition temperatures 

for heart rate improve the understanding of the upper thermal tolerance (CTmax) that controls 

the biogeographic distributions of a species (Somero, 2010; Tepolt and Somero, 2014).

Critical thermal endpoints (CTmax and CTmin) determine the tolerance of a species to extreme 

maximum and minimum temperatures and these limits are relatively simple to measure 

(Cowles and Bogert, 1944; Lowe and Vance, 1955; Cox, 1974), irrespective of size (Becker 

and Genoway, 1979; Lutterschmidt and Hutchison, 1997a, 1997b; Beitinger and Bennett, 2000; 

Sunday et al., 2012). This method is also affordable, does not require specialized equipment, 

and is rapid (experiments last days, rather than weeks or months) (Lutterschmidt and 

Hutchison, 1997a). Although knowledge of the thermal tolerance range (temperature between 

CTmax and CTmin) of an organism is important, understanding the thermal dependence of an 

organism’s performance may be more valuable from an ecological perspective (Fry, 1947). 

This is because the thermal limits of an organism’s functional performance are narrower than 

its critical thermal endpoints (Farrell, 2009).
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A common method of determining the functional thermal performance of an individual 

organism over a range of activities is measuring oxygen utilization, i.e. respirometry (Rummer 

et al., 2016). Respirometry techniques which include closed-system, open-system, static and 

intermittent methods are commonly used to measure the rate of oxygen consumption (MO2), 

which usually increases in a regular manner with increasing temperature, and to estimate the 

metabolic performance on a range of life stages of an organism at rest or while executing 

different locomotory activities (Clark et al., 2013; Rummer et al., 2016). Two important 

measures, the maximum metabolic rate (MMR) and the standard metabolic rate (SMR), are 

used to define the upper and lower limits of an organism’s capability to metabolize energy. The 

MMR of an individual is the maximum amount of energy that can be metabolized aerobically 

and can be determined by measuring an organism’s MO2 during or immediately after 

exhaustive exercise (Norin and Clark, 2016). The SMR refers to the minimum amount of 

energy required for survival and maintenance and does not include energy spent on voluntary 

muscular movements, digestion or absorption (Krogh, 1914; Chabot et al., 2016) and is 

determined by measuring MO2 in a post-absorptive, resting state (Nelson and Chabot, 2011; 

Chabot et al., 2016).

Aside from the MMR and SMR, other metabolic rate metrics include routine metabolic rate 

(RMR), which is the mean metabolic rate of fish in a resting state but exhibiting minor activity 

in a respirometer (e.g. swimming to maintain position) (Winberg, 1960; Brett, 1962; Nelson 

and Chabot, 2011), and active metabolic rate (AMR), which is the mean metabolic rate of an 

active fish while swimming at a continued, constant speed (Lefran9 ois and Claireaux, 2003; 

Chabot et al., 2016). When activity is known to be very limited, such as small fin movements 

to maintain position in the respirometer, authors have used the terms “low routine”, “resting”, 

or “fasting” metabolic rates (Blaxter, 1989; Plaut, 2000).

Metabolic scope, also referred to as aerobic scope, is the difference between MMR and SMR 

and represents the maximum amount of energy available for any energy consuming activity 

(e.g. swimming, feeding, and reproducing) beyond maintenance at ecologically relevant 

temperatures (Brett, 1964; Fry, 1947; Farrell, 2009). When using RMR, the difference between 

the final and initial rates of aerobic metabolism is called the “relative scope of activity” or the 

relative aerobic scope (RAS) (Wieser, 1985; Wieser and Forstner, 1986). Aerobic 

scope/relative aerobic scope is generally maximized within a given temperature range (termed
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TOPT) to optimize fitness related performance, while performance diminishes as scope 

decreases at pejus (Tp e j  -  top 10% of the To p t  curve) and higher and lower temperatures (CTmax 

and CTmin, i.e. Tc r it  -bottom 90% of the To p t  curve) (Clark et al., 2013). In other words, an 

elevated SMR/RMR without a corresponding increase in MMR will reduce To p t  and Tp e j, thus 

decreasing CTmax (Clark et al., 2013) and increasing CTmin, narrowing the thermal range and 

increasing thermal vulnerability. In this same instance, an increase in temperature of 10.0 °C 

beyond To p t  will double the rate of oxygen consumption (Cossins and Bowler, 1987), referred 

to as the Q 10 temperature coefficient (Schmidt-Nielsen, 1997), resulting in an abrupt decrease 

in metabolism (Q10 for aerobic scope > 2.0) (Sidhu et al., 2014).

Accordingly, these respirometry performance indicators, particularly To p t  and Tp e j, provide 

valuable information regarding the capability of organisms, fish in this instance, to manage 

changing temperatures (Clark et al., 2013; Norin and Clark, 2016). Although respirometry can 

be used for all life stages to measure physiological performance, it is considered more time 

consuming and requires specialized equipment and acute attention to detail. For instance, for 

respirometry experiments to be effective, respirometer design and function to relative mass, 

acclimation period, experimental duration and the number of measurements all need to be 

carefully considered (Peck et al., 2009; Clark et al., 2013; Peck and Moyano, 2016).

An alternative technique that is considered quicker than respirometry trials (days versus weeks; 

Casselman et al., 2012) and that has been associated as a limiting factor for upper thermal 

tolerance (CTmax) is the measurement of maximum heart rate function (Stillman and Somero, 

1996; Stenseng et al., 2005; Steinhausen et al., 2008; Somero, 2010; Eliason et al., 2011; 

Casselman et al., 2012; Anttila et al., 2013, 2014). Maximum heart rate ( / Hmax) in fishes stops 

increasing at a temperature just beyond the optimal temperature (TOPT), which in turn limits the 

amount of oxygen that can be supplied to tissues above the routine needs (Fry, 1947; 

Steinhausen et al., 2008; Farrell, 2009; Eliason et al., 2011, 2013), termed the Arrhenius 

breakpoint temperature (Ta b) (Casselman et al., 2012; Anttila et al., 2013, 2014; Sidhu et al., 

2014). Thus, for fishes in vivo (when swimming freely) and in vitro (pharmacologically 

stimulated), the rate transition temperatures Ta b  and Tq b  (when Q 10 decreases abruptly) for 

/ Hm  ax can be indirectly comparable to that of To p tAS for the same species (Anttila et al., 2014) 

and provides an indication/verification of where a species preference to temperature lies 

relative to its upper thermal tolerance. In addition, further increases in temperature eventually
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leads to an arrhythmic heartbeat (TARR), a cardiac collapse that occurs just below the upper 

critical temperatures (CTmax and Tc r it) (Casselman et al., 2012; Anttila et al., 2013, 2014).

The /  Hmax has been measured primarily using exterior electrodes whereby an electrocardiogram 

(ECG) is recorded (Casselman et al., 2012). Although this methodology has been proven to be 

successful, there are limitations to using this equipment for marine fishes, mainly due to the 

technical difficulties of placing electrodes in salt water (Skeeles et al., accepted). Leadless 

micro heart rate loggers developed by Star-Oddi have only recently been used successfully in 

marine fishes (Bjarnason et al., 2017; Skeeles et al., accepted). These loggers simultaneously 

record heart rate and internal body temperature, which are both important in determining TAB 

(Bjarnason et al., 2017; Skeeles et al., accepted). One limitation with these micro-heart rate 

loggers (2.5 cm), however, is that they are too large to implant in juveniles, which limits their 

utility to adults of larger species. Additionally, the heart rate technology is relatively new 

(particularly in marine species), and due to it being quicker than respirometry (quicker 

laboratory turnover time), it may be important to better understand and compare the 

relationship between heart rate metrics in adults first (Ta b  and To p t ; Tc r it  and CTmax) to assess 

the adaptability for juveniles in future studies. A good candidate species to test this is the 

eurythermal temperate blacktail fish species Diplodus capensis (refer to Chapter 2).

The aim of this chapter is to employ multiple methods to examine physiological metrics of 

juveniles and adults of the temperate ectothermic fish D. capensis exposed to acute increases 

and decreases in temperature. To do this, upper (CTmax) and lower (CTmin) thermal limits for 

both juvenile and adult D. capensis were determined along with the RMR and MMR of juvenile 

D. capensis at five test temperatures using static respirometry, and maximum heart rate ( / Hmax) 

of adult D. capensis under conditions of acute heating using Star-Oddi micro heart rate loggers.
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4.2 M ATERIALS AND METHODS

4.2.1 Dynamic method

The methods for the determination of critical thermal endpoints for juvenile D. capensis are 

detailed in Chapter Three. To obtain preliminary estimates of CTmax for adult D. capensis, six 

adults (190 - 310 mm TL) were collected in summer (December -  February 2018) from a sandy 

beach surf zone (33° 89’ 33.6” S 26° 29’ 81.5” E) using rod and line. After collection, adults 

were transported back to the AERP laboratory in Grahamstown in aerated containers 

containing seawater from the study site.

Three adults were transferred to one 500 L cylindrical recirculating tank connected to a heat 

pump (AquaHeat 9.2 kW pump). Fish were acclimated for a minimum of 36 hours at the field 

temperature of 20.0 °C with a 12h L: 12h D photoperiod. Fish were not fed during this 

acclimation period. After acclimation, the dynamic method using the critical thermal maximum 

(CTmax) was determined by increasing the water temperature by a constant rate of 1.0 °C.hour- 

1 until an endpoint was reached (loss of equilibrium) (Lutterschmidt and Hutchison, 1997a). 

The same experimental procedure was repeated to determine the critical thermal minimum 

(CTmin) for the remaining three adults by decreasing the water temperature by a constant rate 

of 1.0 °C. hour-1 until an endpoint was reached (loss of equilibrium). Once the upper and lower 

endpoints were reached, adults were weighed (g) and measured (mm TL) and euthanized.

4.2.1.1 Data analysis

The CTmax and CTmin thermal limits for adult D. capensis were calculated as the arithmetic 

mean of the collective thermal points at which the endpoint is reached using the following 

equation:

CTmax /  CTmin (species) = £  (Tend-point n)/n

where Tend-point is the temperature at which the endpoint was reached for any given 

individual.
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4.2.2 Static respirom etry

Thirty juvenile blacktail, D. capensis (25 - 45 mm SL), were collected in summer (December 

-  February 2018) using a range of gears (cast net, dip net, and seine net) from a series of habitats 

surrounding the Kariega Estuary (33° 36’ 53.72” S, 26° 39’ 15.93” E) where this species occurs 

as juveniles (rock pools, mouth and lower reaches of the estuary). After collection, juveniles 

were transported back to the AERP laboratory in Grahamstown in aerated containers. 

individuals were then randomly placed into five 90 L cylindrical recirculating tanks at the field 

temperature of 20.0 °C. Each tank consisted of six individuals placed into separate floating 100 

ml plastic containers (diameter =10 cm, height = 10 cm) and covered with 1 mm fine mesh 

material using an elastic band. This separation of individuals was done to reduce initial MO2 

stress for transference to the respirometer chambers for the experimental trials (McKenzie et 

al., 2007; Dupont-Prinet et al., 2013) and to lag metabolic activity to levels that may occur in 

its natural habitat (Clark et al., 2013; Chabot et al., 2016). All individuals were then left to 

acclimate for a minimum period of 36 hours with a 12h L:12h D photoperiod before 

experimental trials began in order to re-set metabolic stability. Juveniles were kept in a given 

tank for a maximum of 11 days to complete all experimental trials and, as a result of such a 

short holding period (and appropriate fasting period), fish growth was not considered a 

significant factor (Chabot et al., 2016). During this holding period, temperature (°C), oxygen 

(%), pH, salinity, ammonia, nitrate and nitrite were measured using a hand held multi­

parameter probe (Aqualytic water parameter, United Scientific, Germany); a refractometer 

(Hannah Instruments, Germany) and Salifert Test Kits for each tank at 12:00 every second day 

prior to the experimental trials.

Experimental trials consisted of using static respirometry to measure oxygen consumption of 

juvenile D. capensis at five test temperatures: 9.0 °C; 13.0 °C; 18.0 °C; 28.0 °C and 34.0 °C 

using a flow-through system. The minimum water temperature of 9.0 °C was selected to 

represent the lower thermal limit that this species can tolerate in summer (CTmin = 8.0 °C; refer 

to Chapter 3), while the maximum water temperature of 34.0 °C was selected to represent the 

upper thermal limit that this species can tolerate in summer (CTmax = 35.0 °C; refer to Chapter 

3). Juvenile D. capensis in the tank assigned to the temperature being tested were starved 12 

hours prior to experimentation, and the remaining juveniles for the rest of the experiments (30 

individuals) were fed at libitum. Each individual D. capensis was subjected to only one thermal
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treatment. The static respirometry protocols were adapted from Chen et al. (2015) and Boucher 

et al. (2018) applying the recommendations of Clark et al. (2013), Chabot et al. (2016) and 

Peck and Moyano (2016). Respirometry equipment was validated by assessing suitable 

respirometer volumes, oxygen ingress and drift associated with bacterial background 

respiration through preliminary pilot trials. Seawater was sterilized by being autoclaved and 

filtered using a water filtration system with 20 um filters. Glass respirometry chambers with a 

volume of 45 ml were used to accommodate approximately 45 mm fish (sufficiently large 

enough to prevent confinement stress, but small enough to reduce activity; Chabot et al., 2016). 

Calculations to determine the chambers’ water displacement as a result of the inclusion of the 

fishes’ mass was also done for each test temperature (Clark et al., 2013; Chabot et al., 2016) 

so that respirometry measurements could be adjusted to a specific unit. This displacement 

volume also corrects and determines the actual volume of water in the chambers.

For oxygen consumption measurements, 20 L of sea water in a water bath was circulated from 

the chambers through flow-through cells containing a contactless fibre-optic oxygen sensor 

(Pyroscience e.K., Aachen, Germany) using a peristaltic pump (flow rate = 700 ml/min); the 

oxygen concentration (mg. L-1) was recorded using red flash dye technology and readings were 

transmitted via a fibre-optic cable connected to a Firesting oxygen reader (Pyroscience e.K., 

Aachen, Germany). Oxygenated water in the chambers remained uniformly mixed by looping 

through the flow-through cells and two submersible pumps were also placed in the water bath 

to minimize temperature stratification and to provide uniform oxygen distribution. The system 

consisted of four respirometry chambers per trial, of which three contained individual fish and 

one a blank control with no fish.

For each test temperature, three starved fish in their plastic containers were randomly selected 

from their respective tanks, and individually transferred into the three respirometric chambers 

and left to further acclimate for one hour. Fish were then acutely exposed to one of five new 

test temperatures from the acclimation temperature of 20.0 °C at a rate of 1.0 °C. hour-1 by 

warming or cooling, using a submersible heater (EHEIM Jagger Heater 300W) or chiller 

(Hailea, HS-90 A). Once the particular test temperature was reached (time period ranged from 

2 -  11 hours) fish were left to acclimate for a further one hour period before RMR was 

measured (Chen et al., 2015). Juvenile D. capensis, even when stationary, tend to exhibit minor 

spontaneous activity (small fin movements to maintain position in respirometer chambers),
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and, consequently, measurements of SMR are closer to RMR (Fry, 1947), and therefore RMR 

was measured in this study for approximately 10 minutes every fifteen seconds. Following this, 

each fish was removed from the respirometer chambers and returned to its 10 cm diameter 

circular plastic container containing aerated water at the relevant test temperature, where it was 

exercised to exhaustion over a roughly five-minute period by combining chasing and gentle 

tail pinching until the fish was unresponsive to touch. The fish was immediately returned to the 

respirometer chamber (< 1 min) which was sealed and flushed with oxygen-saturated water for 

one minute followed by measurements of oxygen consumption for approximately five minutes 

every fifteen seconds to determine the MMR (Chen et al., 2015). Oxygen concentration was 

allowed to decrease by no more than 25% of saturated seawater at each test temperature for 

both RMR and MMR (Clark et al., 2013; Chabot et al., 2016). Each test temperature 

experiment was repeated on the remaining individuals to gather a sample size of six individuals 

per temperature (in accordance with Chen et al., 2015). Trials were conducted during daylight 

hours after acclimation (when in a state or period of minimal inactivity; Chabot et al. 2016) for 

this species as Sparidae are predominantly diurnal at the post-larval and juvenile life stage 

(Whitfield 1989; Requena et al. 1997; Figueiredo et al. 2005). Aerobic experiments were then 

completed in 10 days (two days x five test temperatures). After each experimental trial, fish 

were removed from the chamber, euthanized by an overdosed concentration of clove oil (> 0.2 

ml. L-1) and placed on filter paper to blot dry excess water in order to be weighed individually 

to the nearest 0.001 g using a scale (aeADAM, PGL 303, d = 0.001 g).

4.2.2.1 Data analysis

Oxygen consumption rates for RMR and MMR were determined for each individual fish at 

each of the five test temperatures. Oxygen concentration readings below 75% saturation were 

excluded from the calculations. A least square linear regression of oxygen concentration (mg. 

L-1) over time was performed for each individual (n = 6) for each of the test temperatures for 

both RMR and MMR to generate a best-fit curve. Residual analysis was first applied to 

determine whether the data were suitable for use in a linear regression model (performed in 

Statistica 13). The linear regression models were then used to calculate the oxygen 

consumption for each individual and blank control chamber at each test temperature for both 

RMR and MMR using the following equation:

V0 2 = ([O2]  t0 -  [O2]  ti) x V/ (T x Mb) 
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where V0 2 is oxygen consumption rate (mg.O2 .kg-1.h-1); [O2]  to is oxygen concentration at time 

zero (mg.O2 .L-1); [O2]  ti is oxygen concentration at time t 1 (mg.O2 .L-1) and V is the 

respirometer volume minus the volume of the experimental animal (L). Animal volume (L) 

was assumed to be the same as the value of animal mass (kg); T = ti -  to (h) (overall time), and 

Mb is the body mass of the experimental animal (kg) (Chen et al., 2015). The average oxygen 

consumption values for the blank chambers were then subtracted from the final calculated 

oxygen consumption values for each individual at each test temperature to account for 

background respiration in the sea water.

