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ABSTRACT 

 

It has been well-established that Pseudomonas species possess extremely versatile 

metabolic systems allowing them to utilise a wide range of nutrient sources and, 

furthermore, that the regulation of these enzyme systems involves highly evolved and 

sophisticated regulatory machinery. This study examined the complexity of metabolic 

regulation in Pseudomonas using the hydantoin-hydrolysing system of the 

environmental isolate, Pseudomonas putida RU-KM3s. In this system, the genes 

encoding dihydropyrimidinase and β-ureidopropionase (dhp and bup) are arranged 

divergently on the chromosome, separated by a 616 bp intergenic region involved in the 

transcriptional regulation of these genes. The focus was on the transcriptional regulation 

of dhp expression. DHP activity was found to be sensitive to several environmental 

signals including growth phase, carbon catabolite repression (CCR), substrate induction 

and quorum sensing (QS). Bioinformatic analysis of the intergenic region upstream of 

dhp revealed a number of putative binding sites for transcriptional regulators, including 

recognition sequences for the alternate sigma factors σ54 and σ38, as well as for the 

global regulators Anr (for anaerobic regulator) and Vfr (for virulence factor regulator). 

The targeted disruption of the genes encoding the transcriptional regulators, Vfr and the 

major CCR protein, Crc, resulted in a partial relief from repression for the vfr- mutant 

under quorum sensing conditions and a general decrease in activity in the crc- mutant. 

This data suggested that both Vfr and Crc were involved in regulating DHP activity. 

Mutational analysis of the dhp promoter revealed that at least two sites were involved in 

regulating transcriptional activity, one which mediated activation and the other 

repression. These sites were designated as a putative Anr box, situated 232 bp from the 

start codon of dhp, and a CRP-like binding site, at a position 213 bp upstream of dhp. 

Taken together, this data shows the involvement of several global regulatory factors in 

controlling the expression of dhp. A complex synergistic model was proposed for the 

transcriptional regulation of dhp, involving alternate sigma factors in addition to both 

global and specific regulators and responding to a number of environmental signals 

associated with growth phase, including nutrient availability, cell density and oxygen 

status.   
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LITERATURE REVIEW 

 

Within a single bacterial cell there are numerous enzymes that catalyse the reactions 

involved in driving cellular processes (Nelson et al., 2002; Perrenoud and Sauer, 2005). 

Some of these enzymes are required in equal amounts under all growth conditions and 

their genes are expressed constitutively. However, most are only required under certain 

conditions and their expression is tightly regulated by the metabolic state of the cell and 

stimuli from their constantly changing environments (Ma et al., 2004). This prevents the 

energy-expensive production of an enzyme when it is not needed by the cell (Perrenoud 

and Sauer, 2005). Many of these non-essential enzymes have found application in 

industry, either because the reactions they catalyse degrade harmful, recalcitrant 

pollutants or because the product of the reaction is economically valuable (Williams and 

Murray, 1974; Demain, 2000). 

 

 

1.1 Microbial biocatalysis in industry 

 

Certain bacteria possess specialised enzymes which are sought-after as the biocatalysts 

of industrially important chemical reactions. Pseudomonads, in particular, produce a 

wide range of industrial enzymes, which catalyse both biodegradative and biosynthetic 

reactions (Nakazawa et al., 1996). The former, biodegradation, refers to the process 

whereby organic material is broken down by enzymes produced by living organisms. 

Here again, microbes of the Pseudomonas species have proven useful as they are 

renowned for their ability to degrade a large variety of both natural and synthetic 

organics. Since many of these compounds are xenobiotics, the metabolically diverse 

pseudomonads are important in bioremediation (Nakazawa et al., 1996; Hester et al., 

2000). For instance, it has been shown that diverse strains of Pseudomonas citronellolis 

have the ability to degrade “total petroleum hydrocarbons” (TPH) in environments 

polluted by “oily sludge” from oil refineries (Bhattacharya et al., 2003). Other examples 

of the biodegradative activities of pseudomonads include the ability to degrade toluene 

and xylene, encoded on the pWWO plasmid in Pseudomonas putida mt-2, with its 
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plasmid-free derivative, P. putida KT2440, being able to degrade a wide range of 

aromatics including p-hydroxybenzoate, vanillate, protocatechuate and a variety of 

alcohols, acids and aldehydes (Williams and Murray, 1974; Nelson et al., 2002). 

Another strain, P. putida H, is able to degrade methylphenol using enzymes encoded on 

its pPGH1 plasmid (Hermann et al., 1995). All of the biodegradative enzymes described 

above perform specialised, non-essential functions and are thus only produced when 

they are required by the cell; namely in the presence of a recalcitrant substrate in an 

environment where all the readily degradable nutrients have been depleted. Since such a 

substrate is not the preferred nutrient source, an understanding of the catabolic 

repression mechanisms operating under these conditions, reviewed in Section 3.1, could 

allow for the utilisation of more efficient organisms in bioremediation (Hester et al., 

2000).  

 

 
1.1.1 Biosynthesis of optically pure amino acids 
  

Besides their ability to degrade harmful pollutants in the environment, certain bacteria 

also produce a number of industrially important metabolites including amino acids, 

nucleotides, vitamins and organic acids in a process known as microbial biosynthesis 

(Demain, 2000; Leuchtenberger et al., 2005). An important feature of these products is 

that they are enantiomerically pure, which is critical in pharmaceuticals due to the side 

effects and toxicity associated with racemic mixtures of stereoisomers (Maier et al., 

2001; Leuchtenberger et al., 2005). In particular, amino acid production represents a 

multi-billion dollar industry where the products are used in the synthesis of antibiotics 

such as semi-synthetic penicillins and cephalosporins, antiviral and anti-tumour agents, 

as well as agrochemicals (Bommarius, 1998; Demain, 2000; Burton and Dorrington, 

2004; Leuchtenberger et al., 2005). 

 

One source of these optically pure amino acids is the stereo-selective hydrolysis of        

5-monosubstituted hydantoin by hydantoinase enzymes, as seen in a number of 

Pseudomonas, Bacillus, Arthrobacter and Agrobacterium species and even the 

hypothermophile, Methanococcus jannaschii (Ogawa and Shimizu, 1997; Syldatk et al., 
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1999; Burton and Dorrington, 2004). Hydantoinases have been isolated from plants 

(Eadie, 1949; cited in Syldatk et al., 1999), animals (Wada, 1934; cited in Syldatk et al., 

1999) and bacteria (Yokozeki et al., 1987; cited in Syldatk et al., 1999) and are 

classified as belonging to the EC 3.5.2 group, which includes the hydantoinase, 

dihydropyrimidinase, allantoinase, carboxymethylhydantoinase, carboxyethyl 

hydantoinase and N-methylhydantoinase enzymes (Syldatk et al., 1990). These 

biocatalysts are described as cyclic amidases and of the six listed above, only 

carboxymethylhydantoinase and allantoinase use hydantoin (imidazolidine-2,4-dione or 

2,4-diketotetra-hydroimidazole) and its derivatives as their natural substrate. The 

remainder of the EC 3.5.2 enzymes are able to hydrolyse hydantoins, but these are not 

their preferred substrate (Syldatk and Prietzsch, 1995; Syldatk et al., 1999; Altenbuchner 

et al., 2001).  

 

While a number of hydantoin derivatives exist in nature, the most industrially important 

of these molecules are the 5-monosubstituted hydantoins, which can be used as 

substrates for the production of D- or L-α-amino acids by hydantoinase-type enzymes 

(Burton and Dorrington, 2004; Leutenberger et al., 2005). The hydrolysis of                  

5-monosubstituted hydantoins to amino acids occurs via three different reactions   

(Figure 1.1). In the first reaction, the hydrolysis of the cyclic amide bond at position 2 

opens the ring structure of the hydantoin to produce an N-carbamylamino acid. This 

intermediate can then be converted to the corresponding amino acid by either chemical 

or enzymatic means in the second reaction, with the latter involving an                           

N-carbamoylase enzyme (Syldatk and Prietzsch, 1995; Burton and Dorrington, 2004). 

Finally, the unreacted hydantoin substrate undergoes spontaneous or enzymatic 

racemisation in the final reaction (Syldatk and Prietzsch, 1995; Altenbuchner et al., 

2001). The most important compound produced in this way is D-p-hydroxy-

phenylglycine, which is used as a precursor for semi-synthetic penicillins and 

cephalosporins (Leutenberger et al., 2005) 
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Figure 1.1. The stereoselective enzymatic hydrolysis of 5-monosubstituted hydantoins 
to form enantiomerically pure amino acids (adapted from Syldatk et al., 1999). 
 

 

The hydrolysis of 5-monosubstituted hydantoins by hydantoinase enzymes is 

enantioselective and thus produces optically pure products (Syldatk et al., 1992; Burton 

and Dorrington, 2004). The process has a number of advantages for industry, most 

importantly the strictly stereo-selective conversion of an inexpensive racemic substrate 

to give yields of up to 100  % (Altenbuchner et al., 2001; Burton and Dorrington, 2004). 

The stereo-selectivity of the hydantoinase reaction may be provided by the 

hydantoinase, the N-carbamoylase, both of the latter two enzymes together, or a separate 

racemase; all of which ensure the production of optically pure products. D-selective 

systems are more common in nature, but those which are able to convert hydantoins with 

aromatic or non-natural aliphatic substitutions are less common (Burton and Dorrington, 

2004).  
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1.1.2 The hydantoin-hydrolysing metabolic system of P. putida RU-KM3s  
 

Due to the high value of their optically pure amino acid products, the isolation of novel 

hydantoinase-producing strains has been the focus of a great deal of research in the 

recent decades (Burton and Dorrington, 2004). Such a strain, P. putida RU-KM3s, was 

selected from the environment for its ability to utilise hydantoin as a sole nitrogen 

source in defined medium, a well-recognised method of isolating hydantoin hydrolysing 

strains (Burton et al., 1998). It was further discovered that this strain produced the less 

common L-amino acids, such as L-valine, L-nor-leucine and L–tert-leucine at a 

bioconversion rate of between 60 % and 100 % and that the stereo-selectivity was 

conferred by the N-carbamoylase enzyme (Buchanan et al., 2001). Thereafter, the 

production of amino acids by sonicated crude extract from P. putida RU-KM3s cells, 

immobilised on Eupergrit®C, was investigated. The immobilisation matrix bound 63 % 

of the soluble protein and retained 86 % of the original enzyme activity. It was further 

determined that the optimum pH and temperature for both immobilised and native 

enzyme were pH 9.0 – 10.0 and 40 ºC respectively. The enzyme activities remained     

15 % of their original level after 4 weeks storage whereas the non-immobilised enzyme 

lost all activity after 2 weeks, indicating increased stability of the enzymes by 

immobilisation on Eupergrit®C (Bulawayo et al., 2007). 

 

The genes responsible for hydantoin hydrolysis in strain RU-KM3s were identified by 

random transposon mutagenesis of the genome, using the plasposon, pTnMod-OKm 

(Matcher et al., 2004). In this way, the bup gene, encoding a β-ureidopropionase 

enzyme, was found to be responsible for N-carbamoylase activity. Further analysis 

revealed a dhp gene, encoding a dihydropyrimidinase enzyme, upstream of bup. 

Targeted insertional inactivation of dhp showed that this gene was responsible for 

hydantoinase activity. Furthermore, it was found that the dhp and bup genes were 

arranged divergently on the chromosome and were separated by an open reading frame 

(ORF), annotated as ORF1 (Figure 1.2). Bioinformatic analysis of ORF1 suggested that 

it might encode a putative permease, which may be involved in the transport of substrate 

into the cell (Matcher et al., 2004).  
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Previous studies concerning the regulation of hydantoin hydrolysis in RU-KM3s have 

shown that maximum activity of both dihydropyrimidinase and β-ureidopropionase 

occurs in early stationary phase and that the activity of both enzymes is strongly induced 

by the addition of the hydantoin substrate. Furthermore, activity is regulated by carbon 

catabolite repression (CCR), but is affected by neither the nitrogen status of the cell nor 

substrate and product inhibition (Buchanan et al., 2001; Matcher et al., 2004). 

Bioinformatic analysis of the dhp/bup intergenic region revealed the presence of a 

putative binding site for the cAMP receptor protein, CRP (Figure 1.2), which is 

responsible for mediating CCR in Escherichia coli (Collier et al., 1996; Matcher et al., 

2004). 

 

 

 

 

 

 

 

 

 
 
 
                                         
Figure 1.2. The hydantoin-hydrolysing system of P. putida RU-KM3s. A) The 
enzymatic reaction responsible for hydantoin hydrolysis in RU-KM3s and the 
colorimetric assays used to detect enzyme activity. B) The organisation of the genes 
encoding the enzymes responsible for hydantoin hydrolysis in RU-KM3s. The 
dihydropyrimidinase (dhp) and β-ureidopropionase (bup) genes are indicated as arrows 
pointing in the direction in which they are transcribed and the putative binding site for 
the cAMP receptor protein (CRP) in the intergenic region is indicated by a black oval 
(Adapted from Matcher et al., 2004). 
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under low sugar conditions there was low biomass production. However, using a less 

favourable but still relatively efficient carbon source, in the form of fatty acids, yielded 

substantially improved biomass production of 7.3 g/L with increased enzyme activities 

of 187 nmol/min.mg and 22 nmol/min.mg for dihydropyrimidinase and                              

β-ureidopropionase respectively (Kirchmann et al., 2007). It was immediately apparent, 

given these activity levels, that β-ureidopropionase activity was the rate-limiting factor 

in the conversion of hydantoins to amino acids under the conditions tested (Kirchmann 

et al., 2007).  

 

In spite of extensive studies regarding the enzymatic degradation of hydantoin and its 

derivatives, considerably less is known about the genetic organisation in the native 

strains and the mechanisms that regulate expression of the genes involved (Wiese et al., 

2001; Burton and Dorrington, 2004). The latter forms the focus of this study and 

therefore the various mechanisms of regulation of microbial biocatalysis enzyme 

systems, in particular transcription regulation, are reviewed.  

 

 

1.2 Transcriptional regulation in prokaryotes 

 

In bacteria, the regulation of cellular biochemical reactions in response to changes in 

environmental growth conditions occurs in one of two ways; either the amount or the 

activity of a particular enzyme is controlled. Regulation of the amount of enzyme occurs 

either at the level of transcription of the relevant genes or at the point of translation of 

the mRNA into protein, while regulation of the activity of the enzyme occurs post-

transcriptionally (reviewed in Perrenoud and Sauer, 2005). In this study, the regulatory 

mechanisms of interest are those that occur at the first level of regulation, namely at the 

point of transcription of the genes. 

 

Transcriptional regulation is regarded as the main method of controlling biocatalytic 

activity in bacteria (Perrenoud and Sauer, 2005). The pathways involved in regulating 

the transcription of non-essential genes are best understood in E. coli (Gralla, 1996). It 
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has been determined that, although small molecules often influence transcription levels, 

they do not do so directly. Instead they affect the binding of regulatory proteins to short 

stretches of conserved nucleotide sequences in a region of DNA close to the 

transcriptional start (Ishihama, 1993). Transcription factors bind DNA in a sequence-

specific manner by the interaction of their amino acid side chains with nucleotide bases 

and this often occurs in the major groove of the DNA due to its larger size (Weber et al., 

1982; Busby and Ebright, 1994). Inverted repeats are frequently the sites of binding of 

transcriptional regulators, which are often dimeric in structure, comprising two identical 

polypeptide chains (Busby and Ebright, 1994; Perrenoud and Sauer, 2005).  

 

The helix-turn-helix motif of transcriptional regulator proteins is an important            

sub-structure required for binding DNA and consists of an α-helix joined to a three 

amino acid stretch containing a glycine, to allow the formation of a sharp “turn,” 

followed by a second helix. The first helix is termed the recognition helix and interacts 

with the DNA (Busby and Ebright, 1994). Numerous transcriptional regulators in 

bacteria possess this structure including the lac and trp repressor proteins of E. coli 

(reviewed in Perrenoud and Sauer, 2005). 

 

Once a transcription factor is bound to the DNA, it can affect gene expression in two 

general ways; either the protein blocks transcription by the DNA-dependant RNA 

polymerase, which is defined as negative regulation, or it activates transcription, termed 

positive regulation (Gralla, 1996). Induction and repression of transcription of a gene 

occurs in response to the substrate and product, respectively, of the reaction catalysed by 

the enzyme encoded by this gene (reviewed in Gralla, 1996). Often the enzyme will not 

be expressed if the product is present, resulting in catabolite repression of enzyme 

production; while a complementary process, called induction, ensures that an enzyme is 

only produced when its substrate is present in the growth medium (Gralla, 1996; Ma      

et al., 2004). 
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1.3 Global control systems and transcriptional regulation in bacteria 
  

In their natural environment, bacterial cells need to regulate many different genes at the 

same time, in response to an external signal, and this requires global control mechanisms 

(Ma et al., 2004).  As illustrated for E. coli in Table 1.1, the group of genes regulated in 

global systems may be very large and the regulatory pathways utilised very complex; in 

fact many genes form part of more than one global control system (Ma et al., 2004; 

Perrenoud and Sauer, 2005). 

 

 

Table 1.1. Examples of global transcriptional control mechanisms in E. coli    

Global control 
system 

Environmental 
signal 

Primary regulator Number of genes 
regulated 

Catabolite 
repression  

Cyclic AMP 
concentration 

Activator (cAMP 
receptor protein, 
CRP) 

>100 

Nitrogen utilisation  Ammonia 
limitation 

Activator (NtrC) 
Alternative sigma 
factor (σ54) 

>70 

Aerobic respiration  Presence of oxygen Repressor (ArcA) >21 
Anaerobic 
respiration  

Absence of oxygen Activator Fnr >38 

Heat shock Temperature 
extremes 

Alternative sigma  
factor (σ32) 

>12 

Oxidative stress Oxidising agents Activator (OxyR) >30 
SOS response DNA damage Repressor (LexA) >20 
(Adapted from Ma et al., 2004). 

 

 

1.3.1. Carbon catabolite repression as a global regulatory system 

 

In order to be competitive, microbial metabolism must be tightly regulated to allow for 

the utilisation of a wide variety of carbon and nitrogen sources, while ensuring the 

prioritisation of the most efficient such nutrient sources (Hutter and Niederburger, 1984; 

Collier et al., 1996). When presented with a range of potential energy sources, 

microorganisms display sequential utilisation of these substrates, with those allowing for 
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the fastest growth being metabolised first (Collier et al., 1996). In the case of carbon 

metabolism, this sequential utilisation is regulated by carbon catabolite repression 

(CCR), which is described as the repression of genes required for the utilisation of less 

efficient carbon sources in the presence of a preferred carbon source (Suh et al., 2002). 

 

 

1.3.1.1. Carbon catabolite repression in E. coli 

 

The mechanisms by which CCR occur in bacteria are best understood for the gram- 

negative enteric microbe, E. coli, where glucose is the preferred carbon source. 

Transport of glucose by the phosphoenolpyruvate-dependant transport system (PTS) 

drives a protein phosphorylation cascade (Figure 1.3) (Collier et al., 1996; Warner and 

Lolkema, 2003). This involves two phosphor-transfer proteins, Enzyme I (EI) and HPR, 

as well as a set of sugar-specific permeases, namely Enzymes II (EIIA and EIIB). The 

phosphoryl transfer proceeds from phosphoenolpyruvate (PEP) to glucose via EI, HPR, 

EIIA and EIIB respectively. In the absence of glucose, phosphorylated EIIAglc stimulates 

adenylate cyclase to produce cAMP, which binds to the cAMP receptor protein (CRP). 

CRP, in turn, binds to specific promoter regions to activate the transcription of certain 

genes, usually those encoding enzymes required for the utilisation of less favourable 

carbon sources (Figure 1.3A). In contrast, when glucose is available, the phosphate is 

transferred from EIIAglc to glucose instead, thus repressing adenylate cyclase activity 

and inhibiting the transcription of the above genes (Figure 1.3B) (Stulke and Hillen, 

1999; Warner and Lolkema 2003).  
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Figure 1.3. The phosphenolpyruvate-dependant transport system (PTS) as a mechanism 
of carbon catabolite repression in E. coli. (A) In the absence of glucose; (B) In the 
presence of glucose. Important components of the pathway are abbreviated as follows: 
Enzyme I (EI), Enzymes II (EIIA, EIIB and EIIC), Protein H (HPR), phosphoenol- 
pyruvate(PEP), adenyl cyclase (AC), phosphate (P) and cAMP receptor protein (CRP). 
(Adapted from Warner and Lolkema 2003). 
 
 

The phosphoenolpyruvate-dependant transport system (PTS) described above is 

regarded as the master control circuit in carbon catabolite repression. CRP, as part of 

this system, controls the expression of more than a hundred genes in E. coli (Ma et al., 

2004). Although most of the genes regulated by CRP are involved in the utilisation of 

carbon sources, genes involved in pH-regulated gene expression, the heat-shock 

response, flagellum synthesis and enterotoxin production have also been shown to be 

regulated in this manner in enteric bacteria (Saier and Ramseier, 1996; Suh et al., 2002; 

Ma et al., 2004).  

 

 

1.3.1.2 Carbon catabolite repression in Pseudomonas 

 

A CRP homologue, namely Vfr (virulence factor regulator), which exhibits 67 % amino 

acid identity to the E. coli CRP, has been identified in P. aeruginosa (West et al., 1994). 

Vfr is able to bind cAMP with a similar affinity to CRP, displaying dissociation 

constants for this binding of 0.4 and 1.6 µM for Vfr and CRP respectively (Suh et al., 
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2002). Furthermore, Vfr can recognise the CRP binding site in the DNA of E. coli and 

interact with E. coli RNA polymerase to allow transcription of CRP-regulated genes 

(West et al., 1994; Suh et al., 2002). Indeed, it has been found that Vfr can substitute for 

CRP to regulate β-galactosidase and tryptophanase activity, thus restoring regulation by 

the phosphoenolpyruvate-dependant transport system in E. coli CRP- mutants (West      

et al., 1994). However, unlike in E. coli, cAMP levels in Pseudomonas do not vary 

according to carbon source, and tricarboxylic acid (TCA) cycle intermediates such as 

succinate, rather than glucose, are the strongest repressors in Pseudomonas (Phillips and 

Mulfinger, 1981; Eschenlauer and Reznikoff, 1991; Diab et al., 2006). Thus, it has been 

suggested that CCR does not occur by Vfr-mediated transcriptional regulation in 

Pseudomonas (Collier et al., 1996; Suh et al., 2002).    

 

 

Vfr as a global regulator of CCR in Pseudomonas? 

 

Alignment of the amino acid sequences of Vfr and CRP reveals that the residues known 

to be important for CRP activity, including those involved in DNA binding, interaction 

with RNA polymerase and cAMP binding, are conserved in Vfr (Figure 1.4) (Ebright        

et al., 1987; Weber and Steitz, 1987; West and Iglewski 1988; Zhang and Ebright, 1990; 

Eschenlauer and Reznikoff, 1991; West et al., 1994). It is therefore plausible that Vfr 

may mediate CCR in Pseudomonas in a manner similar to that of CRP in E. coli (West 

et al., 1994; Suh et al., 2002). Six residues in CRP are predicted to be involved in the 

binding of cAMP, namely Gly71, Glu 72, Arg82, Ser83, Thr127 and Ser128 (Weber and 

Steitz, 1987; West et al., 1994). With the exception of Ser128, which has been replaced 

with Thr, all of these residues are identical in Vfr (Figure 1.4). Tyr99 and Arg123 of 

CRP have been linked to stabilisation of the cAMP binding site and are also conserved 

in Vfr (West et al., 1994). 
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Vfr    1 MVAITHTPKLKHLDKLLAHCHRRRYTAKSTIIYAGDRCETLFFIIKGSVTILIEDDDGRE 
                     I    I   I I I        I      I I I   I      I        I I I     I    I I I I      I I   I      I   I 
CRP    1 -MVLGKPQTDPTLEWFLSHCHIHKYPSKSTLIHQGEKAETLYYIVKGSVAVLIKDEEGKE 
 
 
Vfr   61 MIIGYLNSGDFFGELGLFEKEGSEQERSAWVRAKVECEVAEISYAKFRELSQQDSEILYT 
         I  I     I I I    I I I   I  I I I I I I    I I     I  I I I I I I I I  I        I I I I I  I I I I I I   I    I         I I     
CRP   60 MILSYLNQGDFIGELGLFE.EG..QERSAWVRAKTACEVAEISYKKFRQLIQVNPDILMR 
                     **            **               �   
 
Vfr  121 LGSQMADRLRKTTRKVGDLAFLDVTGRVARTLLDLCQQPDAMTHPDGMQIKITRQEIGRI 
         I      I I I   I I      I     I I I    I I I I  I I I I I    I   I I I   I    I I I I I I  I I I   I I  I I  I I I  I I I I  I I   I  
CRP  117 LSAQMARRLQVTSEKVGNLAFLDVTGRIAQTLLNLAKQPDAMTHPDGMQIKITRQEIGQI 
                �    **       � � �  
 
Vfr  181 VGCSREMVGRVLKSLEEQGLVHVKGKTMVVFGTR 
         I  I  I I I I    I I I   I  I   I I   I    I         I  I I   I I   I   I I 
CRP  177 VGCSRETVGRILKMLEDQNLISAHGKTIVVYGTR 

             ����  ����   ����   
 
Figure 1.4. Alignment of the amino acid sequence of the Vfr protein of P. aeruginosa 
with that of E. coli CRP. Identical amino acids are indicated with vertical lines. Regions 
important for CRP activity are indicated below the sequence as follows: * -  residues 
involved in cAMP binding, � - residues which stabilise the cAMP binding pocket,         
� - residues which form the hinge between the two domains of cAMP, single     
underline - residues which are involved in CRP-RNA polymerase interactions; double 
underline - residues which form the helix-turn-helix motif involved in DNA binding, and  
���� -  residues of the HTH motif which make direct contact with the CRP binding site 
(adapted from West et al., 1994). 
 

 

The C terminus helix-turn-helix (HTH) motif in CRP is responsible for DNA binding 

(Weber et al., 1982). With the exception of the Arg substitution of Gln174 in Vfr, the 

first helix of the HTH motif is identical in the two proteins (Hutter and Niederberger, 

1984, West et al., 1994). The second helix, comprising amino acids 180 – 191, 

recognises and binds specific nucleotides and nine out of the twelve residues are 

identical in the two proteins (Ebright et al., 1987; Zhang and Ebright, 1990; West et al., 

1994). Residues 52 to 56 and 156 to 162 of CRP form hydrophillic loops, which are 

though to be involved in interaction with RNA polymerase (West and Iglewski 1988; 

Eschenlauer and Reznikoff, 1991). In Vfr, residues 156 – 162 are identical to those of 

CRP, while only two out of five residues between amino acids 52 and 56 are conserved 

(West et al., 1994). 

 

Despite these structural similarities and the fact that Vfr can complement an E. coli crp- 

mutant, CRP is unable to restore Vfr function in a P. aeruginosa vfr- mutant (West et al., 
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1994; Kanack et al., 2006). A recent study of the DNA-binding specificity of Vfr 

revealed a consensus Vfr binding sequence that differs from the CRP consensus, 

suggesting that although Vfr shares many of the functions of CRP, it also performs many 

specialised functions that are unique to this global regulator (Kanack et al., 2006). The 

inability of CRP to complement a vfr- mutant in P. aeruginosa may be due to the fact 

that the levels of cAMP in this pseudomonad are ten-fold lower than those in E. coli, and 

thus may be too low to activate CRP (Petrushka et al., 2002).  

 

Another possible explanation for the inability of CRP to substitute for Vfr in                  

P. aeruginosa, is that Vfr binds a modulator other than cAMP in Pseudomonas. This 

hypothesis is supported by the fact that the cAMP binding domain of Vfr possesses three 

amino acids, namely Lys80, Ser83 and Glu84, which are not present in CRP, and could 

allow Vfr to bind another allosteric effector (Suh et al., 2002). Furthermore, the Thr 

substitution of Ser128 in Vfr, has been shown to allow Vfr to be activated by both 

cAMP and cGMP (Beatson et al., 2002). The modulator of Vfr in Pseudomonas has not 

yet been identified (Suh et al., 2002).  

 

A further explanation for the failure of CRP to complement a vfr- mutant in                    

P. aeruginosa may be an inability of CRP to interact in the same way as Vfr with the 

RNA polymerase of this organism. This may be due to differences in the spacing 

between the Vfr and RNA polymerase binding sites, differences in the RNA polymerase 

enzymes themselves or the inability of CRP to recognise the Vfr binding site in             

P. aeruginosa (West et al., 1994; Suh et al., 2002). Thus, whether Vfr plays a role in 

carbon catabolite repression in Pseudomonas remains to be determined (Diab et al., 

2006; del Castillo and Ramos, 2007). On the other hand, it has been firmly established 

that Vfr acts as a global regulator of bacterial virulence in this species (Albus et al., 

1997). The role of Vfr in mediating virulence is reviewed later in Section 1.3.2.2.  
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Crc as a global regulator of CCR in Pseudomonas 

 

The first protein shown to participate in carbon catabolite repression in Pseudomonas 

was Crc (catabolite repression control protein) (MacGregor et al., 1991; Hester et al., 

2000). This protein has been implicated in the repression of a number of genes involved 

in the metabolism of sugars and nitrogenated compounds in both P. putida and               

P. aeruginosa (Hester et al., 2000; Yuste and Rojo, 2001). One such system regulated by 

CCR is the bkd operon, encoding the branched-chain keto acid dehydrogenase 

(BCKAD) enzyme and its positive transcriptional regulator, BkdR (MacGregor et al., 

1991). Repression of BCKAD by succinate, in the case of P. aeruginosa PA01, and 

glucose, in the case of P. putida KT2440, is lost in a crc- mutant and restored by the 

presence of extra-chromosomal (plasmid-borne) crc. Therefore this protein is proposed 

to play a central role in CCR in Pseudomonas (Hester et al., 2000).   

 

The regulator, Crc, does not appear to mediate CCR of all genes linked to carbon 

metabolism. In the histidine utilisation pathway or hut system, inactivation of crc does 

not relieve succinate repression (Yuste and Rojo, 2001). It would therefore appear that, 

in P. aeruginosa PA01, there exist at least two succinate-responsive mechanisms of 

CCR; one that is dependant on Crc, for example the repression of amidase and mannitol 

dehydrogenase, and one that is Crc-independent, as in the case of the regulation of the 

hut pathway (Collier et al., 1996; Collier et al., 2001). Similar mechanisms of CCR, 

with respect to Crc, have been observed in P. putida KT2440, where Crc is 93 % similar 

and 86 % identical to that of P. aeruginosa PA01 (Hester et al., 2000; Nelson et al., 

2002). 

 

The Crc protein of P. aeruginosa shares between 25 % and 32 % amino acid sequence 

identity with a family of DNA repair enzymes, consisting of the apurinic and 

apyrimidinic endonucleases, yet appears to lack either DNA-binding or endonuclease 

activity (MacGregor et al., 1996). In addition, Crc in P. aeruginosa displays significant 

homology to the E. coli Exonuclease (ExoIII) enzyme, with respect to both amino acid 

sequence and predicted secondary structure. However, while Crc retains the structural 
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features required for the cleavage of phosphodiester bonds, it lacks either exo- or 

endonuclease activity (Gambello et al., 1993). These observations suggest that Crc may 

bind either to RNA, a small phospho-protein or a signalling molecule rather than to 

DNA (Collier et al., 1996).  

 

A recent study has determined that both the amount and activity of Crc are modulated 

during regulation, suggesting that it forms part of a signal transduction pathway (Ruiz-

Manzano et al., 2005). It has also been established that, in addition to its role as a 

repressor, Crc can also act as a transcriptional activator. An example of this positive 

regulation by Crc is the activation of expression of the cysteinyl-tRNA-synthetase and 

malate-quinone oxidoreductase genes in P. putida (Morales et al., 2004). Despite what 

has been documented about Crc, no specific biochemical activity has been assigned to 

this protein, and the mechanism by which it regulates gene expression remains unclear 

(del Castillo and Ramos; 2007). 

 

 

1.3.2 Quorum sensing as a global control system 

 

As outlined above, global control systems allow bacteria to co-ordinate the expression of 

genes in response to an environmental signal. One of these signals is the presence of 

other microbes of the same species and, consequently, certain bacteria have developed a 

regulatory mechanism known as quorum sensing (QS), which responds to the cell 

density of their own population (reviewed in Schuster and Greenberg, 2006). Quorum 

sensing is defined as “a population density-dependant intercellular signalling mechanism 

enabling bacteria to co-ordinate the expression of specific genes” and was first observed 

in the luminescent bacterium Vibrio fischeri (Nealson et al; 1970; Juhas et al., 2005). 

The bacteria were shown to synchronise their behaviour by the secretion of signalling 

molecules in a manner that was dependant on cell density (Nealson et al; 1970). The 

name “quorum sensing” is derived from the critical or threshold concentration of 

bacteria known as the “quorum,” which is required for the induction or repression of 
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genes as a result of the secretion of signalling molecules (Fuqua et al., 1994; Schuster 

and Greenberg, 2006).  

 

The diffusible molecules secreted during quorum sensing are either acylated homoserine 

lactones (AHL) in gram-negative bacteria, small peptides in the case of gram-positive 

bacteria or autoinducer-2 (AI-2) found in both bacterial groupings (Gambello and 

Iglewski, 1991; Passador et al., 1993, Pearson et al., 1994; Juhas et al., 2005). A model 

for the mechanisms of regulation by quorum sensing, based on studies involving marine 

vibrios, has been developed (Engebrecht and Silverman, 1984). In this model, AHL 

molecules are produced in a cell density-dependant manner by the LuxI family of 

proteins and then interact with the LuxR family of transcriptional activators, to regulate 

the expression of a number of quorum sensing-sensitive genes (reviewed in Schuster and 

Greenberg, 2006). LuxR is a homodimer possessing both an “amino-terminal 

membrane-bound regulatory domain,” which binds AHLs; and a cytoplasmic carboxy-

terminal domain, which binds DNA (Withers et al., 2001). The LuxR family of 

transcriptional regulators bind DNA at a palindromic recognition sequence termed the 

lux box (Fuqua et al., 1994). While there is a great deal of variability in confirmed lux 

boxes, the consensus sequence in P. aeruginosa is as follows:                                        

5'-ACCTNCCANNTCTGGCAGNT -3', with highly conserved nucleotides indicated in 

bold (Pessi and Haas, 2000). 

 

 

1.3.2.1 Quorum sensing in Pseudomonas 

 

Quorum sensing has been observed in various Pseudomonas species and the human 

opportunistic pathogen P. aeruginosa, which causes infection in the lungs of cystic 

fibrosis sufferers, possesses the most extensively studied of these intercellular 

communication systems (Tummler et al., 1991; Juhas et al., 2005). According to 

microarray analysis, 5 % of all the genes in P. aeruginosa are regulated via quorum 

sensing (Wagner et al., 2003).   
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P. aeruginosa has two QS pathways, namely the las and rhl pathways (reviewed in 

Schuster and Greenberg, 2006). The las system is responsible for the regulation of 

elastase production and consists of the transcriptional activator protein, LasR, together 

with the autoinducer, PAI-1 [N-(3-oxododecanoyl)-L-homoserine lactone)] (Seed et al., 

1995; Juhas et al., 2005). PAI-1 reaches a threshold level at high cell densities and 

complexes with the LuxR homologue, LasR, converting the protein into a transcriptional 

activator (Gambello and Iglewski, 1991; Latifi et al., 1996; Juhas et al., 2005). This 

complex activates the expression of lasI, lasB, and lasA, involved in the induction of 

elastase production; apr, encoding an alkaline protease and toxA, required for          

exotoxin A production (Toder et al., 1991; Seed et al., 1995; Pearson et al., 1997; 

Rumbaugh et al., 2000).   

 

On the other hand, the rhl QS pathway involves the LuxR homologue, RhlR, and the 

autoinducer PAI-2 [N-butyryl-L-homoserine lactone) and controls transcription of rhlA 

and rhlB, which are involved in rhamnolipid biosynthesis (Ochsner et al., 1994; Juhas    

et al., 2005). A hierarchy governs the phenomenon of quorum sensing, where the las 

system is dominant and regulates the rhl system (Pesci et al., 1997; Schuster and 

Greenberg, 2006).  

 

Not all pseudomonads, however, possess a QS system such as the one described for                    

P. aeruginosa. The genome of P. putida KT2440 is 85 % similar to that of                      

P. aeruginosa, but lacks the key QS genes lasR and rhlR and is therefore unable to 

produce elastases, lipases, exotoxins and other QS-dependant elements (Nelson et al., 

2002). Another closely related pseudomonad, P. fluorescens, contains an rhlR gene on 

its chromosome which is similar to that found in P. aeruginosa, but lacks the coding 

sequence for the dominant transcriptional regulator, LasR (Kahn et al., 2005).  

 

Besides the well-established role of QS in controlling pathogenesis in P. aeruginosa, it 

is now known that this cell density-dependant signalling pathway is also involved in 

mediating beneficial relationships between bacteria and eukaryotes (Gonzảlez and 

Keshaven, 2006). An example of such an association is the bacteria-plant 
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communication displayed by certain strains of P. putida and P. fluorescens found in the 

rhizosphere (Gonzảlez and Keshaven, 2006). Of 137 soil-borne and plant-associated 

Pseudomonas isolates, 39 % tested positive for AHL production (Steidle et al., 2002) 

Although AHL-dependant quorum sensing is not very common in P. putida, it has been 

found that some strains do produce AHL’s (Bertani and Venturi, 2004). The regulons 

involved in QS in these strains of Pseudomonas are, to a large extent, unknown (Bertani 

and Venturi, 2004). 

 

A pseudomonad whose QS machinery is highly similar to the LasR/RhlR system of      

P. aeruginosa has been isolated from the rhizosphere, namely P. putida IsoF. The AHL-

dependant QS ability of IsoF is encoded by a four gene cluster containing: ppuI, whose 

gene product PpuI is a functional homologue of the LasI in P. aeruginosa; ppuR, 

encoding the LasR homologue, PpuR; ppuA, whose gene product is believed to be 

involved in biofilm formation; and rsaL, which is similar to the coding sequence of 

RsaL, a QS repressor in P. aeruginosa (Steidle et al., 2002). Furthermore, a palindromic 

sequence resembling a typical lux box was found upstream of the PpuR-regulated gene, 

ppuI, suggesting that PpuR is able to bind such a sequence in a manner similar to LasR 

(Steidle et al., 2002). The ppu system is absent in P. putida KT2440, but has been 

identified in the genome of another P. putida strain, designated as WCS358, and is 

identical to the system observed in IsoF (Nelson et al., 2002; Steidle et al., 2002; Bertani 

and Venturi, 2004). 

 

 

1.3.2.2 Quorum sensing and virulence 

 

In recent years, research has shown that QS is essential for the expression of numerous 

virulence factors (Hentzer et al., 2003). The dependence of virulence on QS in              

P. aeruginosa (summarised in Table 1.2) has provided a potential drug target to replace 

antibiotics, which have become problematic due to the frequent development of 

resistance to these compounds by the bacteria. Compounds which are able to override 

the cell-to-cell molecular signalling have been isolated from the marine environment. An 
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example of such an antagonist to QS is furanone, which has been shown to be successful 

in targeting and inhibiting virulence factor expression (Hentzer et al., 2003). 

 

 

Table 1.2. Examples of virulence factors regulated through quorum sensing in  
P. aeruginosa.                                                                                                    

LasR controlled virulence factors RhlR controlled virulence factors 

Alkaline protease  Alkaline protease 
Elastase  Elastase 
Lipase  Lipase 
Hydrogen cyanide  Hydrogen cyanide 
Catalase  
Aminopeptidase  
Superoxide dismutase  
  Chitinase 
Exotoxin A  
(Adapted from Juhas et al., 2005) 

 

 

Not only is QS required for virulence, it has further been shown that the transcriptional 

regulator Vfr, (for virulence factor regulator), regulates lasR expression. This places Vfr 

at the top of the regulatory QS cascade and firmly establishes the interdependence 

between QS and virulence (Albus et al., 1997). As a global regulator of virulence, Vfr 

has been implicated in the regulation of expression of at least 162 genes in                    

P. aeruginosa and acts as either a transcriptional activator or repressor depending on the 

system (West et al., 1994; Suh et al., 2002).  

 

 

1.3.3 Aerobic vs. anaerobic respiration as a global regulatory system 

 

Microorganisms are ubiquitous and have been found to be capable of growth in a wide 

range of environmental oxygen levels (Pasteur, 1876; cited in Alexeeva et al., 2002). 

Aerobes are classified based on their ability to grow at a maximum oxygen tension 

which is equivalent to the 21 % oxygen level present in air (reviewed in Alexeeva et al., 



 

 

- 21 - 

2002). These aerobic organisms are further classified as being either facultative or 

microaerophilic. Facultative aerobes, such as E. coli, are capable of growth under both 

aerobic and anaerobic conditions, while microaerophiles can only survive oxygen levels 

that are lower than that of air (Garrity, 1984; Alexeeva et al., 2002). Anaerobic 

microorganisms lack a respiratory system and cannot use oxygen as a terminal electron 

acceptor (reviewed in Imlay, 2002). Anaerobes are also divided into two sub-types; 

aerotolerant and obligate anaerobes. While aerotolerant microbes, such as Streptococcus, 

can tolerate oxygen in their environment and grow in its presence, they are unable to use 

it in respiration. Obligate anaerobes, such as Methanobacterium, are killed by oxygen 

due to their inability to remove the toxic by-products of oxygen metabolism (Garrity, 

1984; Imlay, 2002). 

 

 

1.3.3.1 Regulation of anaerobic respiration in E. coli 

 

As outlined above, E. coli is a facultative aerobe capable of growth in aerobic as well as 

anaerobic conditions (Garrity, 1984). The switch from aerobic to anaerobic growth is 

regulated by two global transcriptional regulator systems. One is a two-component 

sensor-regulator system, consisting of ArcA and ArcB, which is able to repress certain 

aerobic genes under anaerobic conditions (Iuchi and Lin, 1988; Tseng et al., 1996). 

ArcB acts as an environmental oxygen sensor which activates ArcA under reduced 

oxygen conditions and ArcA, in turn, mediates both positive and negative regulation of 

gene expression. This occurs in environmental oxygen levels between 10 % and 20 % 

saturation, therefore ArcA has been designated as a microaerobic redox regulator (Tseng 

et al., 1996; Alexeeva et al., 2003).  

 

The second global redox regulator system involves Fnr, which was named due to the 

discovery of mutants which were unable to use fumarate as an alternate electron 

acceptor in anaerobic conditions (Spiro and Guest, 1990; Becker et al., 1996). Fnr is a 

CRP homologue and possesses the characteristic helix-turn-helix DNA binding domain 

of transcriptional activators, while being able to function as both an anaerobic activator 
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and aerobic repressor (Spiro and Guest, 1990; Spiro, 1994). The dimeric protein has 

been isolated in monomeric form and has a molecular weight of 30 kDa (Spiro and 

Guest, 1990). Fnr is activated at low oxygen levels by acquiring [4Fe-4S]2+ clusters, 

which function as oxygen sensors due to their instability in the presence of O2. These 

clusters promote the formation of homodimers, by interacting with essential cysteine 

residues in the protein, resulting in increased sequence-specific DNA binding (Kiley and 

Beinert, 1998; Dibden and Green, 2005). DNA binding by these Fnr dimers occurs, 

under anaerobic conditions, at sites resembling the 22 base pair consensus sequence or 

Fnr box: 5' - TTGAT - N4 – ATCAA - 3'. This Fnr recognition sequence differs only 

slightly from that of the CRP consensus sequence, although CRP is unable to bind Fnr 

box sequences (Eiglmeier et al., 1989; Dibden and Green, 2005). Fnr boxes are often 

present at a position approximately 30 nucleotides upstream of the transcriptional start 

site of genes regulated by Fnr (Eiglmeier et al., 1989; Dibden and Green, 2005).  