For the range of water test temperatures examined (9.0 -  34.0 °C), Q10 values were calculated 

as follows:

Q 10 =
,K 2u

where K2 is the metabolic rate at temperature T2 and Ki is the metabolic rate at temperature Ti. 

The Q 10 values were determined for juvenile D. capensis juveniles based on mean RMR and 

MMR values for each test temperature (Kemp, 2009).

Relative aerobic scope (RAS) was then determined using the following equation:

Relative Aerobic Scope (RAS) = MMR -  RMR

where mean routine metabolic rate (RMR) is subtracted from the maximum metabolic rate 

(MMR) (Fry, 1971; Post and Lee, 1996; Rombogh, 2006; Killen et al., 2007; Boucher et al., 

2018). Relative aerobic scope was calculated in place of aerobic scope as SMR could not be 

measured due to minor spontaneous activity (Boucher et al. 2018) of juvenile D. capensis.

Three separate one-way ANOVA tests were performed for RMR, MMR and RAS respectively 

to test for differences between the five test temperatures (five levels, fixed) where relevant. 

Significant results were further tested using Tukey’s post hoc comparisons. Furthermore, 

variation (variance) within individuals (n = 6) for each test temperature was evaluated for both 

RMR and MMR. All data analysis was performed in SigmaPlot 12.5 unless otherwise stated. 

Normality of distributions were tested using a Shapiro-Wilk test and homoscedasticity was 

tested using the Levene’s test. When the normality and homogeneity assumptions were not
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satisfied, Kruskal-Wallis one-way ANOVA’s and Dunn’s post hoc comparisons were 

performed in place of the parametric tests. Statistical significance for all analyses was set at 

a=0.05.

4.2.3 M aximum heart ra te  ( / h max)

Thirty adult blacktail D. capensis (270 - 340 mm TL) were collected in summer from the Port 

Alfred surf zone (33° 89’ 33.6” S 26° 29’ 81.5” E) using rod and line. After collection, adult 

D. capensis were transported to the AERP laboratory in Grahamstown in a sealed aerated tank 

and were then transferred to a 5900 L indoor cylindrical recirculating tank set at the 

field/acclimation temperature of 18.0 °C and were acclimated for a minimum of 36 hours 

(according to the methods of Mora and Maya, 2006) prior to the first experiment. They 

remained in this tank for the experimental period, which lasted two weeks, with a photoperiod 

12h L: 12h D. Fish were fed a mixed diet of squid (Loligo reynaudii) and sardine (Sardinops 

sagax) every other day and starved 36 hours prior to experiments. Salinity was kept constant 

at 35 and checked every second day along with temperature, pH and oxygen. Water quality 

measurements of nitrate, nitrite and ammonia were also taken (Salifert Test Kit) every second 

day prior to when experimental trials were conducted. If these water quality parameters were 

found to be high, a partial water change was conducted whereby a quarter of the seawater was 

removed and replaced with filtered rainwater.

4.2.3.1 Pilot study for the stimulation o f /Hmax

Eight adults (270 -  320 mm TL) were used to validate the action of isoproterenol to stimulate 

maximum heart rate (as per the methods of Casselman et al., 2012), ensuring that maximum 

heart rate would be stimulated throughout the four-hour experiment and to test the optimal 

position of the heart rate logger. One individual was tested at a time and was collected from 

the 5900 L indoor cylindrical recirculating tank and placed into a 250 L rectangular aerated 

tank for two hours where temperature was raised by 1.0 °C/h to acclimate to a temperature of 

20.0 °C from 18.0 °C. Following this, the individual was then anaesthetized in a solution of 2- 

phenoxyethanol (C8H 10O2; 0.2 mL L_1) until it was unresponsive and the opercular movements 

decreased significantly (Summerfelt and Smith, 1990; Keene et al., 1998; Mylonas et al., 

2011). The individual was immediately transferred to a scale (aeADAM, PGL 10001, d = 0.1 

g) and rapidly weighed (g) and transferred to an operating trough for surgery where the
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anaesthetic solution was applied continuously over the gills during the procedure in order to 

maintain respiration and anaesthesia.

The surgery entailed inserting a heart rate logger (DST micro HRT, 8.3 mm X 25.4 mm, 3.3 g, 

Star-Oddi, Iceland, http://www.star-oddi.com), which was pre-programmed to measure the 

heart rate every 15 seconds for a minute (four readings) followed by one minute of recording 

ECG data at 200 Hz. This programmable setting was continuous for the four-hour period. The 

heart rate logger was attached with two sutures (Clinisut® silk suture; 3-0). An incision of 

approximately 2.5 cm was made directly below the origin of the left pectoral fin (Figure 4.1). 

This location allowed the heart rate logger to be situated immediately posterior to the 

pericardium membrane, which is essential for the successful functioning of the logger. The 

heart rate logger was inserted into the cavity, with the two circular electrodes positioned either 

sideward (facing away from the body wall to make direct contact with the muscular tissue once 

sealed) (n = 4) or upwards (facing towards the body wall) (n = 4). The incision was stitched 

using the two sutures attached to the heart rate logger and coagulating antiseptic wound gel 

was applied. All surgical instruments used were sterilized with ethanol.

Figure 4.1. The position of the incision made on the individual blacktail, D. capensis for the 
insertion of the heart rate logger.
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After surgery, the fish was immediately placed into a rectangular 250 L tank, which formed 

part of a 800 L recirculating system that was dosed with 2-phenoxyethanol (0.2 ml. L_1), in a 

weighted foam sling that kept the fish suspended in an upright position (Figure 4.2). The 800 

L recirculating system was aerated with air stones, one in the sump and one in the rectangular 

250 L tank. Temperature was maintained at 20.0 °C and monitored using an Ibutton 

temperature logger placed at the bottom of the tank. The tank had two inflows, one to regulate 

water circulation and temperature, and the other to maintain fish respiration. The respiratory 

inflow comprised of a plastic aquarium pipe that was fitted with a PVC pipe nozzle placed into 

the mouth of the fish (Figure 4.2). The flow rate of this respiratory inflow was kept constant at 

1 L.min-1.

Figure 4.2. The position of an individual blacktail (Diplodus capensis) maintained throughout 
experiments in a weighted sling with a respiratory inflow valve.

Anaesthetized fish were stabilized at the acclimation temperature (20 ° C) for one hour in this 

position in order to record the basal heart rate. After the one-hour period, the fish was removed 

from the sling and intraperitoneally injected with a solution of atropine sulphate (Sigma- 

Aldrich; 1.2 mg.kg-1) to inhibit vagal tonus to the heart, as well as a saline solution of 

isoproterenol (Sigma-Aldrich; 1.2 |ig.kg_1) to stimulate cardiac adrenergic P-receptors 

(Casselman et al., 2012; Chen et al., 2015). The fish was then returned to the sling and the
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heart rate of the individual was recorded using the heart rate logger for a further three hours. 

After the three-hour period, the experiment was terminated, the individual removed from the 

tank, and euthanized using a lethal dose (0.5 ml. L_1) of 2-phenoxyethanol. The heart rate 

logger was then recovered, rinsed, dried and placed in the communication box in order to 

retrieve the heart rate data from the experiment. The remaining seven D. capensis individuals 

were then tested following the same procedure. The only variable that differed, however, was 

the logger position, either sideward (n = 4) or upwards (n = 4).

4.2.3.2 Estimation o f fHmax indicators

The experiments followed the methodology for the pilot study described above. Fourteen adult 

D. capensis were used for these experiments. Prior to the estimation of /Hmax experiments, 

individual D. capensis were placed into a rectangular 250 L tank and the temperature was 

lowered from 18.0 °C to 14.0 °C within a two-hour period (2.0 °C/h decrease) using a chiller 

(Hailea, HS-90 A). Each individual was then anaesthetized and taken for surgery to insert the 

heart rate logger sideward (the optimal position). The individual was then placed in a different 

rectangular 250 L tank which formed part of a 800 L recirculating system that was dosed with 

2-phenoxyethanol (0.2 ml. L_1) in a sling and was left to acclimate at 14.0 °C for a further hour 

in an anaesthetized state. Five minutes after the intraperitoneal injections, the heart rate logger 

was set to start recording and the water temperature was raised using an AquaHeat 9.2 kW 

pump at 7.0 °C/h from 14.0 to 30.0 °C. At the end of the three-hour experiment, the individual 

fish was removed from the sling and tank and a blood sample was taken from the caudal vein 

using an 80 |il capillary tube. Fish were then euthanized, and the logger was retrieved. The 

sacrificed fish then underwent a full biological evaluation whereby gonad maturity stages were 

assigned macroscopically following Griffiths et al. (2002) (refer to Appendix A for 

macroscopic maturity criteria). The capillary tube was then placed into a capillary centrifuger 

(EinsSci E-C14-H24P, Spellbound Laboratory Solutions, South Africa) at 6000 g for 10 

minutes at 25 °C to separate the red blood cells from the blood plasma to analyse blood 

haematocrit.

4.2.3.3 Data analysis

The Star-Oddi heart rate logger returns heart rates (BPM) validated using a quality index (QI) 

(QI 0 = great; QI 1 = good; QI 2 = fair; QI 3 = poor). Heart rates were filtered to use only
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values with a QI of zero and binned into 0.25 °C increments. Clear heart rate outliers were 

removed from the analysis if  they fell outside the 95% confidence interval of the mean heart 

rate for that respective temperature increment. If the heart rate loggers gave false fHmax 

recordings for an individual, it was excluded from the analysis. A trial on an individual was 

considered successful if  readings with a QI of zero spanning across at least 80% of the 0.25 °C 

temperature increments were found and if there was a uniform increase of heart rate with 

temperature when plotting the corresponding graph.

For the fHmax analysis, Tmax (the temperature at which fHmax reached its maximum absolute 

value), Ta r r  (the temperature at which fHmax first began to decrease rapidly after fHmax plateaued 

and results in cardiac arrhythmia), TAB (the first Arrhenius breakpoint temperature) and TQB 

(the breakpoint temperature for Q 10 offHmax) were determined from the responses of individual 

fish. The Ta b  was calculated using piecewise linear regression models (Quasi-Newton 

estimation) fitted to the Arrhenius plot [natural logarithm of the heart rate (ln (fHmax)) against 

the inverse of temperature in Kelvin (1000. K-1)] in order to locate the intersecting breakpoint 

between two regression lines (STATISTICA, v. 12, Statsoft). Heart rate data for temperature 

bins from 14 °C to the temperature corresponding to maximum fHmax were used for the Tab  

analysis (Ferreira et al., 2014). Tq b  (Incremental Q 10) for fHmax of individual fish was 

determined for every 1.0 °C increase using the following equation (Ferreira et al., 2014):

Q 10 =
10 / ( 72- 71)

where fH  and fH2 are heart rates at first T 1 and second T2 temperatures, respectively. The Q 10 

breakpoint (Tq b) is the temperature at which the incremental Q 10 drops below 2.0. This is 

because a Q 10 value of 2.0 is regarded as a regular rate of change of routine metabolism with 

temperature for fish (Drost et al., 2014). The Q 10 breakpoint was therefore estimated by finding 

the linear equation of the two consecutive points above and below 2.0 and calculating the 

temperature at which the two lines intersect (Quasi-Newton estimation, STATISTICA, v. 12, 

Statsoft).
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4.3 RESULTS

4.3.1 Dynamic method

The summer CTmax of adult D. capensis (32.0 °C) was lower than the juvenile CTmax (35.0 °C) 

(Table 4.1). The summer CTmin for both adults (8.4 °C) and juveniles (8.0 °C) were, however, 

similar (Table 4.1).

Table 4.1. Sample size, sample size at thermal limit, mean standard length (SL), mean weight 
(g), and CTmax and CTmin thermal limits for juvenile and adult blacktail, Diplodus capensis

Adult CTmax Juvenile CTmax Adult CTmin Juvenile CTmin
Sample size 3 18 3 18
Sample size at thermal 
limit 3 9 3 9
Length (mm SL) mean 
±SD 223.30 ± 3.51 70.83 ± 22.21 286.71 ± 2.08 50.21 ± 6.11
Range (mm SL) 190 -  260 41-111 270 - 310 42-63
Weight (g) mean ±SD 173.87 ± 95.73 16.98 ± 16.33 430.60 ± 108.29 2.57 ± 1.30
Range (g) 85.4 - 275.5 3-53 318 - 534 1 - 5
Field temperature (°C) 20.0 20.0 20.0 20.0
Thermal limit (°C) 
mean ± SD 32.0 ± 0.0 35.0 ± 0.4 8.4 ± 0.0 8.0 ± 0.2

4.3.2 Static respirom etry

The RMR in juvenile D. capensis increased across the test temperatures 9.0 °C; 13.0 °C; 18.0

°C and 28.0 °C and decreased slightly between the test temperatures of 28.0 °C and 34.0 °C

(Figure 4.3). For test temperatures, 9.0, 13.0 and 34.0 °C, three individuals were removed from

the analysis as a result of high stress related oxygen consumption readings. The RMR peaked

at 28.0 °C (0.63 ± 0.22 mg.O2 .kg-1.h-1), with the largest variation around the mean (0.05 ± 0.22

mg.O2 .kg-1.h-1; n = 6) (Figure 4.3). The lowest RMR was obtained at 9.0 °C (0.24 ± 0.03

mg.O2 .kg-1.h-1) with a variation around the mean of 0.00± 0.03 mg.O2.kg-1.h-1; n = 3), followed

by 13.0 °C (0.38 ± 0.04 mg.O2 .kg-1.h-1; variance = 0.00 ± 0.04 mg.O2 .kg-1.h-1; n =3), 18.0 °C

(0.57 ± 0.08 mg.O2 .kg-1.h-1; variance = 0.01 ± 0.08 mg.O2 .kg-1.h-1; n = 6) and 34.0 °C (0.56 ±

0.02 mg.O2 .kg-1.h-1; variance = 0.00 ± 0.02 mg.O2 .kg-1.h-1; n = 3) (Figure 4.3). The RMR values

for juvenile D. capensis differed significantly with temperature (ANOVA; F  (4, 20) = 5.31, p

= 0.006), with a Tukey’s post hoc test revealing a significant difference between the minimum
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test temperature (9.0 °C) and the 28.0 °C test temperature (Figure 4.3). The Q 10 (9 - 34) value for 

RMR of juvenile D. capensis was 1.40.

For MMR measurements, three individuals at the 9.0 °C and 13.0 °C test temperatures were 

removed as a result of low stress related oxygen consumption readings. The MMR was highest 

at 28.0 °C (1.01 ± 0.29 mg.O2 .kg-1.h-1; n = 6) and lowest at 9.0 °C (0.29 ± 0.02 mg.O2 .kg-1.h-1; 

n =3) (Figure 4.3). The variation around the mean increased with temperature and was greatest 

at 28.0 °C (variance = 0.08 ± 0.29 mg.O2 .kg-1.h-1) (Figure 4.3). The MMR was significantly 

different among four test temperatures (Kruskal-Wallis ANOVA; H  (3) = 13.53, p  = 0.004) 

(Figure 4.3). Dunn’s post- hoc tests revealed that there were significant differences in the MMR 

of D. capensis between 9.0 and 28.0 °C (Figure 4.3). No MMR data was obtained for juvenile 

blacktail at 34.0 °C due to a loss of equilibrium of individuals after chasing. For MMR, the Q 10 

(9-28) value was 1.94 respectively, higher than RMR value of 1.40, reported above.

RAS was lowest at the 9.0 °C (0.05 ± 0.05 mg.O2 .kg-1.h-1; n = 3) and 13.0 °C (0.05 ± 0.04 

mg.O2 .kg-1.h-1; n = 3) test temperatures and increased slightly for the 18.0 °C (0.13 ± 0.08 

mg.O2 .kg-1.h-1; n = 3) test temperature (Figure 4.3). The greatest RAS was observed for the 

28.0 °C (0.38 ± 0.29 mg.O2 .kg-1.h-1; n = 3) test temperature illustrating that an increase in RAS 

occurred with an increase in temperature (Figure 4.3). The RAS was significantly different 

among the four test temperatures (Kruskal-Wallis ANOVA; H  (3) = 10.67, p  = 0.014). RAS 

for the 34.0 °C test temperature was unattainable as a result of fish loosing equilibrium after 

chasing for the MMR measurements (Figure 4.3).
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Figure 4.3. Routine metabolic rate (RMR), maximum metabolic rate (MMR) and relative 
aerobic scope (RAS) of juvenile D. capensis at different test temperatures (9.0 °C, 13.0 °C, 
18.0 °C, 28.0 °C, 34.0 °C). Each point is a mean; error bars indicate ± SD. RMR is indicated 
in black, MMR is indicated in grey and RAS is indicated in a shaded light blue-grey. Different 
letters (a) and (b) represent significant differences in RMR and MMR between test 
temperatures (p < 0.05). MMR and RAS for the 34.0 °C test temperature was not measured as 
individuals lost equilibrium during the chasing period.