 

 

1.3.3.2 Anaerobic growth of Pseudomonas 

 

Although bacteria belonging to the genus Pseudomonas were originally classified as 

“organisms having a strictly respiratory metabolism,” it has since been discovered that 

this term is not entirely accurate, especially in the case of P. aeruginosa (Palleroni, 

1984; Sabra et al., 2002).  The opportunistic pathogen, P. aeruginosa, was found to form 

macro-colonies giving rise to microaerobic to anaerobic environments (Worlitzsch et al., 

2002). Furthermore, the deeper layers of biofilms, for example those found in the cystic 

fibrosis lung, were found to be anaerobic (Hassett et al., 2002). Chemostat experiments 

have shown that the microbe establishes “microaerobic milieus” for optimal growth 

(Sabra et al., 2002).  

 

In the absence of oxygen, P. aeruginosa uses nitrate or nitrite as an alternate electron 

acceptor and generates energy by denitrification (Davies et al., 1989). When neither 

nitrate nor nitrate is available, P. aeruginosa may use arginine deimination to survive 

anaerobically (van der Wouven et al., 1984). Another means by which P. aeruginosa 
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can survive under anaerobic conditions is via pyruvate fermentation. Although pyruvate 

fermentation alone is not sufficient to sustain any considerable growth of the organism, 

the metabolic capacity provided allows survival in anaerobic conditions for up to 18 

days (Eschbach et al., 2004). Thus P. aeruginosa may require reclassification as an 

aerotolerant anaerobe or even a facultative aerobe. There is, however, no evidence that 

P. putida strains are able to survive anaerobic conditions and the most frequently utilised 

laboratory strain, KT2440, is still regarded as a strict aerobe (Timmis, 2002). 

 

 
Anr as a global regulator under anaerobic conditions in Pseudomonas 
 

A diverse group of bacterial species possess Fnr homologues, which fulfil a number of 

different regulatory roles. P. aeruginosa, for example, possesses the Fnr homologue 

Anr, (named for its role as an anaerobic regulator) which controls the onset of anaerobic 

metabolism (Spiro, 1994). Genes that are activated by Anr display specific sequences in 

their promoters, termed “anr boxes” and it has been found that Anr binds these 

sequences with a recognition specificity which is similar, but not always identical, to 

that of Fnr (Wintler et al., 1996; Pessi and Haas, 2000). The Anr protein functions by 

means of a similar mechanism to that of Fnr, where it is converted to its active dimeric 

form under low oxygen levels, binds to the Anr box and then switches on the 

transcription of genes whose enzymes are required under anaerobic conditions (Spiro, 

1994).  

 

The anaerobic regulator, Anr, directly induces transcription of the genes required for 

arginine deimination, as well as a gene encoding a second Fnr-like protein called Dnr, 

which is responsible for the induction of denitrification pathways (Zimmerman et al., 

1991; Arai et al, 1997; Arai   et al., 2003; Schreiber et al., 2007). It was recently 

discovered that Anr plays an important role in stimulating the expression of the cupA 

fimbrial gene involved in biofilm formation by P. aeruginosa in the cystic fibrosis lung 

(Vallet-Gely et al., 2007). Although P. putida KT2440 is classified as an obligate 

aerobe, it does nonetheless possess an anr gene, which is intriguing and raises questions 

as to the role of Anr in this pseudomonad (Nelson et al., 2002) 
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1.4 Alternate sigma factors and regulation 

 

Not all genes subject to global control systems make use of simple combinations of 

activators and repressors to regulate their expression. Another way in which cells are 

able to switch the pattern of transcription, in order to allow the expression of genes 

which are only required under certain conditions, is by the production of alternative 

sigma factors (reviewed in Venturi, 2003). In bacteria, transcription is carried out by 

RNA polymerase (RNAP), and specificity for the transcription of genes is provided by 

sigma factors. These sigma factors compete for a limited amount of RNAP core enzyme 

and direct the RNAP enzyme to the promoters of a certain subset of genes, depending on 

the specific sigma factor which is dominant at that time (Reviewed in Ishihama, 2000). 

Regulation is achieved by varying either the level or the activity of these different sigma 

factors, according to stimuli associated with various growth phases and growth 

conditions (Jishage and Ishihama, 1996; Ishihama, 2000).  

 

 

1.4.1 Regulation of gene expression by sigma factors in E. coli 

 

Eubacteria display two very different families of sigma factors, namely the σ70 family 

and the σ54 family (Lonetto et al., 1992; Paget and Helmann, 2003). The σ70 family, in 

turn, is made up of two sub-families, the σ70 sub-family and the extracytoplasmic sigma 

factor (ECF) sub-family (Paget and Helmann, 2003). Most of the genes in E. coli require 

the 70 kDa vegetative or essential sigma factor, namely σ70, for their transcription. Such 

genes possess specific -10 and -35 sequences, in relation to the transcriptional start of 

the genes, whose consensus sequences are TATAAT and TTGACA respectively (Wise 

et al., 1996; Paget and Helmann, 2003).  

 

There are a variety of less common σ
70 sub-family sigma factors, which are not essential 

for cell growth and are expressed at higher levels under certain environmental conditions 

(Paget and Helmann, 2003). An example of such an alternative σ70 family sigma factor is 

σ32 or σH, which allows for the expression of at least 127 genes required during high 
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temperatures in E. coli (Grossman et al., 1987; Paget and Helmann, 2003; Nonaka et al., 

2006). This “heat shock” sigma factor has a consensus promoter recognition sequence 

that is different from that of σ70, namely CCCCATWT (-10) and TTGAAA (-35), and 

the heat shock response is regulated directly by σ32, as a result of an increase in the 

levels of this normally unstable sigma factor at high temperatures (Grossman et al., 

1987; Nonaka et al., 2006). 

 

Another alternative σ70 sub-family sigma factor is σ38, also known as σs. This sigma 

factor was found to regulate the expression of more than 100 genes in E. coli in response 

to a variety of stresses associated with stationary phase; such as carbon starvation, 

limited oxygen availability, high osmolarity and the presence of toxic chemicals 

(Hengge-Aronis, 1993; Wise et al., 1996; Ishihama, 2000; Venturi, 2003). Although 

similar to σ70 in structure and molecular function, σ38 recognises a modified -10 

sequence namely CTATACT and, instead of requiring a -35 sequence, makes use of a 

region upstream of the -10 sequence that is A+T rich and displays intrinsic DNA 

curvature (Lonetto et al., 1992; Espinos-Urgel et al., 1996; Lee and Gralla, 2001).   

 

The extracytoplasmic function (ECF) sigma factors represent the second sub-family of 

the σ70 family of sigma factors (Lonetto et al., 1994; Paget and Helmann, 2003). 

Bacterial cells possess a number of ECF sigma factors which regulate transcription in 

response to extracytoplasmic stimuli, such as the presence of misfolded proteins in the 

periplasmic space, by means of post-translational interaction with an “anti-sigma factor” 

located in the cell membrane (Raivio and Silhavy, 2001; Paget and Helmann, 2003). In 

E. coli, examples of ECF sigma factor include the Fecl sigma factor, which is involved 

in iron acquisition and regulates iron dicitrate uptake and σE, which ensures the correct 

assembly of outer-membrane proteins (Enz et al., 2000; Raivio and Sihavy, 2001; Paget 

and Helmann, 2003).   

 

The other major family of sigma factors is the σ
54 family, which is classified separately 

due to the fact that σ54 is entirely different from other bacterial sigma factors in both its 

structure and mechanism of action (Lonetto et al., 1992; Buck et al., 2000; Paget and 
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Helmann, 2003). Unlike sigma factors of the σ70 family, σ54 works together with a 

transcriptional activator, which binds to an upstream activation sequence (UAS) at least 

100 nucleotides from the transcriptional start site (Merrick, 1993; Buck et al., 2000; 

Reitzer and Schneider, 2001). Recognition of promoters by σ54 occurs via a palindromic 

binding sequence, namely: TGGCAC - N5-6 – TTGCT (Pearson et al., 1997). Binding of 

this transcriptional activator at the UAS causes the DNA to bend, forming a loop, which 

allows for direct contact between the σ54-RNAP complex and the activator protein such 

that σ54-bound RNAP is able to bind to the promoter and activate transcription (Merrick, 

1993; Buck et al., 2000).  

 

Another name for σ54 is σN, since the sigma factor was originally discovered to be 

nitrogen-specific (Hirschman et al., 1985; Buck et al., 2000). In recent years, however, 

σ54 has been implicated in the regulation of a number of very different genes, including 

those whose products are involved in the utilisation and transport of different carbon and 

nitrogen sources, in addition to genes involved in virulence as well as the phage-shock 

and zinc-tolerance responses (Reitzer and Schneider, 2001).  

 

 

1.4.2 Regulation of gene expression by alternative sigma factors in Pseudomonas 

 

The mechanisms of regulation of gene expression in Pseudomonas have long been 

thought to be among the most sophisticated of any bacterial genus. For example, in        

P. aeruginosa, 8 % of the total number of genes have been linked to regulation, which is 

the highest percentage observed for a bacterial genome (Stover et al., 2000). This 

suggests that these organisms possess regulatory machinery that is both complex and 

potentially novel. Furthermore, whereas E. coli displays 266 open reading frames coding 

for transcriptional regulators, P. putida and P. aeruginosa encode up to 450 such ORFs 

on their genome (Stover et al., 2000; Nelson et al., 2002). This apparent increase in the 

complexity of regulation in pseudomonads is also evident in the large range of sigma 

factors present in these bacteria. The genomes of P. putida KT2440 and                         

P. aeruginosa PA01 possess 24 genes encoding sigma factors whereas  E. coli has only 
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7 such genes (Stover et al., 2000; Nelson et al., 2002; Martinez-Beuno et al., 2002). Not 

surprisingly, this represents the highest number of sigma factors reported for any 

bacterial genome (Martinez-Beuno et al., 2002; Cases et al., 2003). 

 

The first alternative sigma factor to be characterised in P. putida was σ38 (Ramos-

Gonzalez and Molin, 1998). In this organism, bidimensional protein gel experiments 

have revealed that σ38 controls the expression of at least 50 genes under carbon 

starvation conditions (Ramos-Gonzalez and Molin, 1998; Venturi, 2003). In contrast to 

E. coli, where σ38 is a central regulator in the general stress response; this sigma factor 

has unique functions and has a less important role in the general stress response in 

Pseudomonas (Suh et al., 1999; Venturi, 2003; Paget and Helmann, 2003). For example, 

in P. aeruginosa, σ38 has been shown to affect the expression of a large number of 

quorum sensing genes, such as those involved in extracellular alginate and exotoxin A 

production, together with those responsible for the formation of type IV fimbriae, all of 

which are linked to the virulence of the organism (Latifi et al., 1996; Suh et al., 1999; 

Kazmierczak et al., 2005). Furthermore, the QS regulator, RhlR, was found to regulate 

σ38 expression, indicating an inter-dependence between this alternative sigma factor and 

the QS pathway (Latifi et al., 1996; Kazmierczak et al., 2005).  

 

An additional σ70 sub-family sigma factor, which is not present in E. coli, was identified 

in Pseudomonas (Ditty et al., 1998). This alternative sigma factor, σ28, also called FliA, 

due to its involvement in the regulation of flagellin biosynthesis, was first found in the 

strain P. putida PRS2000, but has since been identified in the genomes of both              

P. aeruginosa PAO1 and P. putida KT2440 (Ditty et al., 1998;  Stover et al., 2000; 

Nelson et al., 2002). FliA is regulated by an “antisigma factor” called FlgM and the 

flagellin biosynthesis regulatory system falls under the control of σ54 and the 

transcriptional activator FleQ, which form the highest level of regulation in flagellum 

biosynthesis (Totten et al., 1990; Frisk et al., 2002; Kazmierczak et al., 2005). 

 

In terms of ECF sigma factors in Pseudomonas, 19 new sigma factors have been 

identified in P. putida KT2440 (Martinez-Beuno et al., 2002). Interestingly, 13 of these 
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putative ECF sigma factors showed a high degree of similarity to the Fecl sigma factor 

of E. coli and, since each is associated with a different activator protein, this allows for a 

number of different mechanisms of iron acquisition (Martinez-Beuno et al., 2002; Paget 

and Helmann, 2003). The ECF sigma factors of P. putida KT2440 and P. aeruginosa 

PA01 have been compared and five of these displayed a high degree of similarity 

between the two strains; whereas, for seven of the ECF factors in P. aeruginosa there 

were no homologous proteins in P. putida (Martinez-Beuno et al., 2002). These distinct 

sigma factors in the pathogen, P. aeruginosa, are most likely linked to virulence, which 

would explain their absence in the non-pathogenic strain, P. putida (Martinez-Beuno      

et al., 2002; Nelson et al., 2002). An example of such an ECF sigma factor involved in 

virulence in P. aeruginosa is AlgU, which regulates the biosynthesis of alginate in 

concert with the quorum sensing global transcriptional regulator, LasR (Kazmierczak    

et al., 2005). 

 

In the case of the unique bacterial sigma factor, σ
54, which has previously been 

implicated in the regulation of a diverse set of genes in E. coli, a total of 55 promoters in 

P. putida have been predicted to fall under the control of this sigma factor (Reitzer and 

Schneider, 2001; Cases et al., 2003; Kazmierczak et al., 2005). A recent study of the σ54 

regulon (sigmulon) of the complete genome of P. putida KT2440 revealed a range of 

new biological functions for σ54, which were entirely different from those described for      

E. coli (Cases et al., 2003). Nine of the 55 predicted σ54-regulated promoters were 

related to flagellum synthesis, required for motility of the organism and chemotaxis;    

18 of the promoters were linked to genes involved in nitrogen metabolism, including the 

transport of amino acids, ammonia and polyamines; and a further nine of the               

σ
54-dependant promoters were found to drive the transcription of genes involved in 

carbon metabolism, including those linked to transport, particularly of dicarboxylates, as 

well as a number of dehydrogenase and oxidoreductase-type enzymes (Cases et al., 

2003). In addition, σ54 has been implicated in the regulation of rhamnolipid biosynthesis 

by RhlA in the pathogenic strain, P. aeruginosa, since expression of rhlA decreased     

15-fold in the absence of this sigma factor (Pearson et al., 1997; Kazmierczak et al., 

2005). 
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What is clear from the literature regarding global control systems for the expression of 

non-essential genes in prokaryotes, is that these pathways are complex and are often 

integrated with other regulatory systems to give rise to hierarchies of interlinking control 

mechanisms (Ma et al., 2004). This is particularly true for the metabolically diverse 

genus Pseudomonas, where metabolic regulatory pathways overlap with QS systems and 

alternative sigma factor regulation, to allow for a co-ordinated and sophisticated 

response to a variety of related environmental signals (Stover et al., 2000; Withers et al., 

2001; Nelson et al., 2002).   

 

 

1.5 Research proposal  

 

1.5.1 Knowledge gap and hypothesis 

 

Although it is known that hydantoin-hydrolysing enzyme activity in P. putida RU-KM3s 

is subject to carbon catabolite repression (CCR) and is not affected by the nitrogen status 

of the cell, the mechanisms of regulation as well as the transcriptional factors involved, 

remain unknown (Matcher et al., 2004). To date, the only protein shown to play a global 

role in CCR in Pseudomonas is Crc (Hester et al., 2000; Yuste and Rojo, 2001). 

However, it has also been reported that inactivation of Crc does not relieve CCR in all 

enzyme systems linked to carbon metabolism (Yuste and Rojo, 2001). On the other 

hand, the presence of a putative CRP binding site in the intergenic region of the dhp/bup 

gene cluster in P. putida RU-KM3s, together with the sequence similarity and conserved 

structural features between CRP and Vfr, suggest that Vfr may be able to mediate CCR 

of the hydantoin hydrolysis pathway in this organism (West, 1994; Suh et al., 2002; 

Matcher, 2004). 

  

This study attempts to elucidate the mechanisms governing the complex metabolic 

regulatory systems in Pseudomonas, using the hydantoin-hydrolysing system of        

RU-KM3s, in particular the expression of the dhp gene, as a model. 
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Hypothesis 

 
The regulation of dhp expression in P. putida RU-KM3s requires two or more global 

transcription factors working in synergy, one of which is Vfr.   

 
 
1.5.2 Overall aim of the project 

 
Identification of the factors involved in regulating dhp expression in P. putida RU-KM3s 

 
 
1.5.3 Objectives 

 
1) Bioinformatic analysis of the intergenic region upstream of dhp to identify                  

       potential transcription factor binding sites. 

2) Characterisation of environmental factors affecting DHP activity, including    

confirmation of the observations reported by Matcher (2004). 

3) Identification of potential global regulatory proteins affecting DHP activity. 

4) Development of an experimental system to analyse dhp promoter activity. 

5) Identification of putative transcription factor binding sites in the dhp promoter 

that affect gene expression. 

6) Development of a model for the regulation of dhp expression in RU-KM3s. 
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METHODS AND MATERIALS 

 

 
2.1 Bacterial strains and culture conditions 
 

The strains utilised and generated in this study are listed in Appendix 1, Table A1.1. 

Pseudomonas putida RU-KM3s and its plasposon-derived transconjugate strains were 

cultured with agitation at 200 rpm at 28 °C, while all E. coli strains were cultured at       

37 °C. All strains were maintained on Luria-Bertani agar (LA) plates and liquid cultures 

cultured either in Luria-Bertani (LB) or nutrient broth (NB) (Sambrook et al., 1989). 

The following antibiotic concentrations were utilised for selective growth of desired 

strains: 25 µg/ml chloramphenicol, 10 µg/ml tetracycline, 100 µg/ml ampicillin and       

50 µg/ml kanamycin.  

 

Quorum sensing conditions were maintained by culturing P. putida RU-KM3s cells in 

double-strength medium i.e. 50 ml NB containing 0.1 g meat extract, 0.5 g peptone,    

0.2 g yeast extract and 0.8 g sodium chloride. Carbon catabolite repression was achieved 

by the addition of 1 % succinic acid (succinate) to the growth medium. Anaerobic 

conditions were attained by culturing cells in tightly stoppered Schott bottles, in either 

NB alone or NB supplemented with 1 mM sodium nitrate as an alternate electron 

acceptor. The degree of aeration was varied by altering the volume of culture medium, 

and therefore headspace, in the growth vessel.  

 

 

2.2 Introduction of plasmids into E. coli and P. putida cells 

 

Recombinant plasmids were routinely maintained in E. coli DH5α cells. The preparation 

and transformation of competent E. coli cells was carried out according to Hanahan 

(1983) and is detailed in Appendix 2. Vectors were introduced into P. putida RU-KM3s 

cells by tri-parental mating, with E. coli DH5α hosting the desired vector and HB101 

hosting the mobilising plasmid, pRK2013 (Santos et al., 2001), as described by Dennis 

and Zylstra (1998). This process was optimised for RU-KM3s by Matcher (2004) and 

accordingly a 1:1:1 ratio of RU-KM3s:DH5α:HB101 was utilised. Transconjugate 
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strains were selected by plating onto LA plates containing chloramphenicol, to select 

against the E. coli strains, and the relevant antibiotic marker carried on the vector. 

 

 

2.3 Construction of recombinant promoter probe vectors 

 

The plasmids generated and utilised in this study are described in Appendix 1,          

Table A1.2/3. The specific details of all primers used in the cloning experiments below 

can be found in Appendix 1, Table A1.4/5, and the cycling parameters are described in 

Appendix 3.4, Table A3. The recombinant vectors were analysed at each cloning step by 

extraction from E. coli cells using the Easyprep method described by Berghammer and 

Auer (1993) and screening by restriction endonuclease digestion, followed by analysis 

by agarose gel electrophoresis (Sambrook et al, 1989). The desired plasmids were 

extracted to a high degree of purity using the High Pure Plasmid DNA isolation kit 

(Roche).  

  

In order to analyse the regulation of dhp transcription by cis-acting elements in P. putida 

RU-KM3s, two different promoter probes were utilised, namely a chromosomal 

integration plasmid, pJD2, and a multi-copy broad host-range vector, pMJ449. 

 

 

2.3.1 The plasposon-derived chromosomal integration vector, pJD2 

 

To facilitate the insertion of a promoter probe into the chromosome of RU-KM3s, a 

vector derived from a “modular self-cloning mini-transposon” or “plasposon,” 

developed by Dennis and Zylstra (1998), was constructed. The Eco RI site of the 

plasposon, pTnMod-OTc (Figure 2.1) was removed by digesting with Eco RI, filling in 

the resulting nucleotide overhangs with Klenow DNA polymerase (Promega) and re-

ligation with T4 DNA ligase (Promega). Thereafter, flanking Eco RI and Bam HI sites 

were introduced into the modified pTnMod-OTc vector adjacent to the translational stop 

codon of the pMB1 oriV, using Expand High Fidelity DNA polymerase (Roche) and the 

overlapping site-directed mutagenesis primers JAS11 (5'–CGAATTCGATGAGCTCGG 

GTTGGTTTG-3') and JAS13 (5'-CGAATTCGGATCCTTTCGTTCCACTGAGCGT 
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CAGAC-3') to generate pJAS26 (Figure 2.1, Step 1). The modification of pTnMod-OTc 

in terms of these restriction sites was necessary to allow for the cloning of the gus gene 

and subsequent fusion of the dhp promoter to this reporter in the plasposon. 

 

The gus ORF, minus its native Shine-Delgarno sequence and encoding the                       

β-glucuronidase enzyme, was PCR amplified from pMJ242 (Jiwaji, 2006), a plasmid 

derived from pCAMBIA (CAMBIA, Canberra, Australia). This was achieved using 

Expand High Fidelity DNA polymerase (Roche) and the primers JAS14                         

(5'-CCATGGATGTTACGTCCTGTAGAAACC-3') and JAS15 (5'-GGTACCTCGAGC 

TGCAGTCATTGTTTG-3'), which introduce a Nco I site on the 5´ end and a Kpn I site 

on the 3´ end of gus respectively.  The PCR product was then ligated into the         

pGEM T-Easy vector (Promega) to generate pJAS21 (Figure 2.1 Step 2). The 

authenticity of the gus coding sequence was confirmed by DNA sequencing using the 

ABI Prism Big Dye Terminator protocol (Appendix 3.2) and the universal primers 

pUCF and pUCR. Thereafter, the gus gene was removed from pJAS21 as an 1824 bp 

Eco R1 restriction fragment and inserted into the single Eco RI site of pJAS26, yielding 

the construct pJAS29 (Figure 2.1, Step 3). 

 

A sequence corresponding to the 255 bp intergenic region upstream of the dhp ORF, and 

including the ribosome binding site for the dhp transcript, was amplified from the 

genome of RU-KM3s using primers JAS6 (5'-GGATCCCATGGGGCCTTCTCCAGA 

TTT-3') and JAS10 (5'-CCATGGAGATCTGCCGTCTTCCTCG-3'), which introduced 

a flanking  Bam HI and Nco I site at the 5' and 3' ends, respectively. The PCR products 

were first ligated into the pGEM-T-Easy vector, yielding pJD1 (Figure 2.1, Step 4) and 

the DNA sequence determined to confirm the integrity of the insert. Thereafter, this     

255 bp fragment was inserted into pJAS29, using Bam HI and Nco I, to generate the 

final construct pJD2 (Figure 2.1; Step 5). 
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The integration vector, pJD2, contained a conditional origin of replication (pMB1), 

preventing the plasposon from replicating in P. putida; an origin of transfer (oriT), to 

allow for introduction into RU-KM3s cells by tri-parental mating; a Tn5 transposase gene 

(tnp) together with inverted repeats, to allow for random integration into the 

chromosome; and the antibiotics resistance markers for Ampicillin (amp
R
) and 

Tetracycline (tc
R
).  

 

To confirm the integration of pJD2 into the chromosome of RU-KM3s, genomic DNA 

was extracted from the transconjugate strains using the detergent lysis/CTAB method 

(Ausubel et al., 1983, Appendix 3.3) and subjected to PCR analysis using KapaTaq DNA 

polymerase (Kapa Biotech) and the gus-specific primers JAS14/JAS15, described above. 

The presence of an 1824 bp PCR product, corresponding to the gus gene, would indicate 

the successful insertion of pJD2 into the genome of a particular transconjugate strain.   

 

 

2.3.2 The multi-copy broad host-range promoter probe vector, pMJ445. 

 

A broad host-range vector, namely pMJ455, was constructed by Meesbah Jiwaji, a post-

doctorate researcher in the laboratory. The vector contained an oriT gene, allowing the 

vector to be introduced into P. putida RU-KM3s by tri-parental mating, the broad host-

range rep genes, to allow autonomous replication in RU-KM3s, the tc
R
 gene to allow for 

antibiotic selection of transconjugate strains, as well as divergent lacZ and gus genes to 

allow for the analysis of a bi-directional promoter (Figure 2.2). The entire 616 bp 

intergenic region upstream of dhp was amplified from RU-KM3s genomic DNA using 

Expand High Fidelity DNA polymerase and the primers GFM38 (5'-AGATCTGGGG 

CCTTCTCCAGATTTTT-3') and GFM39 (5'-AGATCTGCCGTCTTCCTCGCAG-3').  

These primers introduced Bgl II sites on either side of the sequence, allowing the 

promoter to be inserted into the Bgl II site of pMJ445. The PCR fragment was first 

ligated into the pGEM T-Easy and the sequence confirmed using the universal primers 

pUCF/R before inserting into pMJ445 using Bgl II to produce pMJ449. This construct 

contained the 616 dhp promoter region orientated in the direction of the gus reporter. 
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Recombinants were selected by their ability to degrade 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-Gal) to produce blue colonies on agar plates containing 40 µl of a 

40 µg/ml solution of the chromogenic substrate. 

  

                                                                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                              

Figure 2.2. Schematic map of the broad host-range promoter probe vector, pMJ445, used 

in the analysis of the dhp promoter region. The vector contains a broad host-range origin 

of replication made up of the genes repB, repC, repA and oriV (boxed in dashed lines), an 

E. coli origin of replication (F1 ori), a plasposon-derived origin of transfer (oriT), the 

antibiotics resistance markers for Ampicillin (amp
R
) and Tetracycline (tc

R
), and divergent 

genes encoding the reporter enzymes β-galactosidase (lacZ) and β-glucuronidase (gus). 

The promoter is inserted between the lacZ and gus genes using the restriction enzyme   

Bgl II (Jiwaji et al., 2008). 

 

 

2.4 Site-directed mutagenesis of the putative transcription factor binding sites in the 

dhp promoter 

 

Mutagenesis was carried out on a pGEM T-Easy construct containing the 616 bp dhp 

promoter (pJAS20) using Kapa High Fidelity DNA polymerase (Kapa Biotech) and the 

amplification products were treated with Dpn I. The upstream half-site of the putative 

Anr box and the downstream half-site of the putative Vfr binding site were mutated to 

ensure that, in each case, the other site remained intact (Figure 2.3). For the Crp/Vfr 
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pMJ445

15976 bp

tcR

repC

repA

repB

gus

ampR
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binding site mutagenesis, the half-site was mutated by the introduction of a Sma I site 

using the primers JD1 (5' - CAAAATGGTGAACAGCCCGGGCATTTTGGTGAACG 

CC - 3') and JD2 (5' - GGCGTTCACCAAAATGCCCGGGCTGTTCACCATTTTG - 3'). 

In the mutagenesis of the putative Anr box, the half-site was mutated by introducing a  

Pst I site using the primers JD3 (5' – CTTGACCAATTTGGCATCTGCAGAAGTGCG 

TCAAAATGGTG - 3') and JD4 (5' – CACCATTTTGACGCACTCTGCAGATGCC 

AAATTGGTCAAG - 3'). Once mutated, the promoters were sequenced using the 

universal primers pUCF/R, before sub-cloning into the broad host-range vector pMJ445, 

using Bgl II. This gave rise to pJD6 (mutated in the putative Vfr binding site) and pJD7 

(mutated in the putative Anr box/σ
54

) (Figure 2.3).  

 

 

 

 

 

 

 

 

                               

Figure 2.3. Strategy for site-directed mutagenesis of putative binding sites for Anr/σ
54

 

and Vfr in the dhp promoter. The nucleotide sequences are annotated as follows: 

nucleotide co-ordinates relative to the start of the hydantoinase gene cluster flank the 

sequence; the putative σ
54 

binding site is circled in dashed lines, the Anr site is boxed and 

the putative Vfr site is circled in solid lines; nucleotides targeted for mutation are 

indicated in bold font, while both the half-sites and the restriction endonuclease 

recognition sequences are underlined. pJD6 and pJD7 refer to the final promoter probe 

constructs containing mutations in the Vfr and Anr/σ
54

 binding sites, respectively. 

 

 

The vector constructs were screened using PCR followed by restriction digest with Sma I 

and Pst I. First, PCR amplification of the recombinant plasmids using primers specific to 

both the dhp promoter (GFM38) and the broad host range vector (MJ94:                          

5' - TTCGAAGATCGGCCCCCGCTCGACGCTC – 3') was carried out. Here, an 800 bp 

product would indicate that the dhp promoter was present in the vector, but not that the 

Vfr
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putative binding sites were mutated. To determine if this was the case, the PCR products 

were digested with Sma I and Pst I, such that only the promoters containing a mutated 

Crp/Vfr or Anr binding site would be cut by either Sma I or Pst I respectively, to generate 

two distinct fragments of around 400 bp. The digests were analysed by agarose gel 

electrophoresis on 4 % agarose gels. This screening was carried out both before and after 

introducing pJD6/7 into RU-KM3s cells. It was particularly important to ensure that the 

cells used in reporter enzyme assays contained the correct vector construct. Therefore 

genomic extractions were performed on these cells to remove the vector and PCR was 

carried out on these genomic preparations, followed by restriction analysis, as before.  

 

 

2.5 Targeted disruption of vfr and crc  

 

In order to determine whether either of the global regulatory proteins Vfr or Crc were 

involved in regulating DHP activity in RU-KM3s, the corresponding genes were 

disrupted by homologous recombination using plasposon-derived knockout vectors. The 

gene disruption vectors, pVfrKO and pCrcKO, were constructed by Dr Gwynneth 

Matcher (unpublished) and derived from the plasmids, pTnMod-OTc and pTnMod-OKm 

respectively (Dennis and Zylstra, 1998). The plasposons retained their oriT genes 

allowing them to be mated into RU-KM3s, as well as the inverted repeats for insertion 

into the chromosome. However, in these plasmids, the transposase gene was removed and 

replaced by a 5' truncated fragment of the target gene, either vfr (550 bp) or crc (430 bp) 

(Figure 2.4). This allowed for the disruption of specific genes by homologous 

recombination on the chromosome of P. putida RU-KM3s, resulting in the formation of 

two truncated non-functional copies of the target gene in the genome.  

 

Disruption of the genes on the chromosome of the transconjugate strains was confirmed 

by PCR analysis of the genomic DNA of these mutants using Taq polymerase (Bioline) 

and combinations of primers allowing for the wild-type chromosomal gene, knockout 

vector and disrupted chromosomal gene to be distinguished from one another. These 

primers corresponded to either the terminal end of the vfr gene (VfrR: 5'-GAATTCCTA 

GCGGGTACCGTGGACCACC-3'), internal vfr sequence [Vfr(int): 5'-CTGTGCTGGC 
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GATCGTGCCG-3'] or vector sequence (TnOTcF: 5'-CATTATGATTCTTCTCGGTTC 

CGGCGGC-3',  TnOTcR: 5'-AAAGGCCAGGAACCGTAAAAAGGCCGCG-3' and  

TnOKmSF: 5'-TTTACGGTTCCTGGCCTT T-3').  

 

  

 

 

 

 

 

 

 

                                                                              

                                                                           

Figure 2.4. Schematic map of the gene disruption vector, pVfrKO. The plasmid contains 

a conditional origin of replication (pMB1 oriV), a plasposon-derived origin of transfer 

(oriT), the antibiotics resistance markers for Ampicillin (amp
R
) and Tetracycline (tc

R
), a 

set of inverted repeat sequences and a 515 bp internal fragment of vfr. 

 

 

2.6 Biocatalytic colorimetric assays 

 

2.6.1 Harvesting of cells 

 

P. putida RU-KM3s cells were cultured in either nutrient broth (NB), NB containing     

0.1 % hydantoin (Aldrich, ICN Biomedicals Inc) or NB containing 0.1 % hydantoin and   

1 % succinate. These cultures were obtained by seeding 100 ml of medium with an 

overnight culture of RU-KM3s to an OD600 nm of 0.02 and growing to stationary phase 

(OD600 nm between 2.5 and 3.0) for 18 – 20 hours at 28 
o
C. Thereafter the cells were 

harvested by centrifugation in pre-weighed centrifuge bottles at 7000 rpm in a Beckman 

JA-14 rotor for 10 minutes. The supernatant was discarded and cells washed in half the 

original culture volume with cold 0.1 M potassium phosphate buffer, pH 8. After re-

centrifugation as above, the wet cell mass of the resultant pellet was determined and the 
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4725 bp
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pellet resuspended such that a final concentration of 40 mg wet cell mass/ml was 

achieved. 

 

2.6.2 Dihydropyrimidinase (DHP) enzyme assays 

 

Resting cell colorimetric assays of DHP activity, using Ehrlichs and Ninhydrin reagents, 

were carried out in triplicate according to Matcher et al. (2004). The 40 mg/ml cell 

suspension above was used to form reaction mixes as follows:  

 

 

Table 2.1. Reaction components for biocatalytic assays 

Components 

(replicates) 

Buffer blank 

(x1) 

Substrate 

blank (x2) 

Cell blank 

(x1) 

Samples 

(x3) 

0.1 M Phosphate buffer, pH 8 2 ml 1 ml 1 ml  

100 mM Hydantoin substrate 

dissolved in 0.1 M phosphate 

buffer, pH 8 

 1 ml  1 ml 

Cells - - 1 ml 1 ml 

 

 

The reaction mixtures were then incubated at 40 °C for 3 hours with constant shaking 

after which the mixtures were transferred to 1.5 ml Eppendorf tubes and centrifuged at               

13 000 rpm for 3 minutes in a Heraeus microfuge to pellet the cells. The resultant 

supernatant was analysed for N-carbamylamino acids and amino acids using Ehrlich’s 

and Ninhydrin colorimetric assays respectively. Units of activity were measured as 

µmol/ml of product per 20 mg wet cell mass per ml, and expressed as an average of          

three replicates. DHP activity was calculated as the total µmol/ml of N-carbamylamino 

acid and amino acid produced from hydantoin substrate.  

 

A. Ehrlichs assay 

1 ml of the cell supernatant above was aliquoted into a test-tube and 0.5 ml                          

12 % trichloroacetic acid added to stop microbial conversion of N-carbamylamino acids 

to amino acids. The mixture was then shaken briefly and 0.5 ml Ehrlich’s reagent (10 %      

ρ-dimethyl-aminobenzaldehyde in 6 M HCl) added, followed by 3 ml triple distilled 
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water. After incubation at room temperature for 20 minutes, the absorbance at 570 nm 

was determined and the concentration of product calculated using a standard curve of             

0 – 50 mM N-carbamylglycine. 

 

B. Ninhydrin assay  

 

20 µl of the supernatant was aliquoted into test-tubes with 980 µl of 0.1 M potassium 

phosphate buffer, pH 8 and 1 ml of ninhydrin reagent (0.8 g ninhydrin and 0.12 g 

hydrindantin dissolved in 30 ml 2-methoxyethanol, before addition of 10 ml sodium 

acetate buffer of pH 5.5) was added. The samples were placed in a boiling water bath for 

15 minutes. After cooling to room temperature, 3 ml 50 % ethanol was added and the 

samples incubated at room temperature for 15 minutes.  The absorbance at 570 nm was 

determined and the concentration of product calculated using a standard curve of             

0 – 50 mM glycine.  

Note: Ninhydrin reagent was freshly prepared for each assay and stored in a dark glass 

container due to its sensitivity to light. 

 

DHP activity was expressed as the total amount of both N-carbamylamino acid and amino 

acid produced (µmol/ml) during the biocatalytic reaction. All biocatalytic assays were 

independently repeated at least twice with freshly cultured cells. 

 

2.6.3 β-Glucuronidase (GUS) reporter enzyme assays  

 

GUS assays were carried out to monitor transcriptional activation supported by the dhp 

promoter in the multi-copy vector probe, pMJ449. P. putida cells were assayed for GUS 

activity using a protocol adapted from Jefferson et al. (1986). Cells were grown to 

stationary phase in the appropriate medium and harvested as described in Section 2.6.1 to 

give a final wet cell concentration of 40 mg/ml in 0.1 M phosphate buffer, pH 8.0. A total 

of 1 ml of these cells were then permeabilised by the addition of 1 ml permeabilisation 

buffer (32 mM NaPO4, 2 mM EDTA, pH 8.0, 100 mM Tris HCl pH 8.0, 5 mM DTT,      

4 % Triton X-100 and 0.4 mg/ml lysozyme) followed by incubation at 37 ºC for 1 hour. 

Thereafter 100 µl of the permeabilised cells was aliquoted into a microtitre plate and      

50 µl substrate solution [20 mM PNPG dissolved in GUS buffer stock solution (50 mM 
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NaPO4 buffer pH 7.0 and 1 mM EDTA, pH 8.0)] added to each sample. The microtitre 

plate was incubated at 37 ºC until a visible yellow colour was observed and the 

incubation time noted, before measuring the OD600 nm, A405 nm and A550 nm in a 

PowerwaveX Microtitre Plate Reader (Bio-Tek Instruments, Inc.). Activity was 

calculated in β-Gluc units, using the formula:  

 

100 X [A405nm-(1.75 X A550 nm)]  

A600 nm X (∆Time) X Volume (ml) 

 

Once again, all reactions were carried out in triplicate and the standard deviation for each 

sample set calculated, while each assay was independently repeated at least twice with 

freshly harvested cells. 
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RESULTS 

 
3.1 Introduction 

 

Matcher et al. (2004) showed that the hydantoin-hydrolysing activity of P. putida strain 

RU-KM3s was due to the activity of dihydropyrimidinase and β-ureidopropionase 

enzymes, encoded by chromosomal copies of dhp and bup respectively. Enzyme activity 

was tightly regulated by the growth phase as well as by the presence of hydantoin in the 

growth medium. Several mutant strains that were unable to grow in medium with 

hydantoin as the sole nitrogen source were isolated, a number of which retained wild-

type hydantoinase (DHP) activity. The disrupted genes in these mutants were identified 

in each case as either glnD, ntrC or ntrB, which encode the enzyme uridyltransferase 

and the regulators NtrC and NtrB respectively. Since these proteins are involved in the 

nitrogen-sensitive Ntr regulatory pathway, the wild-type hydantoinase activity observed 

in these mutants suggested that DHP activity was not regulated in response to the 

nitrogen status of the cell.  

 

Only one potential regulatory mutant displaying reduced hydantoinase activity was 

isolated, with the gene encoding a dihydrolipoamine succinyl transferase enzyme 

inactivated. This enzyme plays an important role in the TCA cycle in the conversion of   

α-ketoglutarate to succinyl co-A. Since disruption of the TCA cycle (and presumed 

subsequent changes in the concentration of cycle intermediates) decreased hydantoinase 

activity, this suggested a role for succinate and other readily utilisable carbon sources in 

regulating hydantoin-hydrolysing activity in RU-KM3s. It was found that succinate, as 

well as glucose, substantially reduced activity, suggesting that the hydantoin-

hydrolysing system of strain RU-KM3s is regulated by carbon catabolite repression 

(CCR). Finally, Matcher (2004) identified a putative CRP binding site in the intergenic 

region upstream of the dhp and bup coding sequences and showed that this site was 

functional in E. coli.  It was hypothesised that this was the site through which CCR 

regulated the expression of dhp and bup (Matcher et al., 2004).  The overall aim of this 

research project was to test this hypothesis and extend the understanding of the 

mechanisms which regulate the expression of these genes in P. putida. 
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3.2 Identification of potential cis-acting regulatory elements in the dhp-ORF1(bup) 

intergenic region of P. putida RU-KM3s 

 

First, the nucleotide sequence of the dhp-bup intergenic region was examined to 

determine whether there were other putative transcription factor binding sites present, in 

addition to the CRP site identified by Matcher (2004). The hydantoin-hydrolysing gene 

cluster consists of three open reading frames. The dihydropyrimidinase is encoded by an 

ORF of 1440 bp (479 amino acids), while the β-ureidopropionase ORF of 1284 bp 

encodes a predicted protein of 427 amino acids. A third ORF is present upstream of bup, 

which encodes a predicted transporter protein of 500 amino acids.  The genes are 

arranged divergently to each other on the chromosome, separated by a 616 bp intergenic 

region (Figure 3.1).  

  

                                                 

 
                                             
                          

 

 

                                                                                                                                                                           

Figure 3.1. Organisation of the gene cluster responsible for hydantoin-hydrolysing 

enzyme activity in P. putida RU-KM3s. Open reading frames are depicted as grey arrows 

and include the β-ureidopropionase (bup) and dihydropyrimidinase (dhp) genes as well 

as an open reading frame (ORF1) predicted to encode a permease. The nucleotide co-

ordinates are given relative to the translational stop codon of bup. 

 

 

Bioinformatic analysis of the dhp-ORF1(bup) intergenic region was carried out to 

identify potential binding sites for transcriptional regulators, including sigma factors and 

global regulatory proteins. These putative binding sites along with their degree of 

conservation, when compared to the consensus, are listed in Table 3.1. 

 

 

 

 

 

 

 

dhpORF1bup

1 1284 1414 2917 3533 4973

dhpORF1bup

1 1284 1414 2917 3533 4973
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Table 3.1. Identification of potential binding sites in the dhp/ORF1(bup) intergenic 

region of P. putida RU-KM3s.                                                                  

Site Sequence Percentage 

identity 

Reference for 

consensus 

sequence 

CRP  

 

 

RU- KM3s 

 

Consensus 

3310-
AAAT-GTGATCTAGATCAC-ATTT-

3332 

   **** **** *    **** ****      

   AAATGGTGAACAGCCTCACCATTT 

77  % 

 

 

Gunasekera et al., 

1992 

Vfr  

 

 

RU- KM3s 

 

Consensus 

3310-
AAAATGGTGAACAGCCTCACCA-3332         

   * ****  ***     **** *     
   ANWWTGN-GAWNYAGWTCAC-A  

81 % Kanack et al., 

2006 

Anr 

box  

 

 

RU- KM3s 

 

Consensus 

3294-TTGTCAAGTGCGTCAA-3310 

   ***         **** 
   TTGATNNNN—-ATCAA  

70 % Spiro, 1994 

lux 

box  

 

 

RU- KM3s 

 

Consensus 

3434-
TTCTGTCAGGTCTGACAGGAT-3455 

     **  **  **** ***  *    
   ACCTNCCANNTCTGGCAG-NT  

75 % Pessi and Haas, 

2000 

σ
70 

  

-10  

 

 

RU- KM3s 
(upstream of bup) 

 

Consensus 

 

 RU- KM3s 
(upstream of dhp) 

2943-AATTAG-2938   2963-CATTAG-2958  
    ** *            ** * 
    

   TATAAT          TATAAT  
    

   **** *          ***** 
3345-TATATT-3351   3353-TATAAA-3358   
    

 
 

50 % 

 

 

 

 

 

83 % 

Wise et al., 1996 

σ
70       

 

-35  

 

 

RU- KM3s 
(upstream of bup) 

 

Consensus  

 

RU- KM3s 
(upstream of dhp) 

 

2972-CGGCCA-2967  2982-TGTAGA-2977 
     * **          *  * *    

 
   TTGACA         TTGACA 
 

   * *  *         *** ** 
3332-TGGTGA-3337  3293-TTGTCA-3298 

 

50 % 

 

 

 

 

 

50 %, 83 % 

Wise et al., 1996 

σ
54 

  

 

 

RU- KM3s 

 

Consensus 

3286-TGGCATCTTGTCAAGTGCG-3305 

   ******         ***  

   TGGCATNNNNNN—-TTGCT  

82 % Pearson et al., 

1997 

σ
38

  

 

 

RU- KM3s 

 

Consensus 

3423-CTAGATT-3430  
   ***   * 

   CTATACT  

57 % Espinos-Urgel et 

al., 1996 

Key: For each binding site, the corresponding sequence in RU-KM3s and its nucleotide co-ordinates are 

shown above the consensus. The important consensus half-sites are indicated in bold and the areas of 

homology denoted by stars. 
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The putative CRP binding site (nts 3310 - 3332) in the dhp-ORF1(bup) intergenic 

region, although two nucleotides longer, displays significant homology to the E. coli 

CRP consensus sequence, particularly in the highly conserved half-sites, with 77 % 

identity overall (Table 3.1). This putative binding site also shows a high degree of 

conservation with the consensus binding site for Vfr (81 % identity) and all the 

nucleotides making up the important half-site are conserved (Table 3.1). Vfr is a 

functional CRP homologue in E. coli, but acts as a global virulence regulator in 

Pseudomonas and is required for the production of exotoxins, proteases and other 

virulence factors (Suh et al., 2002). Furthermore, it is known that Vfr activates the 

expression of the gene encoding the LuxR homologue, LasR, which is required for 

elastase and alkaline protease production in the virulent strain, P. aeruginosa. This 

highlights the interdependence of virulence and the cell-density dependant signalling 

mechanism known as quorum sensing (QS) in Pseudomonas (Aldus et al., 1997; 

Rumbaugh et al., 2000).  