4.3.3 M aximum heart rate

4.3.3.1 Pilot study for the stimulation o f fHmax

The heart rate logger efficacy was low with high variability in the QI, except for individual 

two, seven and eight (Figure 4.6), where QI was primarily zero (corresponding to “great 

quality” results - see section 4.2.3.3). Of the eight individuals included in the pilot study, three 

trials were successful (> 70% “great quality” results) (Figure 4.6 ii, vii, viii). The heart rate 

logger in two of these (Figure 4.6 vii, viii) was positioned sideward, while the third was 

positioned upwards (Figure 4.6 ii). The sideward positioning was preferred as the heart rate 

logger was in direct contact with the body wall, making heart rate detection higher. Therefore, 

this sideward positioning was the chosen position of the logger deployment for the temperature
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ramping protocol (estimation of /Hmax indicators). Following the injections of the 

pharmaceutical stimulants for individuals seven and eight, the average heart rate increased from 

94 beats.min-1 to 111 beats.min-1 and from 88 beats.min-1 to 104 beats.min-1, respectively. 

These both remained at / Hmax for the duration of the four-hour experimental period (Figure 

4.7). For individual two, whose heart rate logger was positioned upwards, average heart rate 

rose from 93 beats.min-1 to 111 beats.min-1 following the pharmaceutical stimulant injections 

and remained approximately at 111 beats.min-1 for the duration of the four-hour experimental 

period (Figure 4.7). The effects of the pharmaceutical stimulants were observed within two to 

eight minutes of the injection and stabilized after approximately 20 minutes for individual two 

and individual eight. For individual seven, however, the effects of the pharmaceutical 

stimulants and the stabilization thereof was immediately observed (Figure 4.7). For individual 

three, the battery of the heart rate logger was depleted after an hour and thus the base heart rate 

was only recorded prior to the injections of the pharmaceutical stimulants.
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Figure 4.4. Percentage of great, good, fair and poor quality index (QI) values for the stimulation 
of /Hmax heart rate detections (by Star-Oddi heart rate loggers positioned either sidewards or 
upwards from a top view) of eight (i - viii) adult Diplodus capensis individuals.
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Figure 4.5. Raw heart rates (HR) of eight individual adult Diplodus capensis (i) -  (viii) before 
and after the addition of heart rate stimulant pharmaceuticals with the exception of individual 
(iii) whose heart rate logger stopped recording before stimulant injections. (i) = female (0.35 
kg); (ii) = male (0.37 kg); (iii) = female (0.36 kg); (iv) = female (0.38 kg); (v) = female (0.34 
kg); (vi) = male (0.47 kg); (vii) = male (0.62 kg); (viii) = female (0.47 kg). The black and white 
arrows indicate the time at which the drugs were administered. Grey lines represent the routine 
heart rate ( / h) prior to injections. The black solid line represents the maximum heart (/Hmax) 
following the injections.

96



4.3.3.2 Effect of temperature on fHmax

For the stimulation of the effect of temperature on /Hmax for 14 D. capensis individuals, 12 

individuals (with the heart rate logger positioned sideward) provided interpretable results with 

a high heart rate logger efficacy, whereby the desired QI of zero was attained ~95% throughout 

each trial (Figure 4.8).

Figure 4.6. Percentage of great, good, fair and poor quality index (QI) values for /Hmax heart rate 
detections (by Star-Oddi heart rate loggers positioned sideward) of 12 (i - xii) adult Diplodus 
capensis individuals.
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The /Hmax of all twelve adult D. capensis increased with increasing temperature, with an 

average peak of 152 beats.min-1 (± 17 SD) observed at 28.0 ± 1.7 °C (Figure 4.9, Table 4.2). 

The highest /Hmax was generally followed by a plateau and decline in heart rate, which signified 

the beginning of cardiac arrhythmia (Ta r r) (Figure 4.9). The average Ta r r  was 28.3 °C ± 1.7 

°C SD (Table 4.2).

Figure 4.7. Average change in maximum heart rate (/Hmax) of adult Diplodus capensis in 
response to increasing water temperature from 14.0 °C. Each point represents a mean; ± SD (n 
= 12). Blue vertical line represents the average maximum heart rate (/Hmax = 152 beats.min-1 at 
28.0 °C). Red vertical line represents the average arrhythmic temperature (Ta r r  = 28.3 °C).
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Table 4.2. Biological information, /Hmax index values for individual blacktail, Diplodus capensis in response to acute warming. /Hmax values 
include the cardiac arrhythmia temperature (Ta r r), Arrhenius break temperature (Ta b) and Q10 breakpoint temperature (Tq b).

Fish 1 Fish 2 Fish 3 Fish 4 Fish 5 Fish 6 Fish 7 Fish 8 Fish 9 Fish 10 Fish 11 Fish 12 Average SD
Sex Female Female Female Female Male Female Female Female Female Female Female Female

Reproductive Spent Mature Mature Mature Spent Mature Mature Mature Mature Mature Mature Mature

Stage Stage 4 Stage 5 Stage 2 Stage 2 Stage 4 Stage 2 Stage 2 Stage 2 Stage 2 Stage 2 Stage 2 Stage 2
Mass (kg) 0.65 0.46 0.81 0.66 0.57 0.56 0.64 0.48 0.34 0.42 0.31 0.23 0.49 0.17

Length (cm TL) 33.0 33.0 34.0 32.0 30.0 30.0 30.0 34.0 30.0 30.0 30.0 30.0 31.0 2.0
Relative

ventricular mass 2.0 1.4 2.4 2.1 1.9 1.9 2.1 1.4 1.1 1.4 1.0 0.8 1.6 0.5
(%)

Haematocrit (%) 26.3 17.9 20.4 10.6 20.0 15.1 23.8 21.0 33.9 16.1 26.3 25.0 22.8 7.3
Highest /Hmax 
(beats.min-1) 150 141 145 145 156 150 162 115 188 158 157 161 152 17

T at highest
/Hmax (°C)

30.0 29.5 29.5 26.0 27.8 28.8 25.5 30.5 28.0 26.5 27.3 26.8 28.0 1.7

Ta r r  (°C) 30.3 29.8 29.8 26.3 28.0 29.0 25.8 30.8 28.3 26.8 27.5 27.0 28.3 1.7

Ta b  (°C) 20.5 20.4 21.3 23.4 21.3 20.5 20.4 21.0 20.2 19.9 20.6 19.8 20.8 1.0

Tq b  (°C) 22.0 19.0 20.2 19.6 21.4 21.3 20.8 21.7 21.9 19.9 21.0 22.5 20.9 1.1
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The individual piecewise linear regression models returned an average Arrhenius break point 

temperature (Ta b) of 20.8 °C ± 1.0 °C SD (Figure 4.10, Table 4.2). The Q10 breakpoint (Tq b ) 

was similar to the Ta b , ranging from 19.0 to 22.5 °C with an average of 21.0 °C ± 1.0 °C SD 

(Figure 4.11, Table 4.2).

Figure 4.8. Average Arrhenius plots of the natural log of maximum heart rate (ln (/Hmax)) 
against the inverse temperature in Kelvin (1000 K _1) of adult Diplodus capensis. Each point is 
a mean; error bars indicate ± SD (n = 12). The red vertical line represents the average Arrhenius 
breakpoint temperature (Ta b  = 20.8 °C).
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Figure 4.9. Average incremental Q10 analysis of /Hmax for 1.0 °C increments of adult Diplodus 
capensis. Each point is a mean; error bars indicate ± SD (n = 12). The grey horizontal solid line 
represents the average Q10 breakpoint (Q10 < 2.0) and the red vertical line represents the 
incremental Q10 breakpoint temperature (Tq b  = 21.0 °C).

4.4 DISCUSSION

To understand the physiological changes of a model species D. capensis to increasing 

temperatures, a comprehensive multi-method physiological assessment of their thermal 

tolerance and performance was undertaken at two life stages using the dynamic method for 

juveniles and adults, static respirometry for juveniles, and maximum heart rate for adults under 

conditions of acute warming. Results for the use of the dynamic method indicated that the upper 

critical thermal limits (CTmax) for juvenile D. capensis (35.0 °C) were higher than for the adults 

(32.0 °C), while lower critical thermal limits (CTmin) did not differ (juveniles = 8.0 °C; adults 

= 8.4 °C). Existing information on thermal physiology within fish species show that the 

windows of thermal tolerance in juveniles are wider than in larval and adult life stages (Portner, 

2006; Portner and Farrell, 2008). This is because, during the larval phase, the central organs
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responsible for regulating physiology are not yet fully developed (Portner et al., 2006) and their 

small body size, low metabolic scope and low energy reserves may negatively affect their 

survival as temperature increases (Brewer, 1976; Rijnsdorp et al., 2009). During the adult 

phase, oxygen supply capacity in relation to demand decreases as a result of them investing 

more metabolic energy into spawning, potentially making them more thermally sensitive to 

temperature change (Portner and Peck, 2010). During the juvenile phase, however, thermal 

windows widen in line with rising performance capacity at small body size making them less 

thermally sensitive to temperature increases (Portner and Peck, 2010). Results from this study 

for D. capensis are therefore consistent with the literature in that juveniles are more thermally 

tolerant to increases in temperature than their adult counterparts.

For juvenile D. capensis, using static respirometry to measure thermal tolerance and 

performance, results indicated that both routine (RMR) and maximum (MMR) oxygen 

consumption rates increased with test temperature from an acclimated temperature of 20.0 °C, 

and rapidly decreased beyond the 28.0 °C test temperature, where individual variance was 

highest. A study conducted by Kemp (2009) on juvenile D. capensis from the same region 

found that RMR increased with increasing water temperature and intraspecific variability was 

also at its highest at 28.0 °C. RMR for this study, however, was lower compared with Kemp's 

(2009) results, possibly due to the smaller sample size used for the trials. In addition, high 

individual variability for the juvenile D. capensis at the 28.0 °C test temperature could be at its 

highest compared with the other test temperatures due to slight differences in size and weight 

(see Calder, 1987). In a similar study, Pirozzi and Booth (2009) found that at 26.0 °C, “extra­

small” individuals (60.4±0.9 g) of a coastal marine estuarine-dependent species, the dusky kob 

Argyrosomus japonicus (Temminck and Schlegel, 1844), had the highest RMR oxygen 

consumption rates compared to all other size classes tested (including adults).

A study conducted on temperate region juveniles (6.5 ± 0.24 g) of the related sparid species, 

the gilthead seabream Sparus aurata (Linnaeus, 1758), reported that their highest oxygen 

consumption rates were 28.0 °C for RMR and MMR, with a rapid decrease thereafter (Requena 

et al., 1997). Although their research followed a comparatively different heating rate (1.0 

°C.day-1) to this study (1.0 °C.h-1), it suggests that oxygen consumption rates, predominantly 

MMR (juveniles of D. capensis at 34.0 °C test temperature for this study lost equilibrium), 

decrease rapidly beyond 28.0 °C for these two related species that occupy similar

102



biogeographic niches -  i.e. temperate regions, where temperatures are naturally not greater than 

30.0 °C. The native range of S. aurata is the warm-temperate Mediterranean coast which is 

subject to wide seasonal variation (Requena et al., 1997). Its distribution also overlaps with the 

congener of D. capensis, namely D. sargus (Floeter et al., 2008). Furthermore, after an 

exposure period of 12 days at 28.0 °C, juvenile S. aurata showed a further reduction in daily 

RMR and MMR oxygen consumption rates, coupled with an increase in mortality (Requena et 

al., 1997). This suggests that sparid juveniles may not be able to acclimate to and survive sea 

temperatures greater than 28.0 °C for extended periods of time (e.g. marine heatwaves) within 

temperate regions where temperatures are approaching those greater than 30.0 °C (Kemp, 

2009). Extrapolation across genera within the Sparidae, however, needs to be verified by 

extending thermal tolerance experiments to multiple species. Nevertheless, evidence from this 

study for juvenile D. capensis demonstrated this, with further support of a CTmax of 35.0 °C 

obtained from the dynamic method and as a consequence, oceanic temperature changes may 

negatively affect its metabolic processes, in turn influencing its vertical, seasonal and 

latitudinal distribution (Gibson, 1982).

When assessing the Q10 (9 -  34 °C) for RMR and the Q 10 (9 -  28 °C) for MMR of juvenile D. capensis, 

MMR (1.94) oxygen consumption rate increased by a half in energy demand to the RMR (1.40) 

oxygen consumption rate. This suggests that juvenile D. capensis may not be able to 

compensate for the loss of metabolic energy with an increase in temperature under increased 

levels of activity. This sensitivity may have accounted for the loss of equilibrium experienced 

by all individuals at the 34.0 °C test temperature for MMR. To support this, Kemp (2009), 

using RMR, showed that D. capensis with a Q 10 (14- 28 °C) of 2.07 was more temperature sensitive 

than Caffrogobius caffer (Gunther, 1874) which had a Q 10 (14 -28 °C) of 1.83 because C. caffer is 

able to metabolically adapt to temperature in the dynamic intertidal environment and 

demonstrated low levels of spontaneous activity under thermal stress, unlike D. capensis. In 

addition, Requena et al. (1997) also demonstrated that S. aurata exhibited an increased 

metabolic response to temperature for MMR [Q10 (20 -  28 °c ) = 2.7].

The use of internal heart rate loggers successfully measured maximum heart rate on adult D. 

capensis (86% success rate). It was also possible to identify the average Ta b  (20.8 °C), Tq b  

(21.0 °C) and Ta r r  (28.3 °C) over a simulated warming event. The high success rate for heart 

rate logger efficacy for this study, when compared with similar studies on sparids (Skeeles et
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al., accepted; Muller et al., accepted), may most likely be attributed to optimal placement 

(directly below the origin of the pectoral fin, posterior to the pericardium membrane) and 

positioning (sideward results > upward results) of the logger, identified during pilot studies. 

Skeeles et al. (accepted) examining thermal performance of the endemic red roman 

Chrysoblephus laticeps (Valenciennes, 1830) placed the loggers further back in line with the 

origin of the pelvic fin and positioned the loggers upwards which may have resulted in a lower 

success rate being obtained (60%).

The successful maximum heart rate performance indices identified for adult D. capensis (TAB 

= 20.8 °C; Tq b  = 21.0 °C; Ta r r  = 28.3) were comparable to values of heart indices obtained 

for C. laticeps (Ta b  = 19.1 °C; Tq b  = 19.1 °C; Ta r r  = 25.5 °C) over an acute warming event 

(Skeeles et al., accepted). This similarity in results from the two studies could be due to all the 

specimens being exposed to the same temperature ramping range (14.0 -  30.0 °C) and 

procedure, both species having similar temperate distributions (D. capensis is, however, more 

coastal compared to C. laticeps) and/or belonging to the same family (Sparidae), whereby 

specific genetic adaptations may allow this family to have similar thermal tolerance responses 

(Schaefer and Ryan, 2006).

When comparing maximum heart rate thermal indices to the CTmax for adult D. capensis, CTmax 

was nearly 4.0 °C higher that Ta r r  (28.3 °C), 11.2 °C higher than Ta b  (20.8 °C) and 11.1 °C 

higher than Tq b  (20.9 °C). This comparison, functionally, suggests that due to the large 

difference between Ta b /Tq b  and CTmax, adult D. capensis have a wide thermal window (~11.0 

°C) in which / nmax can increase, which is typical of a eurythermic nature (Sidhu et al. 2014). 

However, even though this window is wide, there is still the possibility that the effective 

physiological response may not cope with an increase in temperature. In addition, due to the 

small difference between Ta r r  and CTmax (3.7 °C), / nmax is potentially unable to keep up with 

the Q10 effect of warming on tissue oxygen demand (Sidhu et al. 2014), if  the Q10 for aerobic 

scope is > 2.0 (Taylor et al., 2005), and may indicate that adult D. capensis may be vulnerable 

to further temperature increases.

Interestingly, the Tq b  and Ta b  was similar for the adult D. capensis. This is not unusual in

eurythermic fish species. For example, Sidhu et al. (2014) demonstrated that for eurythermal

Danio species there was a 0.5 °C difference between Ta b  and Tq b , consistent with this study

(0.1 °C difference) and the other adult sparid species C. laticeps (0.1 °C difference) (Skeeles
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et al., accepted). This similarity between Tq b  and Ta b  (despite very different methods of 

estimation) for eurythermal species thus provides some verification of a mechanistic 

relationship between the two indices, suggesting that, regardless of species, with an increase in 

temperature beyond Ta b /To p t , metabolism begins to decrease at the same point at which the 

oxygen demand becomes excessive (Q10 for aerobic scope > 2.0). Functionally, this suggests 

that maximum heart rate can increase for adult D. capensis (and other eurythermic species) at 

higher temperatures, but metabolic cost and energy expenditure to maintain this may determine 

its upper bound. In the case of stenothermic species, metabolism beyond Ta b /To p t  may begin 

to decrease before or after the oxygen demand becomes excessive resulting in a larger 

difference between Ta b  and Tq b  (Chen et al., 2015; Logan and Buckley, 2015).

The high metabolic cost incurred by eurythermic fish to acclimate to a broad thermal range 

may also explain why the margin between Ta r r  and CTmax is narrow for adult D. capensis. 

Beyond Ta r r , which in this instance may alternatively serve as the upper Tp e j, the transition to 

CTmax may be narrow, resulting in a rapid decline in oxygen, causing oxidative stress, a heat 

shock response, anaerobic metabolism and finally the denaturation of heat shock proteins 

(Portner et al., 2017) at lesser extremes of temperature for adult D. capensis (32.0 °C) 

compared to juveniles of the same species. This observed narrower pattern in adults is unlike 

that observed by organisms experiencing extreme temperatures (e.g. macro-invertebrates) who 

have narrow active thermal ranges that lower their metabolic costs allowing them to tolerate 

anaerobically extreme temperatures by protective mechanisms (metabolic depression, e.g. 

Tomanek and Somero, 2002) (Portner et al., 2017).