 

It is unknown whether P. putida RU-KM3s is a virulent strain, using its cell-to-cell 

communication in pathogenic interactions with other cells, or whether the strain uses QS 

to communicate with a plant host in a symbiotic relationship. Bearing in mind that       

RU-KM3s was isolated from soil (Burton et al., 1998), the latter seems more likely. 

Therefore it is plausible that RU-KM3s may possess a QS system involving the LasR 

homologue, PpuR, such as that found in the rhizosphere microbe, P. putida IsoF    

(Steidle et al., 2002). Considering this, it was interesting to discover a putative lux box             

(nts 3434 - 3455) at a position 88 bp upstream of the translational start of dhp          

(Table 3.1). The lux box has been identified as the binding site for both PpuR and the 

LasR co-regulator RhlR, which is involved in rhamnolipid biosynthesis (Juhas et al., 

2005). When compared to the lux box consensus, the sequence in the dhp/ORF1(bup) 

intergenic region displayed 75 % identity and retained seven out of the eight nucleotides 

identified as being essential for recognition by LuxR-type QS regulators, including 

PpuR and RhlR (Table 1) (Pessi and Haas, 2000; Steidle et al., 2002). 

 



 - 47 - 

Further analysis of the intergenic region revealed a potential Anr box (nts 3294 – 3310), 

centred 232 bp upstream of the translational start codon of dhp (Table 3.1). Anr is a 

global regulator which controls the switch from aerobic to anaerobic conditions in 

Pseudomonas (Spiro, 1994). The putative Anr box sequence was also two nucleotides 

longer than the consensus, but displayed 70 % identity in the conserved half-sites     

(Table 3.1). The downstream half-site (GTCAA), in particular, was almost identical to 

the consensus. Interestingly, this predicted Anr binding site overlaps almost completely 

with a putative σ
54

 binding site, while its downstream half-site overlaps to some extent 

with the putative Vfr binding site (Figure 3.2).   

 

The dhp-ORF1(bup) intergenic region was also searched for the presence of sigma 

factor binding sites. In terms of the major sigma factor, σ
70

, two potential -10 sequences 

or Pribnow boxes were identified at nucleotides 185 and 177 upstream of the dhp 

translation initiation codon (Figure 3.2), with the corresponding -35 sequence bearing 

little resemblance to the consensus (Table 3.1). In addition, two sets of overlapping 

poorly conserved -10 and -35 sequences were identified in the intergenic region 

upstream of the ORF1/bup coding sequences, with the putative Pribnow box sequences 

located 23 bp and 43 bp upstream of the ORF1 translational start codon and the putative 

-35 sequences positioned 43 bp and 63 bp upstream of the ATG of ORF1 (Figure 3.2). 

These σ
70

 recognition sequences in the putative ORF1/bup promoter, however, displayed 

only 50 % identity with the consensus (Table 3.1), suggesting that they are poor 

candidates for σ
70

-mediated transcriptional regulation of ORF1-bup. 

 

Further analysis of the intergenic region upstream of dhp revealed that the poorly 

conserved σ
70

 -35 sequence, which was identified based upon its position relative to the 

putative -10 sequences, was in fact located within a region designated as a CRP/Vfr 

binding site (Figure 3.2). Although a more highly conserved -35 sequence was found 

upstream of dhp, it was significantly further away from the putative Pribnow box 

sequences, at a position 237 nucleotides from the translation start of dhp (Table 3.1,    

Figure 3.2). Taken together, these factors suggested that it was highly unlikely that the 
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putative dhp promoter would be recognised by σ
70

 and, therefore, that the vegetative 

sigma factor probably plays a minor role in the hydantoinase regulon in RU-KM3s.  

 

 
                                       -10                    -10       -35 

1   CATGGGGCCT TCTCCAGATT TTTCTAATTG TTCGCTCATC GGGCTAATGC GATGGCCGGA 

     GTACCCCGGA AGAGGTCTAA AAAGATTAAC AAGCGAGTAG CCCGATTACG CTACCGGCCT 
    bup  ▪▪▪▪▪ ▪       
   + ORF1   Shine-Dalgarno           

 

                -35 

61   TCTCTACAC CACCAGTACT GCACCTCCGG TCCGGCCTGG CGGTTGTGGC CGTACTCAAT 
 AGAGATGTG GTGGTCATGA CGTGGAGGCC AGGCCGGACC GCCAACACCG GCATGAGTTA                  

 

      121   TTGCGTGCCG GGTTGGCCTG GGCCTGCCCG ACGGCCGCCG CCGACCGGAG GTAATCAACT 

            AACGCACGGC CCAACCGGAC CCGGACGGGC TGCCGGCGGC GGCTGGCCTC CATTAGTTGA 

 

181   GATCTGCAAG GCTTTCAACT GCGCCCGGCG AAGGCACGCT GATGCCTTCG CCGGGTATTC 
CTAGACGTTC CGAAAGTTGA CGCGGGCCGC TTCCGTGCGA CTACGGAAGC GGCCCATAAG      

 

221   GCGCCGCCCT GGGCCGGCCC TGGCCCCCAC ACCCGGTTTC ACCTTGGTGC AGCCTGGTTT 
CGCGGCGGGA CCCGGCCGGG ACCGGGGGTG TGGGCCAAAG TGGAACCACG TCGGACCAAA    

  

281   TTCAGTGGCG CGGCCAGCGC CTCGAAGCCA GGATTCAAGC AGCTGATTTT GCATGGAAAA 
AAGTCACCGC GCCGGTCGCG GAGCTTCGGT CCTAAGTTCG TCGACTAAAA CGTACCTTTT 

                     

        σ54
   

Vfr/CRP 

                          ••••••••••••••••••••••••••••  ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ 

     Anr 

                          ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ 

341   TCTTGACCAA TTTGGCATCT TGTCAAGTGC GTCAAAATGG TGAACAGCCT CACCATTTTG   
      AGAACTGGTT AAACCGTAGA ACAGTTCACG CAGTTTTACC ACTTGTCGGA GTGGTAAAAC 

 

      σ70 
  -35      -10                       *****************   

401   GTGAACGCCA ATATATTTCT ATAAATATCA GGTAGTTACG ATAGTTATAA GCTCATAAAT  
CACTTGCGGT TATATAAAGA TATTTATAGT CCATCAATGC TATCAATATT CGAGTATTTA   

 

       σ38 
   lux box 

      *********                      ********     ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 

461   TATTTTCTTG ATCAATCCAT GATCAGCAAC TAGATTCCAT TCTTGTCAGG TCTGACAGGA 
ATAAAAGAAC TAGTTAGGTA CTAGTCGTTG ATCTAAGGTA AGAACAGTCC AGACTGTCCT  

 

521   TTGAAATCCA TCCTCCAGCC ACTGGCCCAT AACAATTTCA AGAACCGGCC CAGACCGGTC 
AACTTTAGGT AGGAGGTCGG TGACCGGGTA TTGTTAAAGT TCTTGGCCGG GTCTGGCCAG 

                                

                     Shine-Dalgarno       
                        ▪▪▪▪▪▪   dhp       

      581   AGCCTGCGAG GAAGACGGCA TGTCCCTGTTGAT                                              

            TCGGACGCTC CTTCTGCCGT ACAGGGACAACTA 

 

                                             

Figure 3.2. Intergenic region in the dhp-ORF1(bup) gene cluster of P. putida RU-KM3s 

showing putative binding sites for transcription factors. Symbols indicate binding sites 

as follows: • above the nucleotide sequence indicates a putative σ
54

 binding site, ▲ 

above the sequence indicates a putative Vfr binding site, ▼ is shown below the putative 

Anr binding site, , ٭ above the sequence indicates a putative σ
38

  recognition sequence, 

♦ above the sequence indicates a putative lux box and the putative σ
70

 recognition 

sequences are underlined (Gunasekera et al., 1992; Spiro, 1994; Wise et al., 1996; 

Espinos-Urgel et al., 1996; Pearson et al., 1997; Pessi and Haas, 2000).   
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On the other hand, a putative -10 recognition sequence for the stationary phase sigma 

factor, σ
38

, was found at a position 106 nucleotides upstream of the translational start of 

dhp (Figure 3.2). This sigma factor regulates the expression of a wide variety of genes 

involved in various stress responses associated with stationary phase, such as carbon 

starvation and quorum sensing (Kazmierczak et al., 2005). The putative σ
38

 recognition 

sequence in the dhp promoter displays five out of seven nucleotides identical to the 

consensus and four out of the five nucleotides described as being essential for the 

functioning of the site (Table 3.1). In addition, the AT rich region upstream, required for 

DNA curvature, is present approximately 20 nt upstream of the binding site and is 25 nt 

in length (Figure 3.2). No such σ
38

 -10 recognition sequences were found upstream of 

ORF1/bup. 

 

A sequence displaying 89 % identity to the palindromic recognition sequence of σ
54

 was 

identified approximately 238 bp from the translational start codon of dhp (Figure 3.2). 

This unique sigma factor is involved in the regulation of a diverse set of genes in 

Pseudomonas, including those whose products are involved in the utilisation and 

transport of different nitrogen and carbon sources, together with genes involved in 

virulence and the phage-shock response (Reitzer and Schneider, 2001). The first putative 

σ
54

 half-site in the dhp promoter is identical to the consensus, while the second half-site 

has only three out of the five nucleotides conserved (Table 3.1). The spacing between 

half-sites in the putative σ
54

 recognition sequence is eight nucleotides, two longer than 

that usually seen in such promoters (Table 3.1). This two nucleotide insertion is 

reminiscent of that seen in both the putative Vfr and Anr binding sites of the dhp 

promoter. Interestingly, the putative σ
54 

binding site overlaps almost completely with the 

Anr box identified in this promoter (Figure 3.2).  

 

Thus, analysis of the dhp-ORF1(bup) intergenic region identified potential binding sites 

for seven transcriptional regulators upstream of the translational start of dhp, with only 

poorly conserved σ
70

 recognition sequences upstream of ORF1/bup. The putative 

transcription factor binding sites in the dhp promoter region included the recognition 

sequences for Vfr, Anr and PpuR/RhlR, as well for the alternate sigma factors, σ
38

 and 
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σ
54

 (Figure 3.2). It is interesting to note that all of these putative binding sites correspond 

to transcription factors that function under the various stress conditions associated with 

the onset of stationary phase, which is when hydantoin-hydrolysing activity is at its 

highest. In general, the stationary phase-specific expression of genes is controlled on a 

global level by the alternate sigma factors, σ
38

 and σ
54

 (Espinos-Urgel et al., 1996; 

Pearson et al., 1997). However, the response to specific environmental conditions occurs 

as follows: increased cell density stimulates the quorum sensing regulators PpuR and/or 

RhlR, along with the virulence regulator, Vfr (Pessi and Haas, 2000); decreased nutrient 

concentration, in particular poor carbon source, activates Crc and possibly Vfr (Suh      

et al., 2002), and decreased oxygen levels trigger the functioning of Anr (Spiro, 1994). 

Therefore, the presence of numerous overlapping potential binding sites for 

transcriptional regulators in the dhp-ORF1(bup) intergenic region suggests that the 

expression of this gene cluster may be sensitive to several global control mechanisms 

including: CCR, quorum sensing, and oxygen-sensitive regulation, all in addition to 

regulation by an alternate sigma factor. 

 

It was decided to focus on the regulation of dhp expression to further characterise the 

mechanisms of transcriptional regulation in this system. This was because almost all of 

the potential transcription factor binding sites were clustered within 250 bp upstream of 

the translational start of the dhp open reading frame, with less significant recognition 

sequences located upstream of bup/ORF1. In addition the implications of the bup open 

reading frame being located downstream of ORF1, and thus 1500 bp away from its 

putative promoter region, are unknown and it is possible that the transcriptional 

regulation of bup is not mediated by this dhp/ORF1(bup) intergenic region. 

 

 

3.3 Environmental factors that regulate DHP activity in P. putida RU-KM3s 

 

The results of the bioinformatic analysis of the intergenic region upstream of dhp 

suggested the involvement of several global regulatory systems; including carbon 

catabolite repression (CCR), quorum sensing (QS), virulence and oxygen limitation; in 

the regulation of dhp expression. Thus, the effect of the corresponding environmental 

conditions on DHP activity was examined. First, the findings of Matcher (2004), namely 
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that enzyme activity is induced in the presence of the substrate and repressed when a 

more efficient carbon source is added to the medium, were confirmed. Cells were grown 

to stationary phase (OD600 nm 2.5 – 3.0) in complete medium (nutrient broth) without 

inducer or supplemented with either 0.1 % hydantoin or 0.1 % hydantoin and 1 % 

succinate (carbon repression) and assayed for DHP activity. For all assay results 

depicted, the experiments were repeated at least three times and showed the same trends 

in both the levels and regulation of enzyme activity.  

 

There was an approximate 20–fold induction in enzyme activity in cells grown in 

complete medium supplemented with hydantoin (from 1.5 µmol/ml to 29.5 µmol/ml) 

(Figure 3.3). The addition of succinate resulted in a five-fold reduction in activity as 

compared to cells grown in the presence of inducer (6.4 µmol/ml vs. 29.5 µmol/ml 

respectively), which was still higher than that in uninduced cells (1.5 µmol/ml)     

(Figure 3.3). These results correlated with the observations of Matcher (2004).  
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Figure 3.3. Regulation of DHP activity by the presence of inducer and a repressive 

carbon source. Cells were grown to stationary phase in complete medium.                     

[(-): uninduced cells grown in nutrient broth; Hyd: induced with 0.1 % hydantoin; Succ: 

repressed by addition of 1 % succinate]. Error bars indicate the standard error of the 

mean where n = 3.  

 

 

Next, it was important to determine whether other environmental conditions, which 

activate global regulatory pathways, also controlled DHP activity. The presence of a 
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potential lux box in the promoter region of dhp raised the possibility that enzyme 

activity would be sensitive to quorum sensing conditions. To investigate this, DHP 

activity was assayed in cells grown in half of the culture volume medium containing the 

same amount of nutrients as the control. Under these growth conditions, the cell density 

is increased (OD600 nm of approximately 4.5) as opposed to standard growth conditions 

(OD600 nm of around 2.8), inducing the quorum sensing response. DHP activity was 

repressed five-fold (35.8 µmol/ml vs. 6.5 µmol/ml) (Figure 3.4) under quorum sensing 

conditions, suggesting that dhp expression might be subject to regulation by PpuR 

and/or RhlR. 
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Figure 3.4. The effect of quorum sensing-specific environmental conditions on DHP 

activity. Cells were grown to stationary phase in either 100 ml or 50 ml nutrient broth, 

containing the same amount of nutrients, with 0.1 % hydantoin and harvested to the 

same cell density per ml used to assay enzyme activity. (Error bars indicate the standard 

error of the mean where n = 3). 

 

 

The presence of a putative Anr box upstream of the dhp ORF, suggested that the oxygen 

status of the cell may also play a role in regulating DHP activity. Since it was unknown 

if strain RU-KM3s is capable of anaerobic growth, the first step was to culture the cells 

with varying levels of aeration in order to classify the organism as a facultative aerobe or 

aerotolerant anaerobe. Therefore, cells were grown in 100 ml nutrient broth with or 

without the alternate electron acceptor, sodium nitrate, in tightly stoppered Schott bottles 

of either 100 ml or 250 ml capacity. The optical densities were monitored over time. The 
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results suggested that P. putida RU-KM3s is an aerobic organism that displays only a 

mild tolerance towards anaerobic conditions. After four days of incubation at 28 ºC, the 

cells cultured under the most highly anaerobic conditions had not yet neared an OD600 nm 

of 1.0, whereas cells grown under aerobic conditions had exceeded an OD600 nm of 4.0 

after 24 hours (Table 3.2). The presence of nitrate as an alternate electron acceptor did 

not affect the ability of cells to grow under anaerobic conditions, suggesting that RU-

KM3s cells are unable to utilise this alternate electron acceptor and are simply making 

use of the small amount of residual oxygen in the vessel (Table 3.2). Whether or not 

DHP activity is affected by the oxygen level in the growth medium could not be 

determined due to insufficient biomass production under anaerobic conditions. 

 

 

Table 3.2. Anaerobic growth studies for P. putida RU-KM3s  

OD600 Culture Vessel 

Volume - 1 mM NaNO3 

Incubation period 

 (hr) 

100 ml  0.572 0.464 96 

250 ml  1.871 1.879 96 

500 ml (control) 4.216 *nd 24 
* not determined 

 

Taken together, these results indicate the involvement of at least two distinct regulatory 

pathways in the control of DHP activity, namely the CCR system identified by Matcher 

(2004) and quorum sensing. The transcription factors mediating the cell’s response to 

these specific environmental signals remain unknown, although the putative binding 

sites identified in the dhp promoter (Figure 3.2) hint at the involvement of the following 

regulatory proteins: Vfr in mediating CCR, PpuR/RhlR in response to quorum sensing 

and Anr in controlling the shift from aerobic to anaerobic conditions, as discussed in 

Section 3.1. Determining whether these transcription factors are, in fact, involved in 

regulating DHP activity in response to specific environmental signals required the 

targeted disruption of their genes to create transcription factor
 
mutant strains. Since   

RU-KM3s appears to be a strictly aerobic strain, no experiments could be carried out 

under anaerobic conditions. Therefore it was decided to focus only on those factors 

regulating DHP activity under CCR and QS conditions.  
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3.4 Construction of vfr
-
 and crc

-
 mutant strains of RU-KM3s 

 

Previous studies have identified Crc as a global regulator of CCR in Pseudomonas 

(Hester et al., 2000), so this protein had a potential role to play in mediating the 

regulation of DHP expression by CCR. Since Crc does not bind DNA (MacGregor et al., 

1991), it cannot be the protein that interacts with the putative CRP binding site upstream 

of dhp (Figure 3.2). In view of the fact that this site is also a putative Vfr recognition 

sequence, it was decided to investigate Vfr as a potential mediator of CCR in the 

regulation of DHP activity.  In terms of the regulation of dhp expression under QS 

conditions, the proteins of interest were the global pseudomonad regulators, PpuR and 

RhlR. These transcriptional regulators are able to bind to conserved palindromic 

sequences known as lux boxes (Juhas et al., 2005; Steidle et al., 2002). Since such a 

sequence was identified upstream of dhp (Figure 3.2), it is feasible that PpuR and/or 

RhlR may be involved in the regulation of DHP activity in environmental conditions 

associated with QS. Confirmation of this hypothesis required mutational analysis of 

ppuR and rhlR.   

 

First, it was important to determine whether the genes encoding Vfr, Crc, PpuR and 

RhlR were present on the RU-KM3s genome. Accordingly, PCR primers were designed, 

which corresponded to the 5' and 3' ends of the genes and whose sequences were derived 

from closely related pseudomonads. The primer sets VfrF/VfrR, derived from the vfr 

gene of P. aeruginosa PA01, and CrcF/CrcR, derived from the crc gene in                    

P. putida KT2440 (primer sequences given in Methods and Materials) resulted in the 

successful amplification of a 645 bp vfr and a 780 bp crc gene respectively, from 

chromosomal DNA derived from RU-KM3s cells. Gene sequencing confirmed the 

presence of both genes in the strain. However, repeated attempts to amplify the quorum 

sensing genes, ppuR and rhlR, were unsuccessful. The primer sets PpuR-F/PpuR-R and 

RhlR-F/RhlR-R were designed based on the sequence of the ppuR gene in P. putida 

strain IsoF and the rhlR gene of P. fluorescens, respectively (see Methods and 

Materials). The experiments were repeated by Gwynneth Matcher (Department of 

Microbiology, Rhodes University) without success. This suggested that either RU-KM3s 

does not possess these genes; or that they are poorly conserved, when compared to the 
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rhlR of P. putida IsoF and ppuR of P. fluorescens, such that amplification of the genes 

using primers derived from these strains was not possible.  

 

To determine whether Crc and/or Vfr are involved in modulating DHP activity, the 

corresponding genes were disrupted by homologous recombination. To generate the 

gene disruption, a vector (pVfrKO), derived from the plasmid pTnMod-OTc, was 

constructed for the targeted insertional inactivation of vfr in P. putida RU-KM3s. This 

vector was created by inserting a 515 bp internal fragment of the target gene (vfr) into          

pTnMod-OTc, using the Nde I and Eco RI restriction sites, to allow for the specific 

disruption of vfr by homologous recombination on the chromosome. The construct, 

pVfrKO, was introduced into RU-KM3s cells by tri-parental mating, during which it was 

transferred from E. coli DH5α into the Pseudomonas cells, with the aid of E. coli HB101 

cells containing the helper plasmid, pRK2013 (Dennis and Zylstra, 1998; Santos et al., 

2001). Potential transconjugates were selected on agar plates containing 

chloramphenicol and tetracycline to select against both E. coli strains and RU-KM3s 

cells lacking pVfrKO. Thereafter, the disruption of vfr on the chromosome of the 

mutant, RU-KM3s∆vfr, was determined by PCR analysis using combinations of primers 

that would be able to distinguish between the wild-type chromosome and the disrupted 

locus (sequences given in Methods and Materials).  

 

Primers Vfr(int) (A1) and VfrR (A2) were used to amplify a 550 bp fragment 

corresponding to the  3' end of the vfr gene in the wild-type and plasposon-generated 

mutant, which was not amplified from the knock-out vector, pVfrKO (Figure 3.5 B(i), 

Lanes 1 and 2 vs. Lane 3). Primers TnOTcF (B1) and TnOTcR (B2) amplified a 1060 bp 

fragment, corresponding to vector sequence, in the vfr
-
 mutant and pVfrKO vector, but 

not in the wild-type chromosomal locus (Figure 3.5 B(ii), Lanes 1 and 3 vs. Lane 2). 

Finally, TnOKmSF (C1) corresponding to pVfrKO, and VfrR (A2) corresponding to the 

3' end of the vfr gene, yielded a 1200 bp fragment in the vfr
-
 strain only, confirming the 

disruption of vfr on the chromosome in the mutant (Figure 3.5 B(iii), Lane 1 vs. Lanes 2 

and 3). These results confirmed that the mutant strain, RU-KM3s∆vfr, carried the 

disrupted vfr locus. 
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Figure 3.5. Construction of the vfr
-
 mutant strain, RU-KM3s∆vfr, using pVfrKO to 

insertionally inactivate vfr. (A) Inactivation of chromosomal vfr by homologous 

recombination with pVfrKO to produce two truncated, non-functional vfr genes in the 

knock-out mutant. Primers are indicated by half arrows and anticipated PCR products as 

bold lines. (B) PCR verification of disruption of vfr in RU-KM3s∆vfr. PCR products 

were subject to agarose gel electrophoresis on ethidium bromide stained 1 % gels. Bi, 

Bii and Biii show amplification products using primers A1/A2, B1/B2 and C1/A2 

respectively. DNA templates in each case: RU-KM3s∆vfr (Lane 1), wild-type (Lane 2), 

pVfrKO vector (Lane 3) and no DNA (Lane 4),  respectively.   

 

 

The results of the vfr disruption indicate the presence of single vfr gene on the 

chromosome of RU-KM3s. This may be deduced from the absence of a wild-type vfr 

PCR product in the RU-KM3s∆vfr strain (Figure 3.5 Panel B(i), Lane 3). The presence 
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of only one vfr gene in this strain meant that no Vfr protein could be produced in the 

gene disruption mutant. This was an important observation, since no antibodies to Vfr 

were made in order to confirm the absence of this protein in RU-KM3s∆vfr cells. 

 

In addition, a crc
-
 strain (RU-KM3s∆crc) was obtained from Dr Gwynneth Matcher, 

who used a similar approach to generate this gene disruption mutant as was employed to 

create RU-KM3s∆vfr. The disruption of the crc locus was confirmed by PCR as for the 

vfr
-
 strain and indicated the presence of a single crc gene in the P. putida RU-KM3s 

genome (data not shown). 

 

 

3.4.1 DHP activity in vfr
-
 and crc

-
 mutant strains. 

 

To determine whether DHP activity in RU-KM3s is regulated by Vfr and Crc , the wild-

type cells, together with mutant strains, RU-KM3s∆vfr (vfr
-
) and RU-KM3s∆crc (crc

-
), 

were grown to stationary phase (OD600 nm 2.5 – 3.0) in complete medium only, complete 

medium supplemented with hydantoin, or medium containing both hydantoin and 

succinate. The cells were assayed for DHP activity and a small, but noteworthy increase 

in hydantoin-induced DHP activity was observed in strain RU-KM3s∆vfr when 

compared to the wild-type (38.0 µmol/ml vs. 34.5 µmol/ml, respectively) (Figure 3.6 A). 

However, the inactivation of vfr did not appear to relieve carbon catabolite repression of 

DHP activity by succinate. The vfr
-
 strain displayed a 9-fold reduction in enzyme 

activity under these conditions vs. a 5-fold decrease in wild-type cells (Figure 3.6 A). In 

addition, no major effect on induction by hydantoin, of DHP activity, was observed in 

this mutant (7-fold induction in the wild-type vs. 10-fold in RU-KM3s∆vfr). Thus, in 

RU-KM3s, Vfr does not appear to function in the same way as E. coli CRP, which 

activates the transcription of genes whose products are required for the utilisation of less 

favourable carbon sources (Warner and Lolkema, 2003). 
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Figure 3.6. DHP activity in vfr
-
 and crc

-
 RU-KM3s strains. A) shows the effects of 

disruption of vfr on induction and CCR of DHP activity, while B) illustrates these effects 

on activity when crc is insertionally inactivated. (WT: Wild-type RU-KM3s, ∆vfr: vfr
-
 

strain, ∆crc: crc
- 

strain. (-): cells cultured in nutrient broth, Hyd: induced with 0.1 % 

hydantoin; Succ: repressed by 1 % succinate). Error bars indicate the standard error of 

the mean, where n = 3. 

 

 

In the case of the crc
-
 strain, RU-KM3s∆crc, the mutant displayed lower activity overall, 

with levels approximately half of those in the wild-type for all growth media, suggesting 

that Crc plays a general role in activation of DHP (Figure 3.6 B). Enzyme activity was 

not completely abolished in this mutant indicating that Crc is not functioning alone in 

the regulation of DHP activity. In terms of induction of DHP by hydantoin, the 

disruption of crc resulted in a noticeable decrease in this effect in RU-KM3s∆crc (8-fold 

induction in the wild-type vs. 5-fold in the mutant) (Figure 3.6 B), again pointing to a 

role in activation for Crc. However, CCR of DHP activity was identical in the wild-type 

and crc
-
 strains showing a 4-fold reduction in both cases when cultured in medium 

containing succinate (Figure 3.6 B). 

 

After studying the role of Vfr and Crc in regulating DHP activity under CCR conditions, 

the regulation of activity under quorum sensing conditions was examined. The 

identification of a putative lux box in the sequence upstream of the dhp ORF suggested 

that the global pseudomonad quorum sensing regulators, PpuR and/or RhlR, may be 

involved in mediating this cell density-dependant regulation of dhp expression in          

A) B) 
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RU-KM3s. However, since attempts to amplify the PpuR- and RhlR-encoding sequences 

from the RU-KM3s genome were unsuccessful, it was not possible to construct knockout 

mutants for these transcription factors. Consequently, it was decided to investigate 

whether QS-responsive regulation of DHP activity was affected in the vfr
-
 strain, as it 

has been shown that Vfr, the global regulator of virulence, also regulates QS (Albus      

et al., 1997). To this end, RU-KM3s∆vfr, together with wild-type cells, were inoculated 

into either 100 ml or 50 ml culture volume containing the same amount of nutrients and 

including hydantoin, and assayed for DHP activity as in Section 3.2. It was found that 

RU-KM3s∆vfr cells showed partial relief of repression under QS conditions, with 

approximately 3-fold reduction in DHP activity observed in the wild-type cells (from 

39.5 µmol/ml to 14.4 µmol/ml) (Figure 3.7), compared to a two-fold decrease in activity 

in the vfr
-
 mutant (from 28.9 µmol/ml to 19.6 µmol/ml) (Figure 3.7), suggesting that Vfr 

might play a role in the repression of DHP at high cell densities.  
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Figure 3.7. DHP activity in a vfr

-
 mutant under quorum sensing conditions. Cells were 

grown to stationary phase in either 100 ml or 50 ml nutrient broth, containing the same 

amount of nutrients, with 0.1 % hydantoin as an inducer. (WT: Wild-type RU-KM3s, 

∆vfr: vfr
-
 strain). The error bars indicate the standard error of the mean where n = 3. 

 

 

The observation that this relief from repression was not complete suggests that an 

additional transcription factor may be operating under these conditions, perhaps through 

the lux box, and that the role of Vfr is auxiliary to this protein. The decrease in 
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repression of DHP, however, is specific to the quorum sensing conditions, since no relief 

from CCR was seen in the presence of succinate (Figure 3.6 A). 

 

In summary, targeted gene disruption analysis of vfr and crc, in terms of their effect on 

the regulation of DHP activity, implicated both Vfr and Crc in the regulation of DHP 

activity. Crc appears to be a general activator of DHP, but does not play a role in CCR 

of this enzyme. It is unclear whether or not Vfr is involved in general activation of DHP, 

but this transcription factor appears to affect repression of DHP activity under quorum 

sensing conditions. 

  

Although the global transcriptional regulatory proteins, Vfr and Crc, were identified as 

playing a role in the regulation of DHP in RU-KM3s, the promoter sequences through 

which these factors act, remained to be determined. This required the development of a 

system that would enable the analysis of transcriptional activity supported by the dhp 

promoter. 

 

 

3.5 Development of a promoter probe vector to analyse transcription regulation of 

dhp in RU-KM3s cells  

 

To determine whether the putative transcription factor binding sites identified in the 

promoter region of dhp (Section 3.2) are involved in regulating dhp expression, a series 

of promoter probes were developed. Promoter probes are vectors into which DNA 

sequences suspected of having a regulatory function (such as the dhp promoter) may be 

cloned, upstream of a reporter gene, and then introduced into bacterial cells to facilitate 

the analysis of these sequences (Linn and St Pierre, 1990). Thus, the effect of mutations 

in the nucleotide sequence of a promoter of interest on its ability to regulate 

transcriptional activity may be measured by reporter enzyme assays, since the reporter is 

dependant on the upstream heterologous DNA for its transcription (Linn and St Pierre, 

1990). 
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The first step in the development of a promoter probe is to select the type of vector to be 

used as the ‘vehicle” for promoter studies. In this study, two types of promoter probe 

vectors were utilised, namely a multi-copy broad host-range (BHR) vector and a 

plasposon-based integration vector, which resulted in the introduction of a single copy of 

the promoter-reporter enzyme construct onto the chromosome of the RU-KM3s cells. 

The disadvantage of using a BHR vector as a promoter probe is the increase in copy 

number of the promoter-reporter gene fusion, which may result in transcriptional 

activities that do not necessarily reflect the expression of a single copy of the gene in the 

wild-type cells. This difference in copy number can affect the ratio of transcription 

factors to promoter binding sequences. Thus, any changes in reporter enzyme activity 

associated with alterations in the target promoter sequence are decreased by a factor 

relative to the copy number of the vector utilised. In this way, small variations in 

enzyme activity between cells containing a mutant or wild-type promoter could be 

overlooked, while large changes in activity are not as pronounced in a vector promoter 

probe system.  

 

An alternative to using a multi-copy plasmid is to integrate a single copy of the 

promoter-reporter gene fusion into the chromosome (Marsch-Moreno et al., 1998). In 

this case, since the promoter probe is present as a single copy per cell, the problem of 

multiple copies of the promoter affecting reporter enzyme activities is overcome. The 

plasposon system described by Dennis and Zylstra (1998) and used for transposons 

mutagenesis of RU-KM3s cells in a previous study (Matcher et al., 2004), was selected 

to construct a promoter probe that could be integrated into the chromosome of RU-KM3s 

cells.  

 

 

3.5.1 Construction of the integration vector, pJD2. 

 

The gus gene was selected as a reporter for the plasposon-based vector, pJD2, since the 

encoded β-glucuronidase (GUS) enzyme has frequently been used as a reporter in 

promoter-probes and its suitability as such is well established (Jiwaji, 2006). The 
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cloning strategy for the construction of pJD2 is described in detail in Chapter 2,     

Section 2.3.1, but essentially involved two steps. First, the gus gene was amplified from 

pMJ242, a plasmid derived from pCAMBIA (Jiwaji, 2006). The gene was then 

introduced into an Eco RI site of pTnMod-OTc, yielding the construct pJAS29. The next 

step was to clone the entire intergenic region upstream of dhp (nts 2917 – 3533 relative 

to the translational stop codon of bup, Figure 3.1), including the Shine-Delgarno 

sequence, in frame with the gus ORF in pJAS29 using the Bam HI and Nco I restriction 

sites. Numerous attempts to insert the complete intergenic region into pJAS29 were 

unsuccessful.  It was reasoned that this could be due to interference by the potentially  

bi-directional promoter with the pMB1 oriV of the plasposon, such that the resulting 

construct would be unable to replicate in E. coli. This explanation is based upon 

previous observations that transcription activation sequences orientated in the direction 

of another origin of replication can affect plasmid replication (Jiwaji, 2006).  

 

To overcome this problem, a smaller intergenic DNA fragment was selected for cloning 

into pJAS29. The new promoter fragment consisted of the 255 bp upstream of the dhp 

ORF and contained all of the putative transcription factor binding sites identified earlier 

(Section 3.2), as well as the Shine Delgarno sequence for the dhp mRNA transcript. The 

rationale behind shortening the dhp/ORF1(bup) intergenic region to the half located 

immediately upstream of dhp was that the selected fragment was unlikely to contain the 

ORF1-bup promoter sequences.  The 255 bp truncated promoter region was amplified 

from chromosomal DNA by PCR using primers which inserted flanking Bam HI and 

Nco I sites (primer sequences can be found in Methods and Materials). This fragment 

was successfully inserted into the Bam HI and Nco I sites of pJAS29, to generate the 

integration vector, pJD2 (Figure 3.8). Since this 255 bp fragment was cloned into 

pJAS29, it was likely that the ORF1-bup promoter had been deleted. However, it was 

possible that there were other sequences involved in regulating the dhp promoter that 

might also have been deleted.  
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Figure 3.8. The plasposon-derived promoter probe, pJD2, used in the analysis of 

putative cis-acting regulatory elements in the dhp promoter. A): The 255 bp truncated 

promoter with putative transcription factor binding sites are indicated as ovals. The 

nucleotide co-ordinates above the fragment are given in relation to the translation stop 

codon of bup in terms of the hydantoinase gene cluster in RU-KM3s. The Bam HI and 

Nco I recognition sequences used to clone the promoter fragment into the plasposon are 

shown below the insert. B): Schematic diagram of the promoter probe, pJD2. The boxed 

area indicates the promoter region which is expanded in (A). pJD2 was constructed by 

introducing this 255 bp fragment, fused to the gus gene of pCAMBIA, into        

pTnMod-OTc. 
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Plasmid pJD2, carrying the Pdhp-gus fusion (Figure 3.9 A) was introduced into           

RU-KM3s cells by tri-parental mating, and transconjugates selected on agar plates 

containing chloramphenicol and tetracycline To confirm the integration of pJD2 into the 

genome, PCR analysis of the chromosomal DNA of the transconjugates was carried out 

using primers corresponding to the 5' and 3' ends of the gus ORF (JAS14 and JAS15, 

Methods and Materials). Since RU-KM3s does not encode an endogenous gus gene 

(Jiwaji et al., 2008), the presence of a PCR product would indicate the successful 

insertion of the plasposon into the chromosome. The chromosomal integration of pJD2 

can be assumed due to the fact that the plasmid does not contain a broad host-range 

origin of replication enabling it to replicate autonomously in RU-KM3s. Thus, the only 

way that the gus gene would be found in successive generations would be if the plasmid 

were integrated into the genome of the host cells.  

 

For five strains generated by the introduction of plasposons both with and without the 

truncated dhp promoter (pJAS29 and pJD2, respectively), all displayed the 1824 bp PCR 

product corresponding to the gus gene of the vector, while the wild-type control did not 

generate such a product (Figure 3.9 B). The five transconjugate strains carrying pJAS29 

were named ∆RU-KM3s1 - ∆RU-KM3s5, while the strains containing pJD2 were named 

∆RU-KM3s6 - ∆RU-KM3s10. Strains ∆RU-KM3s3 and ∆RU-KM3s7 were selected for 

further studies. 
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Figure 3.9. Confirmation of the integration of the promoter probe, pJD2, into the 

chromosome of RU-KM3s. A): Schematic diagram showing the random integration of 

pJD2 into the chromosome. Primers are indicated as half arrows and the predicted PCR 

product as a bold line B): PCR verification of the integration of pJD2 and pJAS29 into 

the chromosome using the gus-specific primers, JAS14 and JAS15. PCR products were 

subject to agarose gel electrophoresis on ethidium bromide stained 1 % gels.  

Chromosomal DNA templates: transconjugate strains ∆RU-KM3s1-5 containing the 

control plasmid, pJAS29, with no promoter insert (-) (Lanes 2 - 7); strains               

∆RU-KM3s6-10 containing the plasposon, pJD2, with the 255 bp “minimal dhp 

promoter” insert (+) (Lanes 8 - 13); wild-type RU-KM3s as negative control (Lane 15). 

Lane 1 contains the λ/Pst I molecular marker.   

 

(B) 

(A) 

1824 bp gus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 Kbp

5 Kbp

2.8 Kbp

1.7 Kbp

1 Kbp

0.8 Kbp

0.5 Kbp

-
pJAS29

+
pJD2 WT

1824 bp gus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 Kbp

5 Kbp

2.8 Kbp

1.7 Kbp

1 Kbp

0.8 Kbp

0.5 Kbp

1824 bp gus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 Kbp

5 Kbp

2.8 Kbp

1.7 Kbp

1 Kbp

0.8 Kbp

0.5 Kbp

-
pJAS29

+
pJD2 WT

Plasposon:

Chromosome 

(transconjugate)

Chromosome

(WT):

JAS14/15 

(1824 bp)

JAS14

JAS15

pMB1 oriVTcRRP4 oriT gus

255 bp dhp 

promoter

pJD2

7689 bp

gus

RP4 oriT

255 bp dhp

promoter fragment

pMB1 oriV

Inverted repeat

Inverted repeat

Tn5 tnp

Bam HI

Nco I

tcR

Plasposon:

Chromosome 

(transconjugate)

Chromosome

(WT):

JAS14/15 

(1824 bp)

JAS14

JAS15

pMB1 oriVTcRRP4 oriT gus

255 bp dhp 

promoter

pJD2

7689 bp

gus

RP4 oriT

255 bp dhp

promoter fragment

pMB1 oriV

Inverted repeat

Inverted repeat

Tn5 tnp

Bam HI

Nco I

tcR

Plasposon:

Chromosome 

(transconjugate)

Chromosome

(WT):

JAS14/15 

(1824 bp)

JAS14

JAS15

pMB1 oriVTcRRP4 oriT gus

255 bp dhp 

promoterJAS14

JAS15

pMB1 oriVTcRRP4 oriT gus

255 bp dhp 

promoterJAS14

JAS15

pMB1 oriVTcRRP4 oriT gus

255 bp dhp 

promoterJAS14

JAS15

pMB1 oriVTcRRP4 oriT gus

255 bp dhp 

promoter

pJD2

7689 bp

gus

RP4 oriT

255 bp dhp

promoter fragment

pMB1 oriV

Inverted repeat

Inverted repeat

Tn5 tnp

Bam HI

Nco I

pJD2

7689 bp

gus

RP4 oriT

255 bp dhp

promoter fragment

pMB1 oriV

Inverted repeat

Inverted repeat

Tn5 tnp

Bam HI

Nco I

tcR



 - 66 - 

After confirming the presence of the gus gene in the transconjugate strains, GUS reporter 

enzyme assays were carried out for one such strain. To determine whether transcription of 

the Pdhp-gus gene fusion was induced by hydantoin and sensitive to CCR, ∆RU-KM3s7 

cells were grown to stationary phase in complete medium supplemented with hydantoin 

and/or succinate and assayed for GUS activity. No product could be detected after an 

hour of incubation, suggesting very low levels of GUS activity in whole cells. The 

experiment was repeated on cell-free extracts derived from sonicated cells. The yellow 

breakdown product of the chromogenic substrate, PNPG, was only visible after a number 

of hours leading to the conclusion that GUS activity was very low (44.9 β-Gluc units, 

Figure 3.10). The reporter enzyme activity appeared to display the general trends of 

induction by hydantoin and repression by succinate (Figure 3.10), suggesting that the 

deletion dhp promoter fragment was able to mediate transcriptional activation, with 

evidence of induction and CCR. However, the low levels of activity and consequent lack 

of reproducibility, as well as the high standard deviations in values   (+/- 14 β-Gluc units, 

Figure 3.10) indicated that this system would not be suitable for further studies of 

transcriptional activation. 
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Figure 3.10. Transcriptional activation of GUS activity mediated by the 255 bp truncated 

dhp promoter in the transconjugate strain, RU-∆KM3s7. This mutant strain was generated 

by random integration of the plasposon, pJD2, into the chromosome of RU-KM3s, and the 

ability of the dhp promoter region to mediate induction by hydantoin and repression by 

succinate of GUS activity was examined. Cells were grown to stationary phase in 

complete medium. (-: uninduced cells, Hyd: cells induced by addition of 0.1 % hydantoin, 

Succ: cells repressed by addition of 1 % succinate). Error bars indicate the standard error 

of the mean where n = 3. GUS activities in β-Gluc Units are calculated by: 

[1000 x (OD405 nm – OD550 nm)]/OD600 x ∆Time x Volume (ml) (Jefferson   et al., 1986).
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It was important to ensure that no genes involved in the transcriptional regulation of dhp, 

under the environmental conditions of interest, had been disrupted by the random 

integration of pJD2. If this were the case, it would interfere with the native dhp regulon, 

and may affect the ability of key regulatory factors to bind to the promoter probe and 

regulate reporter enzyme activity. Therefore, the wild-type and transconjugate strains 

were grown to stationary phase in complete medium substituted with either 0.1 % 

hydantoin alone or hydantoin and 1 % succinate and assayed for DHP activity.  

 

DHP activity was induced in both strains ∆RU-KM3s3 (containing the promoterless gus 

insert, derived from pJAS29) and ∆RU-KM3s7 (containing the Pdhp-gus fusion derived 

from pJD2) when cells were grown in the presence of hydantoin.  In the case of the 

∆RU-KM3s3 cells, there was a 6.5-fold increase in DHP activity, while a 20-fold 

increase was observed in ∆RU-KM3s7 cells (Figure 3.11). Growth in medium containing 

succinate resulted in a 9-fold and 4.5-fold repression of DHP activity in ∆RU-KM3s3 

and ∆RU-KM3s7 cells, respectively (Figure 3.11).  In previous assays on the wild-type 

strain (RU-KM3s), DHP activity was increased 20-fold in medium containing hydantoin, 

with a 5-fold repression of activity in the presence of succinate (Figure 3.3).  