The metabolic costs of withstanding and inhabiting warmer waters beyond Ta r r  (> 28.0 °C) 

for adults of this species are high and, therefore, may reduce the energy available for 

reproduction at higher temperatures. Many of the species belonging to the family Sparidae are 

serial spawners and have adopted a bet-hedging spawning strategy (asynchronous spawning) 

over an extended season to account for variability in egg and larval survival (Robertson, 1991). 

Diplodus capensis extends its spawning season up to five months during summer, where 

temperatures may be cooler as a result of upwelling events (Mylonas et al., 2011). If water 

temperatures are too high, however, there is unlikely to be sufficient egg development and 

spawning events. This may explain why adult D. capensis does not spawn at temperatures
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higher than 20.0 °C in summer as examined by Potts et al. (2014) which further coincides with 

the Arrhenius breakpoint temperature for this study (Ta b  = 20.8 °C).

To improve results of using this multi-method approach, recommendations to the study need 

to be discussed. Firstly, sample sizes for the adult D. capensis CTmax and CTmin experiments, 

as well as the static respirometry experiments for the juvenile D. capensis need to be increased. 

Future work should evaluate when is the best time of day to conduct RMR and MMR 

measurements as this has not been established for this species as yet. Secondly, finer scale size 

intervals for the juveniles in the respirometry experiments need to be done to possibly identify 

refined ontogenetic levels of thermal tolerance. Lastly, static respirometry experimental trials 

on adult D. capensis need to be included as well as the larval life stages of D. capensis to 

understand the metabolic physiology of this species through the main life stages.

In conclusion, when evaluating the results of the multi-method approach between juvenile and 

adult D. capensis, juvenile D. capensis had a higher thermal tolerance and optimal temperature 

compared with the adults, suggesting that there are ontogenetic differences in thermal tolerance 

for this species. This may be a result of water temperatures being more variable in nursery 

habitats (estuaries and intertidal rocky shore habitats) than in the adjacent marine coastal zone. 

Thermal performance appears to decrease above 28.0 °C for both life stages. This suggests that 

if  ocean temperatures in this temperate region increase rapidly above 28.0 °C as a result of 

projected climate or heatwaves, survival of both life stages for this species may be limited. This 

further implies that for this family and similar warm-temperate fish species, ocean warming 

may result in sub-optimal conditions.

In addition, the use of the multi-method proved successful, allowing for a more refined 

representation of extreme tolerance limits and pejus temperatures for both juvenile and adult 

D. capensis as opposed to just using one method. Furthermore, maximum heart rate 

measurements using internal Star-Oddi heart rate loggers showed much promise (reliable 

thermal tolerance and performance indices, quick turn over time and cost effective) and should 

be considered in future studies to quantify the thermal physiology of marine eurythermal 

species. Due to the large size of the heart rate loggers, however, the use of complimentary 

techniques such as exterior electrodes or infrared technology (see Chapter 5) should be 

developed for the measurement of maximum heart rate on earlier life stages.
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CHAPTER FIVE: CRITICA L THERM AL MAXIMA (CTmax) OF MUSSELS PERNA 

PERNA AND CRABS PARASESARMA CATENATUM  ASSESSED USING HEART

RATE MEASUREMENTS

5.1 INTRODUCTION

In te r tid a l m a c ro - in v e r te b ra te s  a re  e c to th e rm s  an d , as su ch , th e ir  b o d y  te m p e ra tu re s  a re  d ire c tly  

in f lu e n c e d  b y  e x te rn a l c lim a tic  fa c to rs  (H e lm u th  et al., 2 0 0 2 ; H e lm u th  et al., 2 0 0 6 ) . A m b ie n t  

te m p e ra tu re , th e re fo re , h a s  e ffe c tiv e  d ire c t im p a c ts  o n  th e ir  in te rn a l p ro c e s s e s  (p h y s io lo g y )  

(J0rg e n se n  et al., 2 0 1 7 )  a n d  m a y  b e  th e  m o s t  in f lu e n tia l  e x te rn a l f a c to r  a ffe c tin g  th e ir  

d is tr ib u tio n  a n d  su rv iv a l (S o m e ro , 2 0 0 2 , 2 0 0 5 ). In  c o m p a r is o n  to  f ish  sp e c ie s , w h o  h a v e  a 

g re a te r  lo c o m o to ry  c a p a c ity  ( in  th e ir  ju v e n i le  a n d  a d u lt  l ife  s ta g e s )  a n d  a re  a b le  to  c o lo n iz e  

d if fe re n t  h a b ita ts  to  e sc a p e  te m p e ra tu re  e x tre m e s  (F a n g u e  a n d  B e n n e tt, 2 0 0 3 ; T a y lo r  et al., 

2 0 0 5 ; M a d e ira  et al., 2 0 1 2 a ), in te r tid a l m a c ro - in v e r te b ra te s  a re  o f te n  se d e n ta ry  o r  se ss ile , 

fo rc e d  to  tid a l re g im e s  o f  im m e rs io n  a n d  e m e rs io n  a n d  e x tre m e  d a ily  te m p e ra tu re  v a ria tio n s . 

A s  a  re su lt, th e y  o f te n  l iv e  c lo se  to  th e ir  u p p e r  a n d  lo w e r  th e rm a l l im its  a n d  re ly  m o s tly  on  

m o rp h o lo g ic a l, p h y s io lo g ic a l  a n d  b e h a v io u ra l  a d a p ta tio n  in  o rd e r  to  s u rv iv e  (U n d e rw o o d , 

1979 ; P o r tn e r  a n d  F a rre ll, 2 0 0 8 ; P ru s in a  et al., 2 0 1 4 ; H u a n g  et al., 2 0 1 5 ) . A s  a  re su lt, m e a s u r in g  

th e  th e rm a l to le ra n c e  a n d  p e rfo rm a n c e  o f  in te r tid a l m a c ro - in v e r te b ra te s  f ro m  d if fe re n t 

in te r tid a l h a b ita ts  m a y  h e lp  u s  u n d e rs ta n d  h o w  d if fe re n t  sp e c ie s  a re  a d a p te d  to  th e ir  p re s e n t 

d a y  e n v iro n m e n ts  a n d  to  p re d ic t  w h a t  th e  e ffe c ts  o f  p ro je c te d  c lim a te  c h a n g e  m a y  b e  o n  th e ir  

p h y s io lo g y .

P re v io u s  th e rm a l to le ra n c e  s tu d ie s  p e rfo rm e d  o n  in te r tid a l m a c ro - in v e r te b ra te s  sh o w  th a t  h e a r t  

ra te  m e a s u re m e n t is  a  fa ir ly  s im p le  a n d  p ra c tic a l te c h n iq u e  to  m o n ito r  th e  p h y s io lo g ic a l 

re s p o n s e s  u n d e r  a c u te  h e a tin g  in  o rd e r  to  d e te rm in e  th e ir  u p p e r  c ritic a l th e rm a l l im its  (C T max) 

(S ti l lm a n  a n d  S o m e ro , 1996 ; S o m ero , 2 0 0 2 , 2 0 1 0 ; J 0rg e n s e n  et al., 2 0 1 7 ) . T h is  is  b e c a u s e  

u n d e r  a c u te  th e rm a l s tre ss , th e  d e p e n d e n c e  o n  a n a e ro b ic  m e ta b o lis m  le a d s  to  to x ic  b u ild -u p  o f  

a n a e ro b ic  b y -p ro d u c ts  (e .g . la c ta te )  a n d  a  sh o rt  su p p ly  o f  A T P  to  io n  m o tiv e  p u m p s  w h ic h  

re su lts  in  a  lo s s  o f  h o m e o s ta tic  c o n tro l, d e g e n e ra tio n  o f  io n  g ra d ie n ts , a n d  e v e n tu a lly  o rg a n  

fa ilu re  (e .g . h e a r t  fa i lu re )  (P o r tn e r  et al., 1999 ; F re d e r ic h  a n d  P o r tn e r , 2 0 0 0 ; P o r tn e r , 2 0 0 2 ). 

S u b se q u e n tly , h e a r t  fa i lu re  h a s  b e e n  p ro p o se d  as a  p ro x im a te  d e a th  in  so m e  m a c ro - in v e r te b ra te
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species (e.g. crustaceans, molluscs, gastropods), and the onset of cardiac failure has been used 

as an estimate of CTmax (Stillman and Somero, 1996; Somero, 2002, 2010).

on e  of the first methods used to determine the onset of cardiac failure in intertidal macro­

invertebrates was the measurement of changes in circulatory structures with electrical 

impedance. This method requires electrodes to be implanted into the pericardial cavity and 

although it is invasive, it is still frequently employed (Helm and Trueman, 1967; Burnett et al., 

2013). A more recent alternative uses an infrared light emitting diode that generates an electric 

signal that is electronically amplified and filtered (Depledge and Andersen, 1990; Chelazzi et 

al., 1999). This method has been applied extensively in macro-invertebrate physiological 

research as it is non-invasive, allows for multiple cardiac activities to be measured 

simultaneously, functions in both air and water, and is able to record cardiac activity 

continuously for long periods of time (Burnett et al., 2013).

A number of heart rate studies assessing the physiological responses to thermal stress using 

these above methods have been conducted on crustaceans and molluscs (e.g. DeFur and 

Mangum, 1978; Stillman and Somero, 1996; Chelazzi et al., 1999; Santini et al., 1999; 

Frederich and Portner, 2000; Rovero et al., 2000; Stenseng et al., 2005; Braby and Somero, 

2006; Marshall et al., 2011a, 2011b; Tagliarolo and McQuaid, 2015). Generally, these studies 

indicated that heart rate during heating ramps revealed an Arrhenius/Q10 breakpoint 

temperature below which heart rate increased linearly with temperature, and above which heart 

rate declined until the onset of cardiac failure, i.e. CTmax for a variety of crustaceans and 

molluscs (e.g. De Pirro et al., 1999; Nicholson, 2002; J0 rgensen et al., 2017). This trend, 

however, varies depending on the heating rate used (speed of ramping ranging from 4.0 °C. h- 

1 to 10.0 °C. h-1) (e.g. Stillman and Somero, 1996; Stillman, 2002; Braby and Somero, 2006; 

Jones et al., 2009; Kuo and Sanford, 2009; Marshall et al., 2011a; Tagliarolo and McQuaid, 

2015), acclimation temperature (e.g. Pickens, 1965; Hicks and McMahon, 2002; Stenseng et 

al., 2005), vertical distribution along the intertidal shore (low-shore, mid-shore, high-shore) 

(e.g. Pickens, 1965; Chelazzi et al., 2001; Dong and Williams, 2011), and

latitude/biogeographic region (e.g. Pickens, 1965; Logan et al., 2012; Tagliarolo and McQuaid, 

2015). In addition, both molluscs and crustaceans demonstrated a physiological strategy of 

either metabolic depression (bradycardia) or metabolic elevation (tachycardia) during emersion 

and/or immersion when thermally stressed close to their Arrhenius breakpoint temperatures
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(e.g. Helm and Trueman, 1967; MacMillen and Greenaway, 1978; Stillman and Somero, 1996; 

De Pirro et al., 1999; Guppy and Withers, 1999; Chelazzi et al., 2001; Dong and Williams, 

2011; Marshall et al., 2011a; Prusina et al., 2014; Tagliarolo and McQuaid, 2015).

Metabolic depression is a reduction in metabolic rate to below the normal resting value (Guppy 

and Withers, 1999; refer to Chapter 3). The extent of metabolic depression can vary remarkably 

for different species, from a minor lowering to 80% of resting, to commonly 5 -  40% of resting, 

to complete absence of measurable metabolism (i.e. cardiac arrest or acardia) and can last as 

long as a few hours, overnight, a season, or years (Guppy et al., 1994; Guppy and Withers, 

1999; Storey and Storey, 2004). Metabolic depression in some intertidal macro-invertebrates 

can be temperature independent, whereby energy is conserved by a neutral insensitive 

relationship between metabolism and temperature (Newell, 1969; Brown and Da Silva, 1979; 

Newell and Branch, 1980; Marshall and McQuaid, 1992; 1993; Boutet et al., 2009; Marshall 

and McQuaid, 2011; Marshall et al., 2011a) compared with the positive relationship proposed 

for all ectotherms in accordance with fundamental thermodynamics (Gillooly et al., 2001; 

Dillon et al., 2010). Furthermore, depressed temperature insensitive metabolism suggests that 

the relationship between energy gain and resting loss is different to that of the theoretical 

contexts for thermal adaptation (Marshall et al., 2011a). The best examples of macro­

invertebrates that display this zone of energy-conserving, temperature-insensitive metabolisms 

are bivalves and marine gastropods (Guppy et al., 1994). Conversely, metabolic elevation, 

indicates a high metabolic rate above the normal resting value as a result of increasing 

temperatures (deFur and Mangum, 1978; Chelazzi et al., 2001). Thermally induced metabolic 

elevation is thought to occur by nervous stimulation of thermoreceptors and the direct effect of 

temperature on the cardiomyocytes (Pickens, 1965; Trueman and Lowe, 1971) and may be 

achieved by means of oxidizing accumulated acids produced during anaerobiosis (repaying and 

oxygen debt) (Nicholson, 2002).

Other studies have also evaluated whether there are any differences in heart rate (t a b /Q 10) under 

acute heating between seasons. Studies on intertidal limpets have indicated that there are no 

differences between summer and winter maximum heart rates suggesting an absence of 

seasonal metabolic compensation (Marshall and McQuaid, 1994). In contrast, a study on an 

intertidal crab Pachygrapsus marmoratus (Fabricius, 1787) found that summer heart rate
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values were lower than winter heart rate values at corresponding temperature and body size, 

suggesting seasonal metabolic compensation (De Pirro et al., 1999).

The aim of this chapter is to report on the test conducted on whether heart rate performance 

provides supporting evidence for other thermal tolerance methods, and to compare the 

physiological responses to increasing temperatures before critical temperatures are reached 

within intertidal macro-invertebrates occupying different habitats between summer and winter. 

To do this, non-invasive infrared technology combined with the dynamic method (CTmax) was 

used to measure the cardiac activity of two macro-invertebrates, namely the sedentary brown 

mussel Perna perna from the intertidal low-rocky shore and the motile crab Parasesarma 

catenatum from the lower reaches of the Kariega Estuary, until upper critical temperatures were 

reached.

5.2 M ATERIALS AND METHODS

5.2.1 Study sites, m acro-invertebrate species and collection

Adult mussels P. perna of 40 -  120 mm TL, from the mussel beds found on the intertidal low- 

shore rock pool adjacent to the Kariega and Bushman’s estuaries, and adult crabs P. catenatum, 

of 15 -  25 mm TL from the salt marshes in the lower reaches of the Kariega Estuary were 

collected by hand and placed in plastic buckets containing aerated water from the capture site. 

Collections of both species were carried out in winter and summer. Perna perna were collected 

in July 2017 (winter; n = 8), August 2017 (winter; n = 12) and January 2018 (summer; n = 20). 

Parasesarma catenatum were collected in July 2017 (winter; n = 20) and January 2018 

(summer; n = 20). Perna perna and P. catenatum were not separated by sex as there was no 

difference in thermal endpoints (CTmax and CTmin) between females and males for both summer 

and winter (Chapter 3).

5.2.2 Experim ental setup and acclimation conditions

Immediately after collection, the specimens were transported to the AERP laboratory in 

Grahamstown. In the laboratory, P. perna and P. catenatum individuals were gently cleaned of 

any visible epibiont and acclimated for a minimum period of 36 hours in a temperature- 

controlled room with 12 h L/12 h D photoperiod before experimental trials began in order to
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reset metabolic stability. Both adult P. perna and P. catenatum were kept in two 90 L tanks, 

each containing approximately eight to ten individuals at any given time for a maximum of 

seven days to complete all experimental trials for both seasons. Temperature (°C), oxygen (%), 

pH (hand-held multi-parameter probe, United Scientific, Germany) and salinity (refractometer, 

Hannah Instruments, Germany) were monitored every second day before trials commenced. 

Seawater was continuously aerated using an air compressor. Mussels were fed using a 

commercial phytoplankton mix (PhytoGreen-M, Brightwell Aquatics) while crabs were fed 

moistened cat pellets once over 12 hours. The animals were starved for 24 hours prior to 

experimentation. Each individual was subjected to one experimental trial.

5.2.3 H eart ra te  ram ping procedure

The heart rate experiments were carried out by applying a non-invasive methodology 

developed by Depledge and Andersen (1990) and modified by Chelazzi et al. (1999) and 

Burnett et al. (2013), which used an infrared (IR) light emitting diode (LED; 5 mm,623 nm, 2 

V, 10 mA). This diode generates an electric signal that is amplified, filtered and coupled with 

a phototransistor detector (IR sensor) (Burnett et al., 2013) (Figure 5.1). At the beginning of 

each trial, three IR sensors were glued on to the shell or carapace of three individuals. For P. 

perna, the sensors were glued next to the mid-dorsal posterior hinge area, which corresponds 

best to the position of the heart (Burnett et al., 2013; Tagliarolo and McQuaid, 2015, 2016) 

(Figure 5.1), and for P. catenatum the sensor was glued onto the centre of the posterior 

cephalothorax (markings on the carapace), which is dorsal to the heart (Burnett et al., 2013) 

(Figure 5.1). The appendages of P. catenatum were bound prior to the attachment of the IR 

sensors to eliminate movement throughout the trial (Stillman and Somero, 1996).
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IR sensor glued to the 
shell of Perna perna
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conditioning
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transformer)
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of Parasesarma catenation
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P  perna  at 28 °C during summer

"hhhth
Analog to digital 

converter 
(LabView Chart 
Signal Express 

software)

Laboratory 
Laptop 

(heart rate of 
200S/s)

Example of heart rate signal of individual 
P. catenation at 28 °C during summer

Figure 5.1. Flowchart of the heartbeat signal from the attachment of the IR sensor for P. perna 
and P. catenatum to the data logging device (modified from Burnett et al., 2013).