 

Thus, the levels of induction and repression of endogenous DHP activity in ∆RU-KM3s7 

were almost identical to that of the wild-type, suggesting that this transconjugate strain 

did not contain a disruption in an important gene associated with the dhp regulon. On the 

other hand, the level of induction of activity was substantially reduced in ∆RU-KM3s3, 

in relation to the wild-type (Figure 3.11). This suggested that ∆RU-KM3s3 harboured a 

disruption in a gene involved in mediating induction of DHP.  

 

Interestingly, there was a considerable reduction in the levels of DHP activity, in the   

∆RU-KM3s3 mutant strain as compared with those of the wild-type RU-KM3s and  

∆RU-KM3s7 cells (12. 8 µmol/ml vs. 29. 5 µmol/ml vs. 27.5 µmol/ml, respectively) 

(Figure 3.11). This result suggested that the insertion event in ∆RU-KM3s3 might have 

inactivated or up-regulated a factor involved in the regulation of DHP expression.  The 
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disruption may have occurred either within a gene encoding a transcription regulator 

protein or within a previously unknown activation sequence. 
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Figure 3.11. Effect of chromosomal integration of a plasposon promoter probe on the 

regulation of wild-type DHP activity. The consequence of transposition was determined 

for transconjugates ∆RU-KM3s3, containing the control plasmid pJAS29 with no 

promoter insert (plasposon control) and ∆RU-KM3s7, containing the plasposon pJD2 

with the 255 bp “minimal” dhp promoter (truncated promoter) fused to gus; in 

comparison with DHP activity in the wild-type (+). Cells were grown to stationary phase 

in complete medium (-: cells grown in nutrient broth alone, Hyd: cells grown in            

NB + 0.1 % hydantoin, Succ: cells grown in NB + 0.1 % hydantoin + 1 % succinate, 

WT: wild-type). Error bars indicate the standard error of the mean where n = 3.  

 

 

Sequencing of the surrounding genomic DNA at the insertion site of pJAS29 would 

form an interesting future study and could potentially lead to the identification of a 

component of the dhp regulon. However, the inability to obtain meaningful assay data 

for the transcriptional activity of the dhp promoter, together with the fact that the entire 

dhp/ORF1(bup) intergenic region could not be analysed using this system, prompted the 

use of a different probe to study the dhp promoter. 
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3.5.2 Promoter studies using the multi-copy vector, pMJ445 

 

The availability of a broad host-range vector (pMJ455), constructed by Meesbah Jiwaji 

(Rhodes University Dept of Biochemistry, Microbiology and Biotechnology), offered an 

alternative system for studying the transcriptional regulation of dhp. The vector contains 

an oriT, allowing it to be introduced into P. putida by conjugation; an IncQ broad     

host-range origin of replication, which is functional in RU-KM3s cells, and a tetracycline 

resistance selectable marker to allow for selection of transconjugate strains. In addition, 

the vector, lacking ribosome binding sequences, carries divergent promoterless lacZ and 

gus genes separated by a Bgl II site, to allow for the analysis of a bi-directional promoter 

(Jiwaji et al., 2008) (See Methods and Materials for construct map).  

 

The full-length intergenic region upstream of dhp was amplified by PCR with primers 

GFM38 and GFM39 (Methods and Materials), which introduced flanking Bgl II sites, 

and successfully cloned into the Bgl II site of pMJ445, such that the dhp promoter was 

inserted upstream of the gus ORF. The ability to insert the full promoter region into 

pMJ445, which was not possible for the plasposon promoter probe (pJD2), may have 

been due to the presence of a second reporter gene in the BHR vector. This lacZ gene in 

pMJ445 may have acted as ‘stuffer’ DNA between the promoter and the oriV, thereby 

preventing the potentially bi-directional promoter from interfering with the origin of 

replication of the vector.    

 

A recombinant plasmid with the insert orientated such that the dhp promoter was fused 

to the gus ORF was selected (pMJ449) and introduced into RU-KM3s cells by                

tri-parental mating. The gus fusion was selected over that of lacZ, due to the previous 

observation that 100-fold lower β-Galactosidase (β-Gal) activity levels were obtained for 

pMJ445, when compared to the β-Glucuronidase (GUS) enzyme of the vector (Jiwaji     

et al., 2008), suggesting that β-Gal may not be as accurate in detecting small changes in 

activity between strains.  
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GUS activity levels supported by the multi-copy vector were determined and compared 

to those generated by the integrated promoter probe (pJD2, Figure 3.10). RU-KM3s cells 

containing the vector (pMJ449, full-length dhp promoter) were cultured to stationary 

phase in complete medium substituted with hydantoin and assayed for GUS activity 

after 3 hours. Enzyme activities in the cells containing the broad host-range vector, with 

the full dhp promoter fused to gus, were routinely found to be in excess of 5000 β-Gluc 

units (data not shown), which was approximately 100-fold higher than that observed in 

cells where the truncated promoter-gus construct was integrated into the chromosome 

(Figure 3.10). 

 

The substantial increase in GUS activity in the BHR promoter probe (pMJ449), over the 

integrated vector (pJD2), prompted a comparative assay of GUS activity in the full-

length and truncated dhp promoters using this system. This was important in order to 

determine whether the increase in promoter activity observed in the vector system was 

due to an increase in copy number, as compared with the single copy integration system, 

or due to the presence of additional regulatory sequences in the full-length promoter 

fragment. Therefore, the 255 bp truncated dhp promoter fragment used to construct the 

integration vector (pJD2, Figure 3.8) was inserted into pMJ445, with the resulting 

construct (pMJ480) carrying the dhp promoter fragment, including the ribosome binding 

site, fused to the gus ORF. The two promoter constructs, pMJ449 (full-length dhp 

promoter) and pMJ480 (truncated promoter), together with the vector control (pMJ445) 

were introduced into RU-KM3s by conjugation and the cells assayed for promoter 

activity. All strains were grown to stationary phase in complete medium supplemented 

with succinate and/or hydantoin and assayed for GUS activity.  

 

Overall, the activity of cells containing the full-length dhp promoter was approximately 

2-fold higher than cells where GUS was expressed via the truncated dhp promoter   

(7957 vs. 3301 β-Gluc units, respectively), suggesting that the truncated  promoter 

fragment lacked important regulatory elements, such as activation sequences, required 

for optimal enzyme activity (Figure 3.12). However, a comparison of GUS activity 

between wild-type cells containing the truncated promoter construct (pMJ480) and those 



 - 71 - 

in the transconjugate strain with the same promoter fragment (∆RU-KM3s7) revealed a 

67-fold increase in reporter enzyme activity (Compare Figure 3.12 with Figure 3.10). 

This indicated that the higher GUS activity obtained for the full-length promoter 

construct (pMJ449) (Figure 3.12), in comparison with that of the transconjugate      

(∆RU-KM3s7) in the previous assay (Figure 3.10), was not solely due to the presence of 

additional regulatory sequences in the complete promoter, but that the presence of 

multiple copies of the vector probe also contributed to the substantial increase in GUS 

activity.   
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Figure 3.12. Comparison of the regulation of GUS activity by the truncated and full-

length dhp promoter, in terms of induction by hydantoin and repression by succinate. 

The vector control represents cells containing the promoter probe vector (pMJ445) only, 

the full-length promoter indicates cells containing the promoter probe with the full dhp 

promoter fused to gus (pMJ449), and the truncated promoter indicates cells containing 

the vector probe with a 255 bp truncated dhp promoter fused to gus (pMJ480).                

(-: uninduced, Hyd: induced with 0.1 % hydantoin, Succ: repressed with 1 % succinate). 

Error bars indicate the standard error of the mean where n = 3. GUS activities in β-Gluc 

units are calculated using the formula developed by Jefferson (1986).  

 

 

In terms of the regulation of reporter enzyme activity supported by the full-length 

promoter fragment (pMJ449), there was a 21 % induction of GUS activity in cells grown 

with hydantoin (6300 β-Gluc units in uninduced cells vs. 7957 β-Gluc units in induced 
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cells) as well as a 21 % repression of GUS activity in cells grown in succinate           

(7957 β-Gluc units vs. 6292 β-Gluc units, respectively) (Figure 3.12). On the other hand, 

the regulation of GUS activity supported by the truncated dhp promoter in pMJ480, in 

terms of induction by hydantoin and repression by succinate, suggested that the 

truncated promoter had lost, to a large extent, the ability to mediate induction and 

repression of enzyme activity [3164 β-Gluc units (uninduced) compared with 3301       

β-Gluc units (induced) and 3063 β-Gluc units (repressed)] (Figure 3.12). This inability 

of the 255 bp promoter fragment to modulate reporter activity, in terms of induction and 

repression, once again suggested the loss of important regulatory elements in the 

truncated promoter.  

 

The extent of induction and repression of GUS activity supported by the full-length 

promoter construct (pMJ449) was substantially reduced when compared to the DHP 

activity trends routinely observed in the wild-type dhp system (1.3-fold induction in the 

promoter probe vs. 20.2-fold in the native dhp of RU-KM3s and 1.3-fold repression in 

the probe compared to 4.6-fold in the dhp system) (Compare data in Figure 3.12 to 

Figure 3.3). These “muted” regulatory effects in reporter enzyme activity are likely due 

to the presence of multiple copies of the promoter in the cell, which titrate out 

transcription factors and skew enzyme assay results.    

 

 

It was decided to utilise the multi-copy promoter probe system to further analyse the 

regulatory sequences responsible for dhp transcription, since it allowed an investigation 

of the full promoter sequence.  

 

 

3.6 Mutational analysis of the putative Vfr and Anr binding sites in the dhp 

promoter  

 

Bioinformatic analysis of the intergenic region upstream of the dhp ORF identified 

putative binding sites for the transcription factors Vfr and Anr (Section 3.2; Figure 3.2). 

It was also shown that inactivation of the vfr gene had an effect on DHP activity under 

quorum sensing conditions, suggesting that the putative Vfr binding site in the dhp 
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promoter might be functional in mediating transcriptional regulation of dhp expression.  

It was therefore decided to use site-directed mutagenesis to inactivate the putative Vfr 

binding site and determine the effect on transcriptional activation by the dhp promoter.  

Since the putative Anr box overlaps with the Vfr binding site it was decided to also 

mutate this putative binding site to determine whether Anr plays a role in the 

transcriptional regulation of dhp.  

 

For each binding site, it was decided to mutate one of the two half-sites that are 

proposed to be important for recognition and binding by the relevant regulatory proteins 

(Kanack et al., 2006; Pessi and Haas, 2000). The upstream half-site of the putative Anr 

box and the downstream half-site of the putative Vfr binding site were mutated to ensure 

that, in each case, the other site remained intact despite the overlap of the binding 

sequences. In the case of the Vfr binding site, the 3’ half-site was mutated by the 

introduction of a Sma I site; while the 5’ half-site of the Anr box was mutated by 

introducing a Pst I site (see Methods and Materials for a schematic representation of the 

mutagenesis strategy). The introduction of the Pst I site into the Anr box would also 

result in mutation of a putative overlapping σ
54 

binding site (Figure 3.2). The mutated 

promoter sequences were then removed from their pGEM T-Easy constructs and 

inserted into the Bgl II site of the promoter probe vector, pMJ445, upstream of the gus 

reporter. Plasmids, pJD6 and pJD7, thus contained the full-length dhp promoter region, 

with a mutated Vfr or Anr box/ σ
54 

binding sequence, respectively. 

 

Plasmids, pJD6 (δVfr) and pJD7 (δAnr/σ
54

) together with pMJ449 (wild-type dhp 

promoter) were introduced into RU-KM3s cells and the effect of these mutations on the 

ability of the promoter to activate transcription was determined by measuring GUS 

activity. Cells containing the wild-type promoter construct (pMJ449), as well as those 

containing the mutated promoters (either pJD6 or pJD7), were grown to stationary phase 

in complete medium or medium supplemented with either hydantoin or hydantoin and 

succinate before assaying for GUS activity. In addition, cells containing only the 

promoter probe vector with no insert (pMJ445), grown to stationary phase in complete 

medium and supplemented with hydantoin, were included as a negative control. 
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The full-length dhp promoter generated GUS activities that were only half as high 

overall as those previously obtained for this construct (3110 vs. 7957 β-Gluc units, 

respectively) and similar to the levels observed for the truncated promoter (3301 β-Gluc 

units) (Figure 3.12). Repeating the assay several times yielded similar GUS activities 

that were consistently lower in cells containing pMJ449, than those obtained in the 

previous assays (Figure 3.12 vs. Figure 3.13).  The degree of induction and repression 

was also lower in this assay when compared to the results displayed in Figure 3.12, 

perhaps due to the overall decrease in activity levels. 
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Figure 3.13. Effect of mutation of the putative Vfr and Anr binding sites on the ability 

of the dhp promoter to regulate GUS reporter enzyme activity. Strains and plasmids are 

indicated as follows: the negative control (-ve) contains only the promoter probe vector 

(pMJ445), (WT) represents a strain containing the promoter probe with wild-type dhp 

promoter (pMJ449), (δVfr site) and (δAnr/σ
54

 site) represent strains containing the 

promoter probe plasmid with dhp promoter sequences mutated in the putative Vfr 

binding site (pJD6) and Anr and σ
54

 sites (pJD7), respectively. Cells were grown to 

stationary phase in complete medium (-: uninduced, Hyd: induced with hydantoin, Succ: 

repressed with succinate). Error bars indicate the standard error of the mean where n = 3. 

GUS activities in β-Gluc units are calculated according to Jefferson (1986).  

 

 

Mutation of the putative Vfr binding site in the dhp promoter region resulted in GUS 

activities that were approximately 25 % lower overall than those corresponding to the 

wild-type promoter (Figure 3.13). On the other hand, mutation of the Anr box resulted in 
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a two-fold increase in GUS activity overall (Figure 3.13). In addition, it appears that 

neither the sequence designated as a putative Vfr binding site, nor that predicted to be an 

Anr/σ
54 

recognition sequence, are involved in mediating the induction and repression 

observed for DHP in the wild-type RU-KM3s.  

 

It is possible that the sequence designated as a putative Anr box might play a role in 

repression of the system that is not linked to carbon source, but rather to another 

environmental condition associated with stationary phase. This deduction was based on 

the observation that although GUS activity for this promoter mutant was 2-fold higher, 

in general, than for the wild-type promoter, it nonetheless displayed the low levels of 

carbon catabolite repression (6532 vs. 7939 β-Gluc units, respectively) (Figure 3.13) 

routinely observed for the wild-type dhp promoter in pMJ449 (Figure 3.12). Inducibility, 

albeit at low levels (7199 vs. 7939 β-Gluc units, respectively), was also detected for the 

Anr box mutation, suggesting that Anr does not mediate this effect under these specific 

assay conditions (Figure 3.13).  

 

The putative Vfr site, on the other hand, may play a minor role in activation of the 

system, which is not related to the presence of the substrate. This was inferred from the 

result that the Vfr binding site mutation displayed a 25 % decrease in activity overall, 

yet retained the wild-type trend of substrate induction (1639 vs. 2054 β-Gluc units, 

respectively) (Figure 3.13). Carbon catabolite repression was also retained in this mutant 

promoter (1545 vs. 2054 β-Gluc units, respectively) (Figure 3.13). 

 

In order to ensure that the correct constructs were present in the RU-KM3s cells 

employed in the experiment, plasmid DNA was extracted from the cells used for the 

GUS assays and the dhp promoter region amplified by PCR, using primers specific to 

the dhp promoter and the vector probe. To confirm the presence of the correct promoter 

insert in the vector, the PCR products were digested with Sma I and Pst I, to confirm the 

presence of the wild-type and mutant promoter sequences. The 800 bp wild-type 

promoter fragment was not digested by either Sma I or Pst I (Figure 3.14, Lanes 2 and 

6), while the promoter in the δVfr mutant was digested by Sma I only (Figure 3.14, 
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Lanes 3 and 7) and the δAnr box/σ
54 

binding sequence mutant was digested by Pst I only 

(Figure 3.14, Lanes 4 and 8), confirming the presence of the correct plasmid in each 

case. 

 

                                                                                                           

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 

Figure 3.14. Restriction analysis of dhp promoter constructs used in GUS reporter 

assays. A): 4 % Ethidium bromide stained agarose gel containing PCR products cut with 

Sma I to verify the mutation of the Vfr binding site. B): 4 % agarose gel containing PCR 

products digested with Pst I to verify the mutation of the putative Anr box. Lanes 1 and 

10 contain the λ/Pst I molecular weight marker. WT indicates a strain containing the 

promoter probe vector with wild-type dhp promoter (pMJ449), while “δVfr site” and 

“δAnr/σ
54

 site” represent strains containing the promoter probe with dhp promoter 

fragments mutated in the putative Vfr (pJD6) and Anr/σ
54

  (pJD7) sites, respectively. 

 

  

Thus, the mutations in the putative Vfr and Anr binding sites were confirmed and 

indicated that the altered reporter activities in cells containing these vectors were due to 

specific changes in the DNA sequence of the dhp promoter.  
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DISCUSSION AND CONCLUSIONS 
 

4.1 Introduction 

 

It has been well-established that Pseudomonas species possess extremely versatile 

metabolic systems allowing them to utilise a wide range of nutrient sources and, 

furthermore, that the regulation of these enzyme systems involves highly evolved and 

sophisticated regulatory machinery (Nakazawa et al., 1996; Stover et al., 2000; Nelson 

et al., 2002). The aim of this research was to study these complex metabolic regulatory 

mechanisms using the hydantoin-hydrolysing system of the environmental isolate         

P. putida RU-KM3s (Burton et al., 1998). In particular, the focus was on the 

transcriptional regulation of the dhp gene. Up to date, very little is known about the 

regulation of expression of the genes responsible for hydantoinase activity (Burton and 

Dorrington, 2004). It was hypothesised that there were several factors regulating dhp 

expression based on the fact that, in general, pseudomonads possess a large number of 

transcriptional regulators in relation to their genome sizes, such that up to 8 % of their 

genes encode regulatory elements (Stover et al., 2000). This hypothesis was supported 

by the observation that DHP activity in RU-KM3s was tightly regulated by growth phase 

in addition to induction by hydantoin and carbon catabolite repression (CCR) (Matcher 

et al., 2004). In order to test the hypothesis, the significance of putative transcription 

factor binding sites in the intergenic region upstream of dhp, as well as the role of 

certain corresponding transcriptional regulatory proteins in controlling DHP activity, 

were examined. 

 

 

4.2 Identification of putative transcription factor binding sites in the dhp promoter 

region 

 

Bioinformatic analysis revealed the presence of putative binding sites for the global 

regulators Vfr, Anr, PpuR and RhlR, in addition to the sigma factors, σ
38

 and σ
54

 

(Section 3.2). It was interesting to note that all of the putative binding sites identified are 

recognised by transcription factors which are known to function during stationary phase 
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and that they respond to specific stresses associated with this growth phase (reviewed in 

Yuste et al., 2006). This is also when hydantoinase activity is at its maximum (Matcher 

et al., 2004). At this point, the original hypothesis was expanded by suggesting that the 

transcription of dhp might be regulated in response to a variety of different 

environmental signals specific to stationary phase, by means of four global regulatory 

pathways, as follows: 

(1) The general stress response, mediated by the alternate sigma factors, σ
38

 or σ
54

, 

which direct RNAP to the dhp promoter via their respective recognition 

sequences and represent the highest level of regulation in a complex hierarchy.  

(2) Carbon catabolite repression (CCR), mediated by a CRP homologue such as Vfr 

and acting through the putative CRP/Vfr binding site;  

(3) Quorum sensing (QS), by means of RhlR and/or PpuR operating via the putative 

lux box at high cell densities;  

(4) Anaerobiosis, by way of Anr binding to the putative Anr box at low oxygen 

levels.  

 

The identification of a putative QS-responsive element (the lux box) in the dhp promoter 

region was unexpected, since current literature regarding genes sensitive to QS in 

Pseudomonas has reported mainly virulence factors and there is very little information 

concerning transcriptional regulation of metabolic activity by QS. However, it has been 

suggested that cell density information detected by the QS system forms part of a 

complex network of sensory input, which reflects both the chemical and physical status 

of the environment, including nutrient availability, oxygen levels, temperature, 

osmolarity and pH (Withers et al., 2001; Bertani and Venturi, 2004). In fact, a new QS 

model, called the Pseudomonas quinolone signal (PQS), has been described in                    

P. aeruginosa. The PQS has been implicated in the regulation of both fatty acid 

metabolism and, significant to this research, amino acid biosynthesis, in particular 

tryptophan (Withers et al., 2001). This information may explain why the promoter 

region of dhp might contain such a binding site and added weight to the hypothesis 

regarding the role of QS in regulating a non-virulent, metabolic system such as the 

hydantoinase (dhp) of strain RU-KM3s. 



 - 79 - 

The presence of a putative Anr box upstream of dhp was also unexpected, since very 

little has been reported about the role of Anr in regulating carbon metabolism. Instead it 

has been established that Anr stimulates denitrification pathways in order to enable the 

cells to grow under anaerobic conditions (Arai et al., 2003). It has, however, been 

reported that P. aeruginosa can survive under anaerobic conditions for long periods of 

time via pyruvate or amino acid fermentation (Eschbach et al., 2004). Thus, it is 

plausible that stimulation of the production of amino acids by Anr, through the 

hydantoinase reaction, might aid in the survival of RU-KM3s cells under the limited 

oxygen levels associated with stationary phase. 

 

Upon closer examination of the putative binding sites in the intergenic region upstream 

of dhp, it was noted that a number of these sites were two nucleotides longer than their 

respective consensus sequences and, furthermore, that several binding sites overlapped 

with one another. In terms of the former, the two nucleotide insertion in the region 

between the important half-sites was seen in the putative Vfr, Anr and σ
54

 recognition 

sequences. It is possible that the elongated binding sites might reflect specific 

modifications in the DNA binding domains of the transcriptional regulatory proteins, or 

that the additional nucleotides may aid in looping of the DNA upon binding of 

transcription factors. 

 

The putative Anr box overlapped significantly on its 5' end with the σ
54

 recognition site 

and, to a lesser degree, with the CRP-like binding site on its 3' end. A similar merging of 

binding sites was described in a study regarding the transcriptional control of the 

hydrogen cyanide biosynthetic genes (hcnABC), where it was found that regulation was 

mediated by the QS global regulators, LasR and RhlR, in addition to the oxygen-

sensitive Anr protein and a RNAP sigma factor (Pessi and Haas, 2000). In terms of the 

regulation of dhp expression, binding to either of the overlapping Anr and CCR-

responsive recognition sequences in the dhp promoter may be competitive and 

dependant on specific environmental stimuli, such that Vfr (or a similar CRP 

homologue) would dominate under CCR conditions and Anr would prevail at low 

oxygen levels. 
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4.3 Development of an experimental system to study transcriptional regulation of 

dhp 

 

Although bioinformatic analysis revealed a number of putative binding sites for 

transcriptional regulators, it was unknown whether any of these sites were functional in 

mediating the regulation of dhp transcription. In order to study the role of the potential 

regulatory sequences in the intergenic region upstream of dhp, a suitable promoter probe 

was required, the construction of which was an important objective of this study 

(Section 3.5). It was initially decided to develop a promoter probe that would integrate 

into the chromosome of RU-KM3s. This could allow for promoter studies without 

having to take into account the effect of vector copy number, since the probe would be 

present as a single copy in the genome. However, this approach encountered a number 

of experimental problems. First, repeated attempts to clone the full 616 bp intergenic 

region into the vector were unsuccessful; and second, the final construct generated 

reporter enzyme activity that was too low to allow for accurate comparisons to be made 

between wild-type and mutant promoters.  

 

The low reporter enzyme activities achieved using this probe may have been due to the 

loss of activation sequences in the truncated promoter used in initial studies with this 

system or, alternatively, as a result of the single copy of the probe in mutant cells. The 

results of these experiments did, however, provide the opportunity to critique the 

suitability of a pTnMod-derived probe in the analysis of potentially bi-directional 

promoters. It was proposed that the sensitive oriV of the plasposon prevented the cloning 

of the full-length dhp promoter region, which implied that this system may not be 

suitable for the study of a bi-directional promoter. 

 

The alternate promoter probe system based upon a broad host-range vector, designed 

specifically for the analysis of bi-directional promoters, proved to be more successful. 

Despite the limitations of a multi-copy system, in particular, the risk that numerous 

copies of the vector may dilute out transcription factors, this approach does have certain 

advantages over the integration probe. The benefits of using a multi-copy probe lie in the 

fact that the construct is not integrated into the chromosome of the host cell. This means 
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that the shortcomings associated with integration, namely the effect that the surrounding 

genomic DNA sequence may have on the promoter of interest, as well as non-

reproducibility in terms of the insertion site of the probe, are avoided. Furthermore, the 

ability to characterise the full-length dhp promoter in the multi-copy system and the 

relatively high reporter enzyme activities achieved in the recombinants, implies that this 

promoter probe would be more suitable for the analysis of the putative transcription 

factor binding sites identified in the dhp promoter region.  

 

The vector, pMJ445, also afforded the opportunity of comparing the regulation of 

reporter enzyme activity via the truncated dhp promoter, containing all of the potential 

binding sites for transcriptional regulators, with that of the full dhp-ORF1 intergenic 

region. It was found that transcriptional activity mediated by the truncated promoter was 

only half that produced by the full promoter, and that the inducibility and CCR of 

enzyme activity, by hydantoin and succinate respectively, was lost in the truncated 

promoter (Section 3.4.2). This implies that important regulatory sequences upstream of 

dhp, which were not identified in the bioinformatic analysis, may be deleted in the 

truncated promoter fragment. 

 

With respect to the full-length dhp promoter, the overall extent (fold) of induction and 

repression of activity was considerably lower than those observed in the wild-type 

system (1.3-fold induction in the promoter probe vs. 20.2-fold in the native DHP 

system). This was an important observation, since it implies that multiple copies of the 

promoter sequence are “muting” important regulatory trends. This would reduce the 

sensitivity of this assay system with respect to detecting subtle changes in transcriptional 

activation. 

 

 

4.4 Mutational analysis of putative transcription factor binding sites in the dhp 

promoter  

 

Two of the potential binding sites for transcription factors in the dhp promoter were 

selected for mutational analysis. The sequence designated as a putative CRP/Vfr site was 
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of particular interest since this site was originally considered to be the chief candidate in 

the regulation of DHP by CCR (Matcher et al., 2004). In addition, the site designated as 

a putative Anr box was chosen since it overlapped with the Vfr binding site and also 

contained a σ
54

 recognition sequence. It was considered that mutation of this site could 

offer insight regarding the hypothesis that binding to overlapping regulatory sequences 

was competitive and dependent on specific environmental conditions.  

 

Mutation of the putative Vfr binding site resulted in a 25 % decrease in activity, while 

retaining the wild-type trends of induction by hydantoin and repression by succinate. On 

the other hand, mutation of the putative Anr box resulted in a doubling of enzyme 

activity when compared to the wild-type promoter, but the pattern of induction and 

repression was also retained (Section 3.6). The Vfr and Anr binding sites were mutated 

in only one of their two half-sites, such that in each case the other binding site remained 

intact. Nonetheless, the extensive overlap of the Anr box with the putative σ
54

 

recognition sequence meant that it was possible that mutation of the 5' half-site of the 

Anr box might affect the ability of σ
54 

to bind the dhp promoter. However, the region of 

the σ
54

 recognition sequence that does not overlap with the Anr box (i.e. the sequence 

not affected by site-directed mutagenesis) contains the half-site that has been reported to 

make the greatest contribution to DNA binding by σ
54

. Furthermore, it has been shown 

that even if the 3' half-site were absent, the sigma factor would retain its ability to bind 

the promoter (Buck et al., 2000). Therefore, although it is possible that the mutation of 

the Anr box would affect the functioning of the σ
54

 site, it is more likely that it is the 

mutation of the former that is responsible for the increase in DHP activity. 

 

Based on the mutational analysis of the putative Vfr site and Anr box, it was suggested 

that the Vfr site may play a role in mediating the generalised activation of DHP, while 

the Anr site might play a role in repression of DHP. Whether or not Vfr and/or Anr 

actually bind to these sites and regulate transcriptional activity, is unknown. To 

determine if this were the case, in vitro DNA binding studies between the promoter 

fragment and purified Vfr or Anr would be required. It is also possible that other 
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transcriptional CRP-like regulator proteins may interact with these sites and modulate 

activity.  

 

 

4.5 Environmental factors affecting DHP activity 

 

Up until the start of this study, the following was known about the regulation of DHP 

activity: that it was (1) growth phase-dependant, (2) inducible by the hydantoin 

substrate, (3) repressed by more favourable carbon sources such as glucose and 

succinate and (4) independent of the nitrogen source in the growth medium (Matcher et 

al., 2004). The effect of QS conditions and oxygen levels on enzyme activity was 

unknown. First, the above findings by Matcher (2004) were confirmed, in terms of the 

induction and repression of DHP during stationary phase, before assaying for DHP 

activity at a cell density that was twice as high as that routinely used in enzyme assays, 

in an attempt to simulate QS conditions (Section 3.3). It was observed that activity was 

significantly reduced under these conditions. To the best of our knowledge, this is the 

first report implicating QS in the regulation of hydantoinase activity.  

 

The potential involvement of Anr in regulating dhp expression raised the question of 

whether RU-KM3s cells were capable of growth under anaerobic conditions. The only 

report of a Pseudomonas species being able to establish itself in such an environment is 

in the cystic fibrosis lung, where P. aeruginosa forms macro-colonies in microaerobic to 

fully anaerobic conditions (Hasset et al., 2002; Worlitzch et al., 2002). Before being 

able to study the effect of oxygen levels on DHP activity in strain RU-KM3s, it was 

necessary to determine the tolerance of the cells to various levels of anaerobiosis. 

Preliminary results showed that the strain favoured aerobic conditions, such that growth 

decreased significantly as oxygen levels were decreased and that the addition of the 

alternate electron acceptor, sodium nitrate, did not have an effect on the strain’s ability 

to grow at low oxygen levels (Section 3.3). This suggests that strain RU-KM3s is an 

obligate aerobe, which would agree with the classification of the species. The results 

also meant that it was not possible to determine the effect of low oxygen levels on DHP 
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activity, since these conditions generated insufficient biomass for enzyme assays. A 

more in-depth study of the growth of RU-KM3s under varying oxygen levels could be 

conducted using a sealed growth vessel, to which a measured amount of oxygen could 

be introduced, and correlating this to the OD600 nm of the culture; such that a survival 

curve could be plotted for this strain.   

 

 

4.6 Transcriptional regulatory proteins that influence DHP activity 

 

While it was found that the putative Vfr and Anr/ σ
54

 recognition sequences in the 

intergenic region upstream of dhp appear to play a role in regulation, the proteins that 

bind these sites to activate or repress transcription remain unknown. In this study, two 

proteins were selected for mutational analysis: the CRP homologue, Vfr, and the chief 

pseudomonad CCR regulatory protein, Crc.  Disruption of the vfr gene did not appear to 

have an effect on either induction or CCR of DHP activity. This result suggested, that 

although Vfr is a CRP homologue, it does not mediate CCR in P. putida RU-KM3s and 

thus does not function in the same manner as CRP in E. coli. Another possibility is that 

Vfr may still be expressed from an alternative, duplicate locus in the mutant. The only 

way to confirm that this is not the case would be to generate antibodies specific to Vfr 

and perform Western analysis of cell-free extracts of this strain, cultured under DHP 

assay conditions. However, the latter possibility is unlikely in view of the fact that the 

∆vfr mutant cells exhibited a reduction in DHP activity, suggesting that the disruption of 

the vfr gene resulted in altered expression of dhp. 

 

It has been reported that Vfr forms part of the QS regulatory cascade (Albus et al., 

1997). This prompted an assay for DHP activity in the vfr
-
 strain under QS conditions, 

which revealed a partial relief of repression in the mutant. Thus, Vfr was implicated in 

the QS-responsive regulation of dhp expression. There are two mechanisms by which 

Vfr may regulate dhp expression under QS conditions: (1) via the lux box upstream of 

the dhp coding sequence or (2) by direct binding of Vfr to the putative CRP-like binding 

site further upstream. It is more likely that it is the lux box that is responsible for 
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regulation via QS, since transcriptional activity supported by a dhp promoter containing 

a mutated CRP-like binding site remains subject to repression under QS conditions 

(Meesbah Jiwaji, personal communication). Confirmation of this model of regulation 

would require site-directed mutagenesis of the lux box. Since repression was incomplete 

it is possible that Vfr functions in conjunction with another QS regulator, such as PpuR 

or RhlR.  

  

A comparison of the results generated by the site-directed mutagenesis of the putative 

Vfr binding site in the dhp promoter (Section 3.6) with the targeted vfr gene disruption 

(Section 3.4) revealed that, while the Vfr site was implicated in general activation of dhp 

expression, Vfr itself may play a role in repression under QS conditions. Whilst the two 

sets of experiments appear to contradict one another, they do highlight several other 

possibilities regarding the regulation of dhp expression. First, in the absence of direct 

evidence that Vfr binds the putative Vfr binding site, it is possible that this protein may 

function indirectly via the activity of other transcription factors such as PpuR or RhlR. It 

is also possible that the putative Vfr binding site might be the recognition sequence of 

another transcription factor, perhaps a different CRP homologue, which mediates 

transcriptional activation of dhp.  

 

Since Vfr is not the factor responsible for mediating CCR of dhp expression, another 

candidate, Crc, was considered for this role. The specific disruption of crc resulted in an 

overall decrease in DHP activity, without affecting either induction or CCR, suggesting 

that Crc plays a general role in activation of DHP. Again, as with vfr, although the         

P. putida KT2440 genome sequence indicates the presence of only a single crc gene on 

the chromosome, there might be a Crc homologue that mediates CCR in RU-KM3s.  

While this is unlikely, antibodies to Crc would need to be generated and the disruption 

strain subjected to Western analysis to confirm the absence of Crc. Thus far, the role of 

Crc in the repression of several catabolic pathways has been well-documented. 

However, there have also been reports of this protein mediating activation of such genes, 

for example the malate-quinone oxidoreductase gene in P. putida KT2440 (Morales et 
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al., 2004). This is the first time that Crc has been shown to be involved in the regulation 

of a hydantoin-hydrolysing enzyme system. 

 

Disruption of two global transcription factors and two putative binding sites in the dhp 

promoter did not identify the elements involved in mediating either induction by 

hydantoin (now referred to as HYDp) or succinate-responsive CCR (referred to as 

CCRp) of DHP, suggesting the involvement of factors other than Vfr, Crc or Anr. 

Bearing in mind that induction and repression of reporter activity were largely lost in the 

255 bp truncated promoter, it is plausible that the sequences responsible for mediating 

these effects are located further upstream (Figure 4.1).  

 

 

4.7 A model for the regulation of dhp expression 

 

The final objective of this study was to develop a model for the regulation of dhp 

expression in RU-KM3s. This model will attempt to describe the mechanisms of 

transcriptional regulation of dhp, focusing on putative binding sites identified in the 

intergenic region upstream of the dhp coding sequence. Since it was not determined 

whether Anr or Vfr bind to putative binding sites in the dhp promoter, the sites that were 

mutated will be referred to as binding site “X” and “Y” respectively. This study showed 

that site X is involved in repression of DHP, while site Y appears to play a role in 

activation of DHP. The model therefore proposes a competitive binding system where, 

under sub-optimal conditions for dhp expression, transcription factor X (perhaps Anr or 

σ
54

) binds to this site and represses activity. This repression is not complete, therefore it 

is likely that transcription factor X forms part of a signal transduction pathway involving 

other repressors. Repression via binding site X does not respond to the presence of a 

more efficient carbon source i.e. CCR.  

 

In terms of the putative σ
54

 recognition sequence, it is assumed that mutagenesis did not 

affect the ability of the sigma factor to bind to this site, based on previous observations 

that the 3' end of this sequence was not essential to the functioning of the binding site. 
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Even if this were not the case, the σ
54

 site does not overlap with site Y (previously 

known as the Vfr binding site), and thus the sigma factor binding site is excluded from 

the competitive binding model 

 

                                                                                                       

 

                                                  

 

 

  

                                                              

Figure 4.1. Schematic representation of the intergenic region upstream of the dhp ORF 

showing putative transcription factor binding sites. Putative binding sites are indicated 

as ovals and nucleotide co-ordinates are given in relation to the translation stop codon of 

bup in terms of the hydantoinase gene cluster in RU-KM3s. NOTE: not drawn to scale. 

 

 

Under the conditions where DHP activity is required for survival (in response to a 

stimuli other than the presence of substrate i.e. induction), a transcriptional activator 

protein Y (not Vfr) is able to displace transcription factor X and bind to site Y to activate 

dhp expression. This activator may be a regulatory protein that is specific to the dhp 

gene (DhpR), in the same way that XylR regulates the xylene catabolic genes and BkdR 

regulates the expression of enzymes responsible for the degradation of branched-chain 

keto acids (Hester et al., 2000; Sze et al., 2002). Since activation is incomplete, it is 

probable that transcription factor Y is co-operating with other activators as part of a 

regulatory cascade. A potential component of such a cascade is Crc, which appeared to 

play a role in activation of DHP. Crc does not bind DNA, but has been proposed to form 

part of a signal transduction pathway that modulates carbon metabolism and includes 

components activated by phosphorylation or dephosphorylation (Morales et al., 2004; 

Ruiz-Manzano et al., 2005).  

 

Demonstration of the involvement of Vfr, Crc, Repressor X and Activator Y in 

regulating the dhp system substantiated the hypothesis, which stated that: “the regulation 
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of dhp expression in P. putida RU-KM3s requires two or more global transcription 

factors working in synergy, one of which is Vfr.” The relatively large number of 

potential transcription factor binding sites identified in the intergenic region upstream of 

dhp and the degree of overlapping of these binding sites point to a complex and 

potentially novel mechanism of transcriptional regulation of dhp expression. Expanding 

on the above model of competitive binding and taking into consideration the 

arrangement of the putative binding sites for transcriptional regulators in the promoter, a 

synergistic or co-operative system of transcriptional regulation of dhp is proposed. 

Belyaeva et al. (1998) developed a model for transcriptional activation at promoters 

carrying tandem CRP binding sites in E. coli, whereby two CRP homodimers, one 

bound to recognition sequences centered 42 bp upstream of the transcriptional start site, 

and the other located further upstream, interact with the C- and N-terminal domains of 

the alpha sub-unit of RNA polymerase by means of DNA looping and a flexible RNAP 

linker domain (Figure 4.2)   

 

                                                                                                                                                                                                                                                                                      

 

 

 

 

 

                 

 

                                                                 

Figure 4.2. Model for synergistic regulation at E. coli promoters carrying tandem CRP 

recognition sequences. The nucleotide co-ordinates of the promoter are given below the 

DNA strand and transcription factors are indicated as follows: β and β' refer to the two    

β sub-units of RNA polymerase, while α refers to the α sub-unit; αCTD and αNTD refer 

to the C- and N–terminal domains of this RNAP sub-unit (Modified from Belyaeva       

et al., 1998). 
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allowing a single promoter to respond to a number of environmental signals (Belyaeva  

et al., 1998).  A characteristic feature of such ambidextrous promoters is a 42.5 bp 

spacing between the centre of a transcription factor binding site and the transcriptional 

start. Therefore it would be interesting to perform primer extension analysis of the 

promoter region of dhp in order to determine the position of the transcriptional start of 

the promoter and whether any of the putative binding sites occupy such a position 

(Guest, 1992; Belyaeva et al., 1998).  

 

A similar mechanism of synergistic activation has been observed in the promoter of the 

hydrogen cyanide producing genes, hcnABC, in P. aeruginosa. Here, transcriptional 

activity is co-regulated by Anr, which binds at an Anr box centered at 42.5 bp upstream 

of the transcriptional start, and a hetero-dimer comprising of LasR and RhlR, which 

binds to a lux box centered at 71 bp from the +1 site (Pessi and Haas, 2000).  Activation 

of the hcn genes, achieved by the binding of individual transcription factors and 

favouring the Anr protein, is optimal when all four proteins Anr, LasR, RhlR and RNAP 

are bound to the DNA. Pessi and Haas (2000) proposed that binding of the proteins 

cause the DNA to bend into a loop conformation, thus allowing the transcriptional 

regulators to interact and co-operate with one another (Figure 4.3). 

 

                                                                                                                                                                                                                         

 

  

 

 

 

 

 

                                                 

Figure 4.3. Model for the regulation of the hydrogen cyanide biosynthetic genes in         

P. aeruginosa. Transcriptional regulation occurs via the hcn promoter by the regulatory 

proteins Anr, LasR, and RhlR, that interact with the RNA polymerase αCTD (C-terminal 

domain of the α sub-unit) and αNTD (N-terminal domain of the α sub-unit). Nucleotide 

positions relative to the transcription start site are indicated below the sequence 

(modified from Pessi and Haas, 2000). 

Anr

Anr

α

β

-42.5

β'

αNTD

α
C

T
D

LasR

RhlR

αCTD
-71.5

-10

Anr

Anr

α

β

-42.5

β'

αNTD

α
C

T
D

LasR

RhlR

αCTD
-71.5

-10



 - 90 - 

The dhp promoter region displays a tandem cluster of transcription factor binding sites 

separated by a poorly conserved σ
70

 promoter (Section 3.2). Considering the models put 

forward by Belyaeva et al. (1998), as well as Pessi and Haas (2000), a complex 

synergistic mechanism of transcription regulation is proposed for dhp (Figure 4.4). The 

upstream cluster is made up of a recognition sequence for σ
54

 as well as overlapping 

binding sites for Anr (or Repressor X) and Vfr (Activator Y/DhpR), for which a 

competitive binding model has been proposed above. The downstream cluster, the 

analysis of which was beyond the scope of this study, comprises the σ
38 

recognition 

sequence together with a putative lux box.  

 

                                                                                                                                           

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         

Figure 4.4. Synergistic model for the transcriptional regulation of dhp. Regulation is 

achieved by a complex hierarchy of sigma factors, as well as global regulators and 

specific regulators. Sigma factors are indicated by hexagons, global regulators by ovals 

and specific regulators by triangles. Arrows indicate an activation effect, except where 

accompanied by (-), which indicates a repression effect. Solid arrows represent 

relationships examined and confirmed in this study, while dotted arrows indicate 

hypothesised interactions.  
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In this system, when cells are growing exponentially in complete medium under ambient 

conditions, RNAP is unable to bind the promoter via the poorly conserved σ
70

 

recognition sequence and thus transcription of dhp is prevented. However, should 

binding by RNAP inadvertently occur, repression via binding site X would prevent dhp 

expression. On the other hand, in the specific environmental conditions under which σ
54

 

dominates, it is proposed that RNAP binds via this sigma factor to the dhp promoter, 

along with the transcriptional activator Y (possibly DhpR) and that these proteins 

interact and co-operate with one another by means of looping of the DNA to activate 

dhp expression. The stationary phase sigma factor, σ
54

, has been shown to function in a 

manner that is entirely different to that of the σ
70

 family of sigma factors. More 

specifically, that it requires the binding of an activator protein which is located 

significantly further upstream of its recognition sequence. This corroborates with the 

finding that removal of 360 bp on the 5' terminus of the intergenic region upstream of 

dhp results in a 50 % decrease in DHP activity (Section 3.5). Thus, it is proposed that 

this 360 bp nucleotide stretch in the dhp intergenic region harbours a σ
54

-specific 

upstream activation sequence. Furthermore, it is put forward that when environmental 

conditions favour σ
38

, RNAP will bind to the dhp promoter via this sigma factor 

recognition site to activate dhp transcription. In terms of the adjacent putative lux box, it 

is suggested that quorum specific regulators such as Vfr, PpuR and RhlR may bind to 

this site to activate or repress expression of dhp. It is also possible that σ
38

 interacts and 

co-operates with the transcriptional regulatory protein(s) bound to the lux box.  

 

Previous reports have shown that σ
54

 may activate the expression of other sigma factors 

and function independently of the RNAP holo-enzyme, such that it acts as a global 

transcriptional activator. It is therefore possible that σ
54

 may activate production of σ
38

, 

which in turn would drive transcription of dhp. This would mean that dhp is subject to a 

complex hierarchy of regulatory processes that are comprised of various layers of 

activation or repression, which have a cumulative effect on dhp expression. Thus DHP 

activity would be maximal when both sigma factors σ
54

 and σ
38

, the specific activator 

DhpR, Crc and other upstream