Once the glue was dry and the IR sensor was securely attached, the three individuals were each 

placed in separate 100 ml containers containing seawater and an air stone and floated in a 

programmable water bath (GP 200, Grant Instruments) filled with distilled water (Figure 5.2) 

at the field/acclimation temperature (23 °C for summer and 17 °C for winter for both P. perna 

and P. catenatum) and left undisturbed for 15 minutes to allow recovery from handling before 

the start of each experimental trial. Preliminary tests showed that the heart rate signal stabilized 

10 to 15 min after handling for both P. perna (in accordance with Tagliarolo and McQuaid, 

2015, 2016) and P. catenatum.
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Figure 5.2. Experimental setup for measuring heart rate activity with an increase in 
temperature for mussels Pernaperna and crabs Parasesarma catenatum (left) whereby infrared 
sensors were attached to mussels/crabs and placed in 100 ml aerated containers floated in a 
programmable water bath (right).

At the start of each experimental trial, the three individuals were initially left to acclimate for 

a period of one hour at the field/acclimation temperature. Following this, temperature was then 

increased from the field/acclimation temperature for both species (23 °C for summer; 17 °C for 

winter) at a rate of 1 °C. hour-1 (0.02 °C. min-1, in relation to the heating procedure in Chapter 

3; Mora and Maya, 2006) until the CTmax endpoints (identified as the open gaping of mussels 

and a lack of righting response for crabs) were reached. Heart rate signals were recorded by 

the other end of the IR sensors which were connected to a recording system that included an 

amplifier and transformer (Powerlab 4/30, AdInstruments, Dunedin, New Zealand) and which 

converted voltage waveform data into visual data using the LabView Chart Signal Express 

(version 7.0) (http://www.ni.com/labview/signalexpress/) software with a sampling rate of 

200S/s (Figure 5.1). The temperature in the water bath was monitored using a T-type thermos- 

couple probe connected to the recording system. Each experimental trial lasted until the CTmax 

endpoint was reached. The test individuals were then removed, measured (total length, TL in 

mm), weighed (whole weight in grams) and euthanized using an overdose (> 0.2 ml. L-1) of 

clove oil. Trials were repeated on separate occasions until a sample size of >  20 individuals 

per species and per season was attained.
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5.2.4 H eart ra te  data analysis

Heart rates (HR) of individuals for both P. perna and P. catenatum were monitored 

continuously throughout the experimental trials using LabView software and were 

determined/calculated using the following steps: 1) inter-beat intervals were automatically 

extracted from the raw signal using global threshold detection criteria (identifies and classifies 

beats into a normal beat or into classes of beats based on the ECG waveform shape and 

temporal positions relative to surrounding beats; de Chazal and Reilly, 2003); 2) inter-beat 

intervals were smoothed (100 ms), filtered (2-3 Hz), auto levelled (normalize at a window of 

seven seconds and noise levels eliminated to 0V) and adjusted to detect minimum two-sided 

peak heights of 2 S.D every 10 seconds; 3) manual identification of obvious inaccurate inter­

beat intervals was performed to eliminate possible errors due to movement if gone undetected 

by customized detection settings (step 2); and 4) remaining accurate inter-beat intervals were 

averaged per minute (Burnett et al., 2013; Tagliarolo and McQuaid, 2015, 2016).

Heart rates (beats.min-1) of individuals were then binned into 0.5 °C temperature increments, 

and the median heart rate value within each temperature bin was used. The maximum heart rate 

(HRmax) and corresponding temperature (T at HRmax) were then recorded. In addition, the 

temperature at which heart rate first began to decrease rapidly after HRmax, referred to as the 

temperature of cardiac arrhythmia (TARR), for each individual was recorded. Arrhenius 

breakpoint temperatures, which represent a loss of protein function (Portner, 2002), were then 

determined (TAB) from Arrhenius plots for each individual. Arrhenius plots were constructed 

by plotting the natural logarithm of the heart rate (ln (HR)) against the inverse of temperature 

in Kelvin (1000. K-1). Piecewise linear regression models (Quasi-Newton estimation, 

STATISTICA, v. 12, Statsoft) were then fitted to the data in order to determine the breakpoint 

temperatures (Stillman and Somero, 1996; Tagliarolo and McQuaid, 2015; J0 rgensen et al., 

2017). For each individual, three Arrhenius breakpoint temperatures were identified: 1) the 

temperature that initiated temperature-insensitive metabolism (Tb p 1); 2) the upper limit for 

temperature-insensitive metabolism (Tb p 2); and 3) the final Arrhenius breakpoint temperature 

(Ta b), above which heart rate declines with further heating (Marshall et al., 2011a). 

Incremental Q 10 temperature values for HR of individuals were determined for every 1 °C 

increase using the following equation (Aagaard, 1996; Huang et al., 2015):
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Q 10 =
1 0 / (7 2 - 7 !)

where jm  andJHi are heart rates at first T1 and second T2 temperatures, respectively. From these 

incremental Q10 values, a Q10 breakpoint value was determined (where two lines intersect) for 

each individual, using piecewise linear regression models (Quasi-Newton estimation, 

STATISTICA, v. 12, Statsoft). Three incremental Q10 temperature values which had the same 

value as the calculated Q10 breakpoint value that either fell above or below the curve were then 

identified as: 1) the temperature that initiated temperature sensitivity of a physiological process 

due to an increase by 10.0 °C (Tq b 1); 2) the upper limit for temperature sensitivity of a 

physiological process due to an increase by 10.0 °C (Tq b 2); and 3) the final incremental Q 10 

temperature value (Tq b ), above which heart rate collapses with further warming.

Differences in HRmax, arrhythmia (Ta r r), breakpoints (Tb p 1, Tb p 2, Ta b) and incremental Q 10 

(Tq b 1, Tq b 2, Tq b) values between summer and winter were tested using t-tests. These analyses 

were performed in SigmaPlot 12.5. Normality of distributions were tested using a Shapiro- 

Wilk test and homoscedasticity was further tested using the Levene’s test. When normality and 

homogeneity assumptions were not met, Mann-Whitney U tests were performed in place of the 

parametric tests. Statistical significance for all analyses was set at a=0.05.
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5.3 RESULTS

5 .3 .1  M u s s e ls  (Perna perna)

5.3.1.1 Methodological efficacy

In summer, measurements from 17 P. perna individuals showed a heart rate (metabolism) that 

was either positively or neutrally (positive gradient, however, the value is small) related to an 

increase in temperature (Figure 5.3). The heart rate of one individual had a negative 

relationship with an increase in temperature and two more were considered unsuccessful as a 

result of irregular or extremely high/low heart rates, thought to be a result of a technical 

malfunction (Figure 5.4). In winter, measurements from 16 individuals had a heart rate that 

was either positively or neutrally related to an increase in temperature (Figure 5.5). Three 

individuals, conversely, were considered unsuccessful as they both had irregular heart rate 

recordings and a negative relationship with an increase in temperature, while one individual 

was unsuccessful as a result of irregular heart rate recordings (Figure 5.6). As a result, for both 

summer and winter, individuals with a heart rate that was neutrally or positively related with 

an increase in temperature were used for the evaluation of breakpoint temperatures (Ta b /Tq b ) 

due to a larger sample size.
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Figure 5.3. Heart rates (HR - binned into 0.5 °C temperature increments) of 17 individual 
mussels Perna perna in summer (a) -  (q) that had a positive or neutral response to an increase 
in water temperature from 23 °C until an endpoint was reached (open gaping mussels). Linear 
regression represented by a light grey solid trend line.
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Figure 5.4. Heart rates (HR - binned into 0.5 °C temperature increments) of three individual 
mussels Pernaperna in summer (a) -  (c) that had unsuccessful/irregular heart rate recordings 
(b and c) or a negative response to an increase in water temperature (a) from 23 °C until an 
endpoint was reached (open gaping mussels). Linear regression represented by a light grey 
solid trendline.
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Figure 5.5. Heart rates (HR - binned into 0.5 °C temperature increments) of 16 individual mussels Perna perna in winter (a) -  (p) that had a 
positive or neutral response to an increase in water temperature from 17.0 °C until an endpoint was reached (open gapping mussels). Linear 
regression represented by a light grey solid trendline.
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Figure 5.6. Heart rates (HR - binned into 0.5 °C temperature increments) of four individual mussels Perna perna in winter (a) -  (d) that had 
unsuccessful/irregular heart rate recordings and a negative response to an increase in water temperature (a -  c) or just unsuccessful heart rate 
recordings (d) from 17.0 °C until an endpoint was reached (open gapping mussels). Linear regression represented by a light grey solid trendline.
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5.3.1.2 Effect of temperature ramping on HR

Heart rates of P. perna in response to an increase in water temperature resulted in high 

individual variation for summer and winter (Figure 5.7). Heart rate peaked between a range of 

66 -  132 beats.min-1 and 60 -  138 beats.min-1 at temperatures ranging between 37.0 to 39.0 °C 

in summer and 35.5 to 37.0 °C in winter (Figure 5.7, Table 5.1, Table 5.2). Heart rates of 

individuals declined at temperatures above the maximum heart rate (Figure 5.7). The 

temperature at maximum heart rates (T at HRmax) were significantly different between summer 

and winter (Mann-Whitney U-test; U (31) = 9.0, p  = < 0 .01). Temperatures that triggered 

cardiac arrhythmia (Ta r r) ranged between 37.5 to 39.5 °C in summer (Figure 5.7, Table 5.1) 

and 36.0 to 37.5 °C in winter (Figure 5.7, Table 5.2). The summer and winter Ta r r  differed 

significantly from one another (Mann-Whitney U-test; U (31) = 9.0, p  = < 0 .01) with higher 

values in summer.

Individual piecewise linear regression models for the 17 P. perna for summer gave an initial 

temperature insensitive metabolism breakpoint temperature (Tb p 1) that ranged between 24.4 -

27.5 °C, an upper limit for temperature insensitive metabolism breakpoint temperature (Tb p2) 

between 29.0 -  33.0 °C, and a final Arrhenius breakpoint temperature (Ta b ; heart rate declines 

with further heating) between 34.0 -  37.0 °C (Figure 5.8, Table 5.1). For winter, individual 

piecewise linear regression models for 16 P. perna gave a Tb p 1 that ranged between 20.0 -  24.0 

°C, Tb p 2 between 25.0 -  30.5 °C and a Ta b  between 33.0 -  36.0 °C (Figure 5.8, Table 5.2). 

Between summer and winter, the Tb p 1 (T-test; T (31) = 13.1,p  = < 0.01), Tb p 2 (T-test; T (31) = 

4.0, p  = < 0.01), and Ta b  (Mann-Whitney U-test, U (31) = 55.0, p  = < 0.01) were significantly 

different, with summer being higher than winter for all breakpoint indicators.

The incremental Q 10 for HR of P. perna showed high individual variation and oscillated with 

an increase in temperature for both seasons and then decreased sharply around 38.0 °C for 

summer and 37.0 °C for winter (Figure 5.9). For summer, incremental Q10 values for the 17 P. 

perna yielded a Tq b 1 range between 24.0 - 28.0 °C, a Tq b 2 between 29.0 -  32.0 °C and a Tq b  

between 33.0 -  37.0 °C (Figure 5.9, Table 5.1). For winter, incremental Q 10 values for the 16 

P. perna yielded a Tq b 1 range between 20.0 -  23.0 °C, a Tq b 2 between 24.0 -  31.0 °C and a 

Tq b  between 33.0 -  36.0 °C (Figure 5.9, Table 5.2). Between summer and winter, the Tq b 1 

(Mann-Whitney U-test; U (31) = 0.0, p  = <0.01), Tq b 2 (T-test; T (31) = 3.1, p  = < 0.01), and
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t q b  (Mann-Whitney U-test; U (31) = 80.5, p  = 0.04) was significantly different, with summer 

being higher than winter.
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Figure 5.7. Heart rates (HR) of individual mussel Pernaperna in response to an increase in water temperature from 23.0 °C in (a) summer and
17.0 °C in (b) winter. Solid black lines represent the average HR for summer (n = 17) and winter (n = 16). Blue shaded blocks represent the range 
of temperatures occurring at the maximum heart rate (T at HRmax) for P. perna individuals for both summer (37.0 -  39.0 0C) and winter (35.5 -
37.0 0C). Red shaded blocks represent the range of arrhythmic temperatures (Ta r r) for P. perna individuals for both summer (37.5 -  39.5 0C) and 
winter (36.0 -  37.5 0C).
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Figure 5.8. Arrhenius plots of the natural log of heart rate (ln (HR)) against the inverse temperature in Kelvin (1000. K -1) for the mussel Perna 
perna for (a) summer and (b) winter. Solid black lines represent the average Ln (HRmax) for summer (n = 17) and winter (n = 16). Green shaded 
blocks represent the range of the first temperatures that initiated a temperature insensitive metabolism (Tb p 1) for summer (24.5 -  27.5 o q  and 
winter (20.0 -  24.0 0C). Blue shaded blocks represent the range of the upper limit temperatures for a temperature insensitive metabolism (Tb p 2) for 
summer (29.0 -  33.0 oc) and winter (25.0 -  30.5 0Q . Red shaded blocks represent the range of the final Arrhenius breakpoint temperatures (Ta b) 
for summer (34.0 -  37.0 oc) and winter (33.0 -  36.0 oc).
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Figure 5.9. Incremental Q 10 of heart rates (HR) for 1.0 °C increments for Perna perna for both (a) summer and (b) winter. Solid black lines 
represent the average incremental Q 10 for summer (n = 17) and winter (n = 16). Green shaded blocks represent the range of the first temperatures 
that initiated temperature sensitivity of a physiological process due to an increase of 10.0 oc (Tq b 1) for summer (24.0 -  28.0 oc) and winter (20.0 
-  23.0 0C). Blue shaded blocks represent the ranges of the upper limits for temperature sensitivity of a physiological process due to an increase by 
10.0 oc (Tq b 2) for summer (29.0 -  32.0 0C) and winter (24.0 -  31.0 0C). Red shaded blocks represent the ranges of the final incremental Q 10 

temperature values (Tq b ), above which heart rate collapses with further warming for summer (33.0 -  37.0 o q  and winter (33.0 -  36.0 o q . 
Horizontal grey solid line represents the average Q 10 breakpoint temperature (Q10 < 1.0).
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Table 5.1. Mass, length and HR values for individual mussels Pernaperna in response to acute warming for summer. HR index values include 
the Arrhenius breakpoint temperatures (Tb p 1, Tb p 2, Ta b), the Q 10 breakpoint temperatures (Tq b 1, Tq b 2, Tq b ), HRmax (beats.min-1) and cardiac 
arrhythmia temperature (Ta r r) beyond Ta b  and Tq b .

perna
perna mass (g)

Length 
(mm TL)

Tb p 1 Tb P2 Ta b Tq b 1 Tq B2 Tq b Q10
breakpoint

HRmax
(beats.min-1) 
beyond Ta b

T at HRmax 

(beyond 
Ta b)

Ta r r

1 12.90 48 25.0 30.5 36.0 27.0 30.0 35.0 1.0 90 38.5 39.0
2 14.43 62 27.0 33.0 35.5 26.0 30.0 36.0 0.9 66 37.5 38.0
3 9.36 52 26.0 31.0 36.0 28.0 32.0 37.0 1.0 84 38.0 38.5
4 15.56 62 25.5 30.0 35.0 25.0 31.0 35.0 1.0 123 38.5 39.0
5 11.96 52 25.5 29.5 36.0 26.0 31.0 37.0 1.1 96 39.0 39.5
6 9.69 45 25.5 31.5 36.0 26.0 30.0 34.0 1.0 84 38.5 39.0
7 14.14 59 25.0 29.5 36.0 26.0 31.0 36.0 1.0 132 38.0 38.5
8 9.02 41 27.0 30.5 36.0 25.0 31.0 36.0 1.0 90 38.5 39.0
9 20.26 69 27.0 30.5 36.0 25.0 29.0 33.0 1.1 84 38.5 39.0
10 25.30 77 26.5 30.0 35.0 27.0 32.0 36.0 1.0 108 38.0 38.5
11 14.44 58 26.5 31.5 36.0 25.0 29.0 34.0 1.1 108 38.0 38.5
12 12.95 60 25.0 30.5 36.5 26.0 29.0 37.0 1.0 120 39.0 39.5
13 6.27 42 27.5 32.0 37.0 27.0 30.0 34.0 1.0 96 39.0 39.5
14 18.31 69 25.0 29.0 36.0 26.0 31.0 35.0 1.0 108 37.0 37.5
15 14.89 53 26.0 30.5 36.0 27.0 32.0 35.0 1.2 102 37.0 37.5
16 14.41 53 25.5 30.5 35.5 24.0 29.0 34.0 1.2 114 37.5 38.0
17 19.69 65 24.5 30.0 34.0 26.0 29.0 35.0 1.0 114 37.0 37.5

Average 14.33 57 25.9 30.6 35.8 26.0 30.4 35.2 1.0 101 38.1 38.6
SD 4.68 10 0.9 1.0 0.7 1.0 1.1 1.2 0.1 17 0.7 0.7
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Table 5.2. Mass, length and HR values for individual mussels Perna perna in response to acute warming for winter. HR index values include the 
Arrhenius breakpoint temperatures (Tb p 1, Tb p 2, Ta b), the Q 10 breakpoint temperatures (Tq b 1, Tq b 2, Tq b ), HRmax (beats.min-1) and cardiac 
arrhythmia temperature (Ta r r) beyond Ta b  and Tq b .

Perna
perna mass (g)

Length 
(mm TL)

Tb p 1 Tb P2 Tab Tq b 1 Tq B2 Tq b Q10
breakpoint

HRmax
(beats.min-1) 
beyond Ta b

T at HRmax 

(beyond 
Ta b)

Ta r r

1 8.08 49 20.0 30.0 35.5 22.0 31.0 36.0 1.0 96 37.0 37.5
2 17.58 60 24.0 30.5 36.0 22.0 28.0 34.0 1.1 72 36.5 37.0
3 8.66 48 21.0 25.0 36.0 20.0 24.0 36.0 1.0 100 35.5 36.0
4 11.44 55 21.0 30.5 34.0 20.0 31.0 34.0 1.0 120 37.0 37.5
5 20.86 66 22.0 30.0 34.0 21.0 29.0 33.0 1.0 90 35.5 36.0
6 13.00 56 21.5 29.5 34.0 22.0 31.0 34.0 1.0 114 37.0 37.5
7 12.13 50 21.0 28.5 35.5 22.0 29.0 33.0 1.0 78 36.5 37.0
8 17.37 67 21.0 26.5 34.5 21.0 30.0 35.0 1.0 90 37.0 37.5
9 13.69 54 21.5 28.0 34.5 21.0 27.0 35.0 1.1 60 36.5 37.0
10 22.47 78 21.0 26.0 36.0 21.0 27.0 35.0 1.2 108 37.0 37.5
11 32.06 95 22.5 29.5 33.0 23.0 27.0 33.0 1.0 76 36.5 37.0
12 27.28 81 21.0 30.5 36.0 21.0 31.0 35.0 1.0 93 36.5 37.0
13 22.85 68 21.5 28.0 34.0 23.0 29.0 33.0 1.0 102 36.0 36.5
14 20.86 66 21.5 27.0 34.0 22.0 26.0 33.0 1.3 96 35.5 36.0
15 31.60 74 22.5 29.5 34.0 20.0 29.0 34.0 1.1 138 36.5 37.0
16 16.15 59 23.0 29.0 35.0 22.0 29.0 36.0 1.0 108 37.0 37.5

Average 18.51 64 21.6 28.6 34.8 21.4 28.6 34.3 1.1 96 36.5 37.0
SD 7.46 13 1.0 1.7 1.0 1.0 2.0 1.1 0.1 19 0.6 0.6
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5.3 .2  C rab s (Parasesarma catenatum)

5.3.2.1 Methodological efficacy

In summer, measurements from 15 P. catenatum individuals showed a heart rate (metabolism) 

that was either positively or neutrally related to an increase in temperature (Figure 5.10). Heart 

rates of two individuals had a negative relationship with an increase in temperature, two 

individuals were considered unsuccessful as a result of irregular heart rate recordings, and one 

individual had both irregular heart rate recordings and a negative relationship with temperature 

(Figure 5.11). In winter, measurements from 18 individuals showed a heart rate that was either 

positively or neutrally related to an increase in temperature (Figure 5.12) and two individuals 

had a heart rate that was negatively related to an increase in temperature (Figure 5.13). As a 

result, for both summer and winter, individuals with a heart rate that was neutrally or positively 

related with an increase in temperature were used for the evaluation of breakpoint temperatures 

(Ta b /Tq b ) due to a larger sample size.
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Figure 5.10. Heart rates (HR - binned into 0.5 °C temperature increments) of 15 individual 
crabs Parasesarma catenatum in summer (a) -  (o) that had a positive or neutral response to an 
increase in water temperature from 23.0 °C until an endpoint was reached (no righting 
response). Linear regression represented by a light grey solid trendline.
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Figure 5.11. Heart rates (HR - binned into 0.5 °C temperature increments) of five individual crabs Parasesarma catenatum in summer (a) -  (e) 
that had unsuccessful/irregular heart rate recordings and a negative response to an increase in water temperature (a), unsuccessful/irregular heart 
rate recordings (b and d) or heart rates negatively related (c and e) to an increase in water temperature from 23.0 °C until an endpoint was reached 
(no righting response). Linear regression represented by a light grey solid trendline.

130



Figure 5.12. Heart rates (HR - binned into 0.5 °C temperature increments) of 18 individual 
crabs Parasesarma catenatum in winter (a) -  (r) that had a positive or neutral response to an 
increase in water temperature from 17°C until an endpoint was reached (no righting response). 
Linear regression represented by a light grey solid trendline.
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Figure 5.13. Heart rates (HR - binned into 0.5 °C temperature increments) of two individual 
crabs Parasesarma catenatum in winter (a) and (b) that had a negative response to an increase 
in water temperature from 17.0 °C until an endpoint was reached (no righting response). Linear 
regression represented by a light grey solid trendline.
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5.3.2.2 Effect of temperature ramping on HR

Heart rates of P. catenatum in response to an increase in water temperature resulted in high 

individual variation (Figure 5.14). Heart rate peaked between a range of 75 - 144 beats.min-1 

and 60 - 115 beats.min-1 between 37.0 -  39.0 °C and 34.5 - 38.5 °C in summer and winter, 

respectively (Figure 5.14, Table 5.3, 5.4). Temperature at maximum heart rate (HRmax) of the 

individuals did differ significantly between summer and winter (Mann-Whitney U-test; U (31) 

= 63.0; p  = 0.01). Temperatures that triggered cardiac arrhythmia (Ta r r) ranged between 37.5

- 39.5 °C in summer and this was significantly different (Mann-Whitney U-test; U = (31) = 

62.0, p  = 0.01) to Ta r r  in winter which ranged between 35.0 -  39.0 ± 1.2 °C SD) (Figure 5.14, 

Table 5.3, 5.4).

Individual piecewise linear regression models for the 15 P. catenatum for summer gave an 

initial temperature insensitive metabolism breakpoint temperature (Tb p 1) that ranged between 

25.0 - 28.5 °C, an upper limit for temperature insensitive metabolism breakpoint temperature 

(Tb p 2) between 28.5 - 31.5 °C, and an Arrhenius breakpoint temperature (Ta b ; heart rate 

declines with further heating) between 34.5 - 37.0 °C (Figure 5.15, Table 5.3). For winter, 

individual piecewise linear regression models for 18 P. catenatum gave a Tb p 1 that ranged 

between 20.0 - 24.5 °C, Tb p 2 between 27.0 -  31.5 °C and a Ta b  between 33.5 - 37.0 °C (Figure 

5.15, Table 5.4). Between summer and winter, the Tb p 1 (T-test; T (31) = 11.1, p  = < 0.01) and 

Tb p2 (T-test; T (31) = 3.31, p  = < 0.01) was significantly different, with summer being higher 

than winter. For Ta b , however, there was no significant difference between summer and winter 

(T-test; T (31) = 1.29, p  = 0.21).

The incremental Q10 for HRmax of P. catenatum showed high individual variation and oscillated 

with an increase in temperature for both seasons and then decreased sharply around 37.0 °C 

for both summer and winter (Figure 5.16). For summer, 15 P. catenatum gave a Tq b 1 that 

ranged between 25.0 - 28.0 °C, a Tq b 2 between 29.0 - 33.0 °C and a Tq b  between 33.0 - 38.0 

°C (Figure 5.16, Table 5.3). For winter, 18 P. catenatum gave a Tq b 1 that ranged between 20.0

- 24.0 °C, a Tq b 2 between 28.0 - 32.0 °C and a Tq b  between 33.0 - 37.0 °C (Figure 5.16, Table 

5.4). Between summer and winter, Tq b 1 (Mann-Whitney U-test; U (31) = 0.00, p  = <0.01) was 

significantly different, with summer being higher than winter. For both Tq b 2 (T-test; T (31) =

133



1.63, p  = 0.11) and t q b  (Mann-Whitney U-test; U (31) = 112.0, p  = 0.39), however, there was 

no significant difference between summer and winter.
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Figure 5.14. Heart rates (HR) of individual crab Parasesarma catenatum in response to an increase in water temperature from 23 °C in (a) summer 
and 17 °C in (b) winter. Solid black lines represent the average HR for summer (n = 15) and winter (n = 18). Blue shaded blocks represent the 
range of temperatures occurring at the maximum heart rate (T at HRmax) for P. catenatum individuals for both summer (37.0 -  39.0 0C) and winter 
(34.5 -  38.5 0C). Red shaded blocks represent the range of arrhythmic temperatures (Ta r r) for P. catenatum individuals for both summer (37.5 -
39.5 0C) and winter (35.0 -  39.0 0C).
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Figure 5.15. Arrhenius plots of the natural log of heart rate (ln (HR)) against the inverse temperature in Kelvin (1000. K-1) for the crab Parasesarma 
catenatum for (a) summer and (b) winter. Solid black lines represent the average Ln (HRmax) for summer (n = 15) and winter (n = 18). Green 
shaded blocks represent the range of the first temperatures that initiated a temperature insensitive metabolism (Tb p 1) for summer (25.0 -  28.5 0C) 
and winter (20.0 -  24.5 0C). Blue shaded blocks represent the range of the upper limit temperatures for a temperature insensitive metabolism (Tb p2) 
for summer (28.5 -  31.5 0C) and winter (27.0 -  31.5 0C). Red shaded blocks represent the range of the final Arrhenius breakpoint temperatures 
(Ta b) for summer (34.5 -  37.0 0C) and winter (33.5 -  37.0 0Q.
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Figure 5.16. Incremental Q 10 of heart rates (HR) for 1.0 °C increments for Parasesarma catenatum for both (a) summer and (b) winter. Solid 
black lines represent the average incremental Q 10 for summer (n = 15) and winter (n = 18). Green shaded blocks represent the range of the first 
temperatures that initiated temperature sensitivity of a physiological process due to an increase of 10.0 0C (Tq b 1) for summer (25.0 -  28.0 0Q and 
winter (20.0 -  24.0 0Q. Blue shaded blocks represent the ranges of the upper limits for temperature sensitivity of a physiological process due to 
an increase by 10.0 0C (Tq b 2) for summer (29.0 -  33.0 0Q and winter (28.0 -  32.0 0Q. Red shaded blocks represent the ranges of the final 
incremental Q 10 temperature values (Tq b ), above which heart rate collapses with further warming for summer (33.0 -  38.0 0Q and winter (33.0 -  
37.0 0C). Horizontal grey solid line represents the average Q 10 breakpoint temperature (Q10 < 1.0).
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Table 5.3. Mass, length and HR values for individual crabs Parasesarma catenatum in response to acute warming for summer. HR index values 
include the Arrhenius breakpoint temperatures (Tb p 1, Tb p 2 , Ta b), the Q 10 breakpoint temperatures (Tq b 1, Tq b 2 , Tq b ), HRmax (beats.min-1) and 
cardiac arrhythmia temperature (Ta r r) beyond Ta b  and Tq b .

Parasesarma
catenatum mass (g)

Length 
(mm TL)

Tb p 1 Tb P2 Tab Tq b 1 TQB2 Tq b Q10
breakpoint

HRmax
(beats.min-1) 
beyond Ta b

T at HRmax 

(beyond 
Ta b)

Ta r r

1 6.22 23 25.0 31.0 36.0 28.0 33.0 38.0 1.0 144 39.0 39.5
2 2.16 17 26.0 31.0 35.5 27.0 31.0 37.0 1.0 120 39.0 39.5
3 1.83 17 26.0 30.5 36.5 25.0 31.0 36.0 1.0 75 38.5 39.0
4 1.88 16 26.5 32.5 36.0 26.0 29.0 35.0 1.1 90 39.0 39.5
5 4.13 19 25.5 31.0 35.5 25.0 31.0 35.0 1.1 78 39.0 39.5
6 2.62 19 26.0 30.5 35.0 26.0 30.0 37.0 1.0 144 38.5 39.0
7 2.18 17 25.5 29.5 35.0 27.0 30.0 33.0 1.0 96 37.0 37.5
8 3.42 20 26.5 30.0 34.5 27.0 30.0 35.0 1.0 102 37.0 37.5
9 4.26 19 27.0 30.0 36.5 26.0 30.0 35.0 1.1 102 39.0 39.5
10 4.45 20 28.5 31.5 35.5 27.0 31.0 36.0 1.3 102 37.0 37.5
11 2.08 15 25.5 31.5 35.5 28.0 32.0 35.0 1.0 102 39.0 39.5
12 2.61 18 25.5 31.5 36.5 26.0 31.0 34.0 0.9 84 38.5 39.0
13 2.28 18 28.0 32.0 37.0 28.0 31.0 35.0 1.0 120 39.0 39.5
14 2.21 18 25.5 28.5 36.0 27.0 31.0 35.0 1.1 90 38.0 38.5
15 2.01 17 26.0 30.5 36.0 27.0 30.0 35.0 1.1 110 37.5 39.0

Average 2.96 18.20 26.2 30.8 35.8 26.7 30.7 35.4 1.0 104 38.3 38.8
SD 1.27 1.93 1.0 1.0 0.7 1.0 1.0 1.2 0.1 21 0.8 0.8

138



Table 5.4. Mass, length and HR values for individual crabs Parasesarma catenatum in response to acute warming for winter. HR index values 
include the Arrhenius breakpoint temperatures (Tb p 1, Tb p 2 , Ta b), the Q 10 breakpoint temperatures (Tq b 1, Tq b 2 , Tq b ), HRmax (beats.min-1) and
cardiac arrhythmia temperature (Ta r r) beyond Ta b  and Tq b .

Parasesarma
catenatum mass (g)

Length 
(mm TL)

Tb p 1 Tb P2 Ta b Tq b 1 TQB2 Tq b Q 10
breakpoint

HRmax
(beats.min-1) 
beyond Tab

T at HRmax 

(beyond 
Ta b)

Ta r r

1 2.29 16 23.5 29.0 36.0 21.0 31.0 35.0 1.1 112 37.0 37.5
2 1.29 13 22.5 31.5 37.0 24.0 32.0 35.0 1.1 108 38.0 38.5
3 1.21 12 20.5 29.5 35.5 20.0 28.0 36.0 1.1 96 38.5 39.0
4 2.65 17 20.5 28.0 35.5 21.0 29.0 36.0 1.0 82 38.5 39.0
5 3.30 16 21.5 29.5 34.5 21.0 31.0 35.0 1.0 90 38.5 39.0
6 2.81 17 22.5 31.0 35.5 21.0 31.0 34.0 1.0 60 38.5 39.0
7 3.43 20 20.5 29.0 36.0 21.0 31.0 35.0 1.0 60 38.5 39.0
8 2.84 19 21.0 28.0 36.0 22.0 29.0 35.0 1.0 78 38.5 39.0
9 2.47 19 20.0 31.5 36.5 22.0 31.0 37.0 1.0 72 37.0 37.5
10 3.27 19 20.0 29.5 36.5 21.0 30.0 36.0 1.0 108 36.0 36.5
11 3.22 17 21.5 30.0 34.5 21.0 30.0 36.0 1.0 115 37.5 38.0
12 4.07 20 22.0 30.0 35.5 20.0 29.0 36.0 1.1 92 37.5 38.0
13 3.46 18 23.0 27.0 35.5 20.0 31.0 34.0 1.1 114 37.0 37.5
14 2.86 18 24.5 31.5 34.5 23.0 31.0 34.0 1.0 102 37.5 38.0
15 3.23 20 21.5 27.0 34.5 22.0 28.0 33.0 1.0 78 36.5 37.0
16 3.55 18 22.5 28.0 36.5 20.0 29.0 34.0 1.1 115 38.0 38.5
17 5.23 22 21.0 28.5 34.0 21.0 30.0 35.0 1.0 96 35.0 35.5
18 4.42 20 23.0 29.0 33.5 24.0 31.0 34.0 1.1 114 34.5 35.0

Average 3.09 17.83 21.8 29.3 35.4 21.4 30.1 35.0 1.0 94 37.4 37.9
SD 0.97 2.50 1.3 1.4 1.0 1.2 1.2 1.0 0.1 19 1.2 1.2
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5.4 DISCUSSION

To understand the physiological responses of two intertidal macro-invertebrates, the brown 

mussel P. perna (Mollusca) and the crab P. catenatum (Arthropoda), to increasing temperatures 

from different habitats between summer and winter, heart rate performance was assessed using 

infrared technology. This approach, overall, indicated that both P. perna and P. catenatum from 

the intertidal rocky low-shore and the intertidal lower reaches of the Kariega Estuary, when 

submersed in water, had heart rates that were mostly positively or neutrally related to an 

increase in water temperature up until the final Arrhenius breakpoint temperature (Ta b), upon 

which heart rate began to fluctuate, reaching its maximum heart rate (HRmax) and further 

declined beyond cardiac arrhythmia (Ta r r) until its CTmax. Beyond Ta r r , however, some 

individuals of both species did increase their heart rate until CTmax was reached, and this 

individual variability may have been a result of size variation (van Erkom Schurink and 

Griffiths, 1992; Gillooly et al., 2001) or phenotypic plasticity (Stenseng et al., 2005; Sará and 

De Pirro, 2011; Logan et al., 2012).

Nevertheless, these positive or neutral trends in heart rate with increasing temperature for this 

study demonstrated that immersed P. perna and P. catenatum exhibited the physiological 

mechanism of temperature insensitive/independent depression, especially, within a particular 

temperature zone [initial (Tb p 1) to upper (Tb p 2) temperature insensitive metabolism zone] up 

until Ta r r  in order to cope under a period of acute temperature ramping (1.0 °C.h-1). Previous 

studies that have demonstrated the use of temperature insensitive metabolic depression include 

Boutet et al. (2009) working on vent mussels Bathymodiolus azoricus (Costel and Comtet, 

1999), who recorded that an increase in temperature triggered anaerobiosis (metabolic 

shutdown); and Marshall et al. (2011a) working on the intertidal snail Echinlittorina 

malaccana (Philippi, 1847), who showed that to overcome high body temperature (23.0 - 50.0 

°C) when exposed in air, these snails depress resting metabolism between 35.0 and 46.0 °C. 

Metabolic elevation, by a few P. catenatum individuals was used, especially upon reaching the 

onset of cardiac failure. Selected intertidal macro-invertebrates (e.g. fiddler crabs), may thus 

rely on increasing their metabolism after remaining in their burrows during high tide or 

withstanding anaerobiosis for 24 hours by actively moving around during low tide to feed under 

thermally increased conditions (Teal and Carey, 1967, Vernberg and Vernberg, 1968). Previous 

studies on barnacles inhabiting different habitats in higher shore regions out of water are
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exposed to high oxygen tensions, and can have a higher metabolic rate than those on the lower 

intertidal zone to cope with more variable environmental conditions (Augenfeld, 1967).

For P. perna, its temperature insensitive metabolism, demonstrated by three Arrhenius 

breakpoint temperatures (Tb p 1, Tb p 2 and Ta b), three incremental Q 10 breakpoint temperatures 

(Tq b 1, Tq b 2 and Tq b ) and cardiac arrhythmia (Ta r r), was significantly higher in summer 

compared with winter. In addition, the heart rates of P. perna individuals increased slightly 

beyond Tb p 2 , peaked beyond Ta b  and decreased beyond Ta r r  for summer and winter, which is 

possibly related to the abandonment of metabolic depression above Ta b  (Marshall et al., 

2011a). These results consistently suggest that shifts in physiological traits can occur in P. 

perna which may enable this species to survive extreme temperature variations, especially 

associated with intertidal habitats (Hicks and McMahon, 2002) and may allow for seasonal 

metabolic compensation.

Many intertidal molluscs such as P. perna have little or no capacity for temperature acclimation 

due to the dynamic and extreme environment they inhabit. Instead, they have developed the 

capacity for acute thermal metabolic depression within a portion of their normal ambient 

temperature range (Bayne et al., 1976; Newell et al., 1976; McMahon and Russel-Hunter, 

1977; Newell, 1979; Griffiths and Griffiths, 1987) which may be dependent on the rate of 

heating and the state of aestivation (Marshall et al., 2011a). The results of this study, including 

the temperature insensitive metabolism zone induced between 24.5 -  33.0 °C in summer and 

20.0 -  30.5 °C in winter (according to their Tb p 1 and Tb p 2 Arrhenius breakpoints), of P. perna 

submersed in water supports this notion. Similarly, research conducted on P. perna by 

Tagliarolo and McQuaid (2015) in the same region as this study identified a similar upper 

breakpoint temperature (Ta b) of 30.5 ± 3.1 °C when submersed in water, confirming their 

ability to maintain acute thermal depression and high upper critical thermal limits, especially 

during low tide when they are emerged to increased temperatures. The temperature insensitive 

metabolic depression for P. perna prevents wasteful metabolic expenditures (e.g. gaping) over 

short (tidal/diurnal) and long term (seasonal) ambient temperature fluctuations (McMahon and 

Ussery, 1995) and possibly provides a better chance of survival during very low winter and 

high summer temperatures. Reduced metabolism allows these animals to go into a state of 

aestivation under adverse environmental conditions as a means of extending their rest period 

to improve survival over fitness (Brown et al., 2004; Marshall and McQuaid, 2011).
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Interestingly, the Q 10 breakpoint values for P. perna, based on heart rates with increasing 

temperature, ranged from 0.9 to 1.2 for summer and winter in this study. Bayne (1976) recorded 

similar Q 10 breakpoint values (based on acute thermal regulation of oxygen consumption rate 

-  VO2) in Brazilian specimens of P. perna across a range of 1.2 -1.5, while van Erkom Schurink 

and Griffiths (1992) recorded Q 10 breakpoint values of 1.5 in South African P. perna. Values 

of Q 10 less than 1.8 in the upper half of the temperature range signifies a reduction in 

temperature sensitivity with increasing temperature (deFur and Mangum, 1978; De Wachter 

and McMahon, 1996) which further may indicate that P. perna from this study is displaying 

temperature insensitive metabolic depression in both summer and winter.

For P. catenatum, the temperature insensitive metabolic depression zone under temperature 

ramping was induced between 25.0 -31.5 °C in summer and 20.0 -  31.5 °C in winter according 

to their initial (Tb p 1) and upper (Tb p 2) Arrhenius breakpoints. These initial and upper Arrhenius, 

as well as Q 10 (Tq b 1 and Tq b 2) breakpoint temperatures, were significantly higher in summer 

than in winter. The final Arrhenius (Ta b) and Q 10 (Tq b) breakpoint temperature (Ta b), however, 

did not differ between summer and winter. These results suggest that the temperature 

insensitive metabolic depression zone (Tb p 1 -T b p2 ; Tq b 1 -  Tq b 2) for this species may vary 

according to seasonal water temperatures in the intertidal mudflats of the lower reaches of the 

Kariega Estuary in this region, but the final breakpoint temperature (Ta b), which is indicative 

of cardiac failure, may potentially be genetically fixed. Thermal tolerance and performance of 

marine crabs can be subject to phenotypic alteration within a thermal range (i.e. metabolic 

depression zone) (Cuculescu et al., 1998). However, beyond this thermal range (i.e. beyond 

Ta b) survival is limited because of the irreversible thermal history of individuals and parents 

of a particular species and their evolutionary selection (Tomanek and Somero, 1999; Schaefer 

and Ryan, 2006).

For several crustaceans, average incremental Q 10 temperatures range between 1.5 at high and 

4.0 at low temperatures (deFur and Mangum, 1978; Burton et al., 1980; Depledge, 1984; Zainal 

et al., 1992; De Wachter and Wilkens, 1996). The average incremental Q 10 temperature of P. 

catenatum for this study were 1.0 for both summer and winter during temperature ramping. 

This suggests that, due to a low incremental Q 10 value of 1.0 for both summer and winter (Q 10 

< 1.5), this species has a reduced sensitivity to temperature as shown in other crabs, such as the 

widespread Cancer magister (Dana, 1852) ranging from Alaska to Mexico in shallow coastal
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habitats (De Wachter and McMahon, 1996; De Wachter and Wilkens, 1996) and the 

widespread Callinectes sapidus (Rathbun, 1896) ranging from the western Atlantic Ocean to 

the gulf of Mexico in intertidal estuarine habitats (Burton et al., 1980). These results further 

supports the contention that intertidal crabs may be well adapted to conserving energy in both 

summer and winter (De Pirro et al., 1999).

P. catenatum was observed to have a higher thermal tolerance and cardiac performance 

compared to P. perna when exposed to temperature ramping, irrespective of it being mobile. 

A possible explanation for this could be that P. catenatum endures higher summer maximum 

water temperatures (and air temperatures) in the lower reaches of the Kariega Estuary (30.1 

°C) compared with the adjacent low shore rock pool habitat inhabited by P. perna which was 

on average 5.0 °C cooler (25.1 °C) (refer to Chapter 2). Other possible explanations could be 

attributed to metabolic trade-offs and distinct cardiac properties between these species.

In terms of metabolic trade-offs, P. perna may have a lower thermal tolerance and cardiac 

performance than P. catenatum, potentially as a result of investing more metabolic energy into 

byssal thread production for attachment to the substrate in order to withstand increased wave 

action on the intertidal rocky shore rather than investing metabolic energy into maximum heat 

resilience. The process of byssal thread production can be energetically expensive, forming 8 

to 15% of a mussel’s monthly energy expenditure (e.g. Griffiths and King, 1979) and as a 

result, energy requirements for tolerating maximum temperatures may be minimized (Zardi et 

al., 2007a).

In terms of cardiac performance, P. catenatum has cardiac myofibers which differ largely from 

those in bivalves, being striated rather than smooth, which have been shown to aid in lowering 

its thermal sensitivity (deFur and Mangum, 1978) and providing an evolutionary advantage in 

coping with thermal extremes. In addition, the short distance between the heart fibres in P. 

catenatum compared to P. perna is a very important factor which may limit the contractibility 

of the muscle in the heart, as well as other features of excitation contraction coupling (deFur 

and Mangum, 1978). In terms of temperature ramping or external thermal stress in this study, 

these characteristics of P. catenatum heart fibres were evident, enabling it to decrease its heart 

rate and metabolism (metabolic depression) in order to lower energy demand while still being 

functionally mobile.
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Overall, the heart rate index T at HRmax for both species correlated well with the thermal 

tolerance index CTmax for summer and winter (see Chapter 3). In addition, for both species, the 

onset of time-dependent cardiac collapse was initiated around Tb p 2 , as expected, and was well 

below the thermal limit (CTmax) and the temperature that maximizes metabolism (Ta b). This 

finding suggests that temperature related cardiac failure between Tb p 2 and the Ta b  is caused by 

an inability to generate energy to meet the cellular demand (Marshall et al., 2011a). Such 

indications of thermal discrepancy, however, would not have been identified if a multi-method 

approach to evaluate cardiac performance under a CTmax ramping protocol was not 

incorporated. The inclusion of ranges of Ta r r , three Ta b  and three Tq b  therefore provided 

fundamental information about the underlying physiology and thermal sensitivity of these 

intertidal ectothermic species. In addition, the quantification of the upper sub-lethal pejus 

temperatures (Tp e j), optimum temperature preferences (To p t) and Tc r it , rather than just the 

CTmax using respirometry, will additionally improve predictions on the physiological effects of 

seasonal temperature change and projected climate change scenarios (Casselman et al., 2012; 

J0 rgensen et al., 2017).

To further improve results for this study, limitations to using the infrared technology on active 

animals need to be considered. For instance, during a few experimental trials, P. catenatum 

chelae and walking legs would often break free of their binds and for P. perna the gaping 

behaviour proved problematic in detecting accurate heartbeat signals. In addition, technical 

issues, including faulty infrared sensors, arose resulting in irregular heart rate measurements 

during some experimental trials. As such, better and stronger material that would cause no 

harm or damage should be used for binding P. catenatum. For P. perna, the option of 

decreasing the frequency and duration of gaping behaviour is difficult as it varies between 

species and temperature (Rodland et al., 2009), and with ramping this is unavoidable. The only 

solution, therefore, is to remove from the analysis the irregular heartbeats (indicated by high 

average frequencies in Hz) caused by gaping behaviour. Technical equipment, such as infrared 

sensors, should also be replaced frequently. Furthermore, to improve future work using P. 

perna and P. catenatum, heart rate needs to be compared between the laboratory and the field 

(see Tagliarolo and McQuaid, 2016), and heart rate should be monitored in air as well as in the 

water (see Tagliarolo and McQuaid, 2015).
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In conclusion, both P. perna and P. catenatum, in their respective habitats, in this warm- 

temperate region, will not be vulnerable to the current and projected increases in water 

temperature. This is a result of both species having the ability to physiologically depress their 

metabolism in water, irrespective of season, to conserve energy to offset lifelong constraints 

on energy gain and the fact that both species are currently able to tolerate temperatures well 

beyond temperatures measured in water. When comparing both species’ vulnerability to 

projected increases in extreme events (e.g. heatwaves) due to climate change, however, it is 

most likely that P. perna from the intertidal rocky low-shore habitat would be more vulnerable 

than P. catenatum from the estuarine habitat, as they are commonly sedentary. Perna perna, 

furthermore, found on slightly higher shores, may also be considered more vulnerable as they 

would be exposed to increased effects of desiccation and prolonged emersion during low tide.
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CHAPTER SIX: GENERAL DISCUSSION

Many of the world’s coastal marine ecosystems and the services they provide are under 

growing threat from increases in mean ocean temperature, alterations to ocean climate, and 

weather variability because of anthropogenic climate change (e.g. Harley et al., 2006; Hoegh- 

Guldberg and Bruno, 2010; Wernberg et al., 2011, 2012; Thornton et al., 2014). Predicting the 

impacts of these changes on marine species’ biological responses at ecological, physiological 

and evolutionary levels and, perhaps most importantly, predicting which marine species or 

populations are most vulnerable, has thus become a key research focus (e.g. IPCC, 2014; Boyd 

et al., 2018).

To contribute to narrowing this knowledge gap, this thesis aimed to systematically quantify 

and compare the thermal tolerance and performance of a range of marine ectotherms using a 

multi-scale (different taxonomic, biogeographic and ontogenetic groups from different coastal 

habitats) and multi-method physiological approach (dynamic method, static respirometry and 

maximum heart rate experiments) within a South African warm-temperate coastal climate 

change hotspot to available and projected in situ temperature data. This was also undertaken to 

gauge the vulnerability of each species across summer and winter seasons.

Major findings of this thesis indicated that when all coastal marine ectotherm’s thermal 

tolerances (CTmax and CTmin) were considered together with the in situ temperature data 

collected, summer CTmax endpoints largely increased compared with winter, and winter CTmin 

endpoints decreased compared with summer, highlighting the plasticity in thermal scope across 

seasons, especially for the widespread macro-invertebrates (with the exception of P. angulosus) 

(Table 6.1). Upper and lower thermal safety margins in summer, however, were narrower than 

in winter, especially for the temperate, warm-water endemic and tropical juvenile fish species 

(Table 6.1). This suggests that, within this warm-temperate region, these juvenile fish species 

may be more vulnerable to temperature variability in summer than in winter, potentially as a 

result of extreme summer heatwaves and upwelling if they do not find thermal refuge.
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Table 6.1. Levels of vulnerability (Green = low vulnerability; Orange = medium vulnerability; Red = high vulnerability) of selected coastal marine ectotherms to 
temperature variability in the form of extreme events (summer marine heatwaves, summer upwelling and winter cold spells) as a result of climate change according 
to their thermal tolerance (CTmax and CTmin) and performance (To p t/Ta b ; Tpe j/Ta r r) in relation to their environmental water temperatures between taxonomic 
groups, biogeographic affinities, habitats and seasons.

Parameter
^max OoPT̂ -AB* 

p̂eĵ arr) ^ ̂ inin (T0pr̂ TpEj) Water temperature
(°C)

Water temperature
(»C)

Vulnerability
T

Temperature
CO

t
Temperature

CO

4-
Temperature

CO

r
Temperature

(°C)
Summer Winter

Species Illustration Taxonomic
group

Biogeo­
graphic
affinity

Habitat
sampling

area
Summer Winter Summer Winter Max min Max Min

Dipiodus
capensis
juveniles

Fish Temperate 
(Group 5)

Rock
pool/Gully

34.5 (Topt = 
25; Tpej = 

27.5)
33.2 8 6.5 25,1 12,8 20.0 13,2

Dipiodus
capemis
adults

■ * Fish Temperate 
(Group 5) Surf zone

32 (Tab =
20.8; Tarr = 

28.3)
8.4 30.1 14.6 20.8 12.2

Sarpa salpa • Fish Temperate 
(Group 5)

Rock
pool/Gully 33.9 32.4 7.8 7.1 25.1 12.8 20.0 13.2

Kuhlia rnugil s' Fish Tropical 
(Group 2) Rock pool 37.8 37.1 8.7 8.9 25.1 12.8 20.0 13.2

Palaemon
peringueyi

Macro­
invertebrate

Widespread 
(Group 6) Rock pool 35.7 34.9 4.7 3.7 25.1 12.8 20.0 13.2

Parechimts
angulosus •

Macro­
invertebrate

Widespread 
(Group 6) Rock pool 31.3 27 7.0 4.5 25.1 12.8 20.0 13.2

Perna pern a ■ •” • Macro-
invcrtcbratc

Widespread 
(Group 6) Rock pool

38.9 (TAB =
31-6; T W -

38.61

37.9 (Tab = 
28.7; Tarr = 

36.9)
4.3 4.0 25.1 12.8 20.0 13.2

Chelon
dumerili " ’-"I i Fish

Warm- 
water 

(Group 3)
Lower

estuarine 37.7 35.6 9.3 5.3 30.1 14.6 20.8 12.2
Chelon

richardsonii
Fish Cool-water 

(Group 4)
Lower

estuarine 34.9 34 5.7 4.6 30.1 14.6 20.8 12.2
Rhabdosargus

holubi Fish
Warm- 
water 

(Group 3)
Lower

estuarine 35.6 32.3 8.1 5.8 30.1 14.6 20.8 12.2

Chaetodon
marleyi # Fish Tropical 

(Group 2)
lower

estuarine
(subtidal)

35.2 11.2 30 1 14.6 20.8 12.2
Clibanarius

virescens T
Macro­

invertebrate
Tropical 
(Group 2)

Lower
estuarine 38.3 38.6 5.6 4.0 30.1 14.6 20.8 12.2

Parasesarma
catenation %

Macro­
invertebrate

Widespread 
(Group 6)

Lower
estuarine

39.8 (IAB -  
30.8:

38.1)

39.2 (1^ = 
2S-*Tare = 

37.3)
6.0 4.9 30.1 14.6 20.8 12.2

Upogebia
africana

Macro­
invertebrate

Widespread 
(Group 6)

Lower
estuarine 38.3 36.2 6.0 4.5 30.1 14.6 20.8 12.2



Heatwaves are usually defined as “periods of abnormally and uncomfortably hot weather 

invoked during summer” (Glickman, 2000) that exceed the acclimation capacity of animals 

(Gutschick and BassiriRad, 2003) and often result in large-scale shifts in the distributions, 

phenological changes, changes in ecosystem structure and, in extreme cases, high levels of 

mortality in marine species (Perry et al., 2005; Lima et al., 2007; Beaugrand et al., 2008; 

Wernberg et al., 2011). Recent evidence has suggested that heatwaves in the ocean are 

becoming longer and more frequent (e.g. Lima and Wethey, 2012; deCastro et al., 2014; 

Frolicher et al., 2018; Oliver et al., 2018). In South Africa, Schlegel et al. (2017) found that 

marine heatwaves have been increasing every decade in all coastal regions. This suggests that 

the fauna along the south-eastern coast will be increasingly susceptible to marine heatwaves.

The results of the thermal tolerance experiments in this study suggest that marine estuarine 

opportunist fish such as the temperate D. capensis (both juvenile and adult), temperate juvenile 

S. salpa and cool-water endemic juvenile C. richardsonii and the juveniles of the marine 

estuarine-dependent warm-water endemic R. holubi may be negatively influenced by predicted 

increases in heatwaves (Figure 6.1, Figure 6.2, Table 6.1). Surprisingly, the juvenile tropical 

marine straggler C. marleyi may also be impacted, with its summer CTmax endpoint being 

relatively low compared with the other juvenile tropical marine straggler species K. mugil 

(Figure 6.2, Table 6.1). The only widespread macro-invertebrate that may be negatively 

impacted by heatwaves is P. angulosus (Figure 6.1), with a low summer CTmax endpoint 

compared with the other macro-invertebrates which all had very high summer CTmax endpoints 

(Table 6.1). As a permanently open estuary with attributes akin to an arm of the nearshore 

ocean, the Kariega Estuary can serve as a thermal refuge for thermally stressed species. 

However, the extent of its utility may depend on the biogeography, biology and habitat 

preference (ecology) of the affected species.
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Rocky shore habitat study area

Temperate lish

D iplodus capensis

Marine estuarine-opportunist Extreme heatwave summer Upwelling summer Cold-spell winter

Temperate iish

Sarpa salpa

Marine estuarine-opportunist Extreme heatwave summer Upwelling summer Cold-spell winter

Tropical iish
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Marine straggler Extreme heatwave summer Cold-spell winterUpwelling summer

Macro- invertebrates

Perna p ern a

angulosusParechim is

Pcilaemon peringuey i X
Extreme heatwave summer Upwelling summer Cold-spell winter

Figure 6.1. Schematic representation of where marine ectotherms collected from the intertidal 
low-shore rocky habitat within this warm-temperate study region would seek thermal refuge 
under the predicted effects of summer extreme heatwaves, summer upwelling and winter cold 
spells as a result of climate change.
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Figure 6.2. Schematic representation of where marine ectotherms collected from the intertidal 
lower reaches of the estuarine habitat within this warm-temperate study region would seek 
thermal refuge under the predicted effects of summer extreme heatwaves, summer upwelling 
and winter cold spells as a result of climate change.
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For instance, as a result of their thermal tolerance, biogeography, biology and habitat 

preference, D. capensis, S. salpa, C. richardsonii and C. marleyi may be restricted to the low- 

shore rocky habitat and the lower reaches of the Kariega Estuary as a thermal refuge during 

heatwave events (Figure 6.1, Figure 6.2), while R. holubi may be restricted to the lower reaches 

of the Kariega Estuary (Figure 6.2). When measuring the thermal performance of juvenile and 

adult D. capensis, it was found that they are negatively impacted at temperatures beyond 28.0 

°C (based on the average upper Tp e j  for juveniles (27.3 °C) and the Ta r r  (28.3 °C) for adults; 

refer to Chapter 4). In addition, their relatively low summer CTmax endpoints are already close 

to current temperatures recorded in the middle and upper reaches of the estuary and this limits 

the utility of these areas as thermal refuges for the species. In terms of D. capensis and S. salpa 

biology and habitat preference, they are not strongly euryhaline in comparison to R. holubi and 

as juveniles they are rarely found to occur in the middle and upper reaches of any estuary, with 

adult D. capensis further found only briefly to occupy the lower reaches of an estuary 

opportunistically and during spawning (Whitfield, 1998, 2019). Kemp (2009) also indicated 

that juvenile D. capensis would not be able to tolerate higher salinities found in the mid- and 

upper-shore rocky habitats.

Rhabdosargus holubi cannot survive in water temperatures higher than 34.0 °C (this study, van 

der Vyver et al., 2013). Rhabdosargus holubi, which occurs exclusively as juveniles in 

estuaries only (Whitfield, 1998, 2019) may, thus, be restricted to the lower reaches of the 

estuary during a summer heatwave. Chelon richardsonii, being the only cool-water endemic 

species which prefers cooler waters (James et al., 2016), may not be able to tolerate extreme 

increases in temperature in the middle and upper reaches of the estuary and the mid-shore rock 

pools. Other environmental preferences may also restrict the utility of certain habitats as a 

refugia. For example, C. marleyi, prefer clear water conditions, which may restrict them to the 

lower reaches of the estuary where turbidity is lower compared with the middle and upper 

reaches (Vine, 1998). The mobility of the species will also have a bearing on its response to 

heatwave conditions. As a sedentary species, P. angulosus, which predominantly occurs in the 

low-shore rocky habitat, will not be able to move to a suitable thermal refuge during heatwaves 

and it is therefore unlikely to survive. This is not unusual for sedentary species. For example, 

Farmanfarmaian and Giese (1963) found that the purple sea urchin Strongylocentrotus 

purpuratus relied on a broad thermal tolerance to survive thermal extremes.
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Cold upwelling events in summer can lower temperatures drastically within a few hours 

(Ganachaud et al., 2010) and can cause mass mortalities of marine species (Whitfield, 2019). 

For example, locally, within the mouth region of the Storms River Estuary along the south-east 

coast, mortality was observed in 14 marine fish species following an upwelling event which 

resulted in sudden water temperature drop from 21.0 °C to 11.0 °C (Hanekom, 1989). Recently, 

Duncan et al. (2019) found that within the Tsitsikamma region, SST can drop from 24.0 °C to 

12.0 °C in less than 12 hours as a result of summer upwelling. This may explain why large 

shoals (200 -  3000 individuals) of marine fish frequently take refuge in estuaries along the 

Tsitsikamma coast when upwelling occurs (Whitfield, 2019). For this study region, the 

permanently open Kariega Estuary may serve as a good thermal refuge due to its atypical 

estuarine properties (uniformly marine), especially considering that summer upwelling is 

predicted to increase in frequency, duration and intensity for this region, driving increases in 

SST variability (Duncan et al., 2019).

Of the species studied in this thesis, thermal tolerance results indicate that juvenile D. capensis 

and K. mugil collected from the low-shore rocky habitat (rock pools and gullies) would be most 

vulnerable to the effects of current and predicted summer upwelling, as a result of them having 

high CTmin endpoints in summer, potentially eliminating them from this habitat and lowering 

their abundance in the lower reaches of the Kariega Estuary (Figure 6.1). As a result, juvenile 

D. capensis and K. mugil may be forced to seek thermal refuge in the middle reaches of the 

Kariega Estuary and the mid-shore of the rocky habitat temporarily to escape low nearshore 

temperatures (Figure 6.1). The upper reaches of the Kariega Estuary and the high-shore rocky 

habitat would be excluded as a thermal refuge for these species as a result of their biology and 

habitat preference whereby both species may be unable to tolerate increased salinities (high- 

shore rocky habitat) and turbidity (estuarine habitat) and no preferred habitat structure may be 

provided, especially for K. mugil (Figure 6.1). Within the same habitat, even though juvenile 

S. salpa and P. angulosus also presented high CTmin endpoints in summer (Table 6.1), they 

may not be affected by summer upwelling. This may be a result of juvenile S. salpa not needing 

to use the strategy described by Portner and Gutt (2016), unlike juvenile D. capensis, where a 

trade-off between growth and thermal tolerance to colder temperatures in summer takes place, 

as its winter CTmin endpoint is similar to its summer CTmin endpoint, not losing cold water 

adaptability in summer (Table 6.1). Additionally, temperatures within the rock pool habitat are
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unlikely to drop below P. angulosus CTmin, even though this species may lose thermal 

adaptability to cold temperatures in summer (Table 6.1).

Within the estuarine habitat, the only species from this study that may be vulnerable to current 

and predicted increases in summer upwelling is the tropical subtidal juvenile C. marleyi. This 

is because this species had the highest summer CTmin endpoint of all species studied (Table 

6.1). In terms of thermal refuge, C. marleyi may have to recruit into the middle reaches of the 

estuary where temperatures will be warmer however, thermal refuge will not be extended to 

the upper reaches of the estuary due to limited habitat choices or to the rocky shore habitat, 

which will be highly influenced by nearshore cold temperatures (Figure 6.2). Although other 

marine-dependent species such as C. dumerili and R. holubi had high summer CTmin endpoints, 

it is likely that they will be less influenced by summer upwelling events as they have the ability 

to move into the middle and upper reaches of the Kariega Estuary to seek thermal refuge as a 

result of their euryhaline physiology (Figure 6.2). The only fish species from this study that 

will most likely be tolerant of the current and predicted increases in summer upwelling in the 

estuarine and rocky shore habitats is the cool-water marine estuarine-opportunist C. 

richardsonii as a result of its low CTmin endpoints (Figure 6.2, Table 6.1).

Globally, winter marine cold spells (MCSs) that follow the passage of cold fronts are predicted 

to become less frequent under future climate scenarios, but there are examples of them 

becoming more frequent in some localities (e.g. Gershunov and Douville, 2008; Matthes et al., 

2015) resulting in mass fish (Gunter, 1941, 1951; Holt and Holt, 1983) and invertebrate 

(Gunter, 1951; Crisp, 1964) kills. In this study region, Schlegel et al. (2017) showed that along 

the south-east coast, particularly near Port Elizabeth, MCSs are increasing very near the coast. 

Although results from this study indicate that temperature variability in summer may have more 

of an effect on juvenile fish species (heatwaves and upwelling), winter cold spells may too 

have an effect, especially for the tropical marine stragglers occurring in this region.

When exposed to extreme cold events, juvenile K. mugil may not be able to cope due to their

high winter CTmin endpoints compared with the other fish species studied (Table 6.1).

Individuals that may survive the initial drop in temperature, however, may seek thermal refuge

in the lower reaches of the Kariega Estuary and the adjacent low-shore rocky habitat, which

likely may be cold but not as cold as the middle and upper reaches of the estuary and the mid-

and high-shore rocky habitat as well as the nearshore sea (Figure 6.2). Similarly, Boucek and
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Rehage (2014), when evaluating a subtropical estuarine fish community in South Florida after 

a severe cold front, found that tropical euryhaline and non-native species decreased in 

abundance significantly, leaving the temperate species to dominate the community. The 

findings from this study suggest that juvenile C. marleyi will not survive MCSs. However, this 

is not surprising as the species has not been present within the Kariega Estuary during winter 

months anyway (Figure 6.2). McBride and Able (1998) recorded similar findings for other 

Chaetodontidae in a temperate environment. However, if  increases in average annual 

temperatures occur as a result of climate change, it is possible that vulnerable tropical species 

may begin overwintering in this region. This will increase the abundance and overall survival 

and possibly result in the tropicalization of the community (Figueira and Booth, 2010; Horta e 

Costa et al., 2014; Vergés et al., 2014). Although the results suggest that the remaining warm- 

water marine estuarine-dependent species (C. dumerili and R. holubi) from this study will not 

be influenced by winter cold spells, their abundance during these events may increase in the 

lower reaches where temperatures may be warmer compared with the middle and upper reaches 

(Figure 6.2), while the cool-water C. richardsonii abundance throughout the estuary will 

remain unaffected (Figure 6.2).

The resilience of macro-invertebrates, with the exception of P. angulosus, to temperature 

variability in the form of summer heatwaves and upwelling and winter cold spells, as shown 

by their broad thermal scopes and high intraspecific variability across seasons in this study 

(refer to Chapter 3; Figure 6.1, Figure 6.2; Table 6.1), could be attributed to their widespread 

distributions and their ability to physiologically depress their metabolism by lowering their 

heart rate (Chapter 5) (Thompson et al., 2002; Chen and Stillman, 2012; Paganini et al., 2014; 

Gunderson et al., 2016). As a result, this allows them to cope with extreme cold and hot 

temperatures associated with alternating immersion and emersion of the intertidal environment 

(see Newell, 1979; Davidson and Pearson, 1996; Karsten et al., 1996). In terms of the predicted 

effects associated with climate change (heatwaves, upwelling and cold spells), this taxonomic 

group may have a physiological advantage over coastal fishes. Similar results have also been 

found for macro-invertebrates in other warm-temperate regions by Madeira et al. (2012a, 2016) 

and Vinagre et al. (2018), who showed that fishes’ CTmax endpoints were narrower than macro­

invertebrates’, depending on their latitude and habitat. In addition, Morley et al. (2016), 

assessing thermal sensitivity and critical limits of macro-invertebrates from the tropical 

Ascension Island, temperate New Zealand and Antarctic found that with physiological
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acclimation/compensation in response to seasonal increases in temperature, tropical and 

temperate macro-invertebrates can have higher thermal tolerance limits than annual maximum 

water temperature, possibly averting the effects of climate change.

Overall, the findings of this study suggest that permanently open intertidal estuaries, 

particularly the atypical Kariega Estuary, may provide good thermal refugia for euryhaline 

marine ectotherms against the effects of extreme climate events compared with the intertidal 

rocky shore pools and gullies. This is because the middle and upper reaches can provide thermal 

refugia for vulnerable euryhaline fish species when the marine environment and lower reaches 

of the estuary are impacted by MCSs and MHWs (refer to Chapter 2; Figure 6.1, Figure 6.2). 

Since rock pools are poorly connected and patchy, the movement of organisms to more benign 

thermal environments may be restricted. Furthermore, as a result of other projected climate 

change factors at play, such as sea level rise, gullies and rock pools may be further eliminated 

as a thermal refuge all together (Mather et al., 2009) as they will become fully submerged and 

disappear/be altered resulting in a “coastal squeeze” which will influence other marine 

ectotherms survival such as macro-invertebrates. A possible habitat re-allocation may then 

follow with marine ectotherms moving into nearby areas such as estuaries in the intertidal 

rocky shore (Pethick, 1993).

One possible aspect that was not included as part of this multi-method approach in this thesis 

was that of the biochemical responses to changes in temperature. Marine ectotherms, especially 

fish, react to a temperature stressor which produces a physiological response that in turn 

increases stress hormones (cortisol, catecholamines, glucose levels; Barton and Iwama, 1991) 

and alters the actions and functions of various heat shock proteins (Hightower, 1991; Iwama et 

al., 1999; Goligorsky, 2001). The measurement of stress hormones, such as cortisol and heat 

shock proteins, in combination with thermal tolerance and performance measurements, can 

increase the level of confidence in determining marine ectotherms sub-lethal limits (pejus 

temperatures). Additionally, as heat shock proteins vary according to species (Basu et al., 2002; 

Nakano and Iwama, 2002), developmental stage (Lele et al., 1997; Santacruz et al., 1997; 

Martin et al., 2001) and season (Fader et al. 1994), knowledge of their role will improve intra­

specific predictions of thermal vulnerability, especially in the context of climate change 

(Roessig et al., 2004; Chadwick et al., 2015).
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Another aspect that was beyond the scope of this study was the response to multiple stressors 

and comparing field and laboratory-based studies. The resistance of individual marine 

ectotherms to one stressor, such as changes in temperature, may be lowered in the face of 

multiple stressors, such as changes in temperature and pH, which may result in a particular 

ecosystem suffering from diversity loss, in turn compromising ecosystem functioning and 

resilience to further change (e.g. acidification of coral reefs; Brierley and Kingsford, 2009) 

(Cull et al., 2015). To date, most research on multiple stressors, as indicated by Wernberg et 

al. (2012), Bozinovic and Portner (2015) and Deutsch et al. (2015), is lacking and the research 

that has been conducted has been restricted to laboratory studies, e.g. Ackerman et al. (2000), 

Vijayan et al. (2000) and Basu et al. (2001) (Cull et al., 2015).

In conclusion, given the importance of understanding the responses of marine ectotherms to 

anthropogenic climate change, this study should serve as a starting point for future 

physiological thermal tolerance research on South African marine ectotherms and highlights 

the importance of understanding the complexity of impacts in other geographic climate change 

hotspots. The use of a multiple method approach in this study further assisted in identifying the 

different effects of temperature on the marine ectotherms of focus and highlighted different 

aspects of vulnerability and resistance. The study further highlighted that understanding the 

role of thermal variability on marine ectotherms’ tolerance and performance may be more 

important than just the responses to mean predicted SST changes in various habitats of this 

warm-temperate climate change hotspot, which is emerging as an important avenue of research 

globally (see Bates et al., 2018). Finally, this research provides valuable perceptions of 

physiological aspects affecting population dynamics over a local scale in a climate change and 

biodiversity hotspot and lays the foundations for predicting population dynamics and species 

distributions based on physiological sensitivity to temperature in several fish and macro­

invertebrate species.
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APPENDIX A

Classification and description of macroscopic gonad maturity stages of Rhabdosargus globiceps used 
to identify sexual maturity for adult Diplodus capensis in Chapter 4. Taken from Griffiths et al. (2002).

Stage Macroscopic Description

1: Inactive

Sexual organs small. Ovaries appear 
translucent, yellow to pinkish sacs with no 
visible eggs. Testis thin and transparent to 

greyish-white

2: Active

Ovary swells and increases in length to 90% 
of visceral cavity. Colour changes to opaque 
orang/yellow and eggs are visible to naked 

eye. Testis become thicker and beige to 
white in colour. Sperm is present in the 
main sperm duct, but not in the tissue.

3: Ripe

Ovary is swollen and amber in colour owing 
to the presence of a substantial proportion of 
hydrated/transparent eggs. Testis is swollen 

and white. It is easily ruptured if lightly 
pinched, and perm is present in the sperm 

duct as well as tissue.

4: Spent

Ovary substantially smaller and flaccid with 
large lumen. It is reddish orange in colour 

with few eggs visible. Spent testes were not 
identifiable.
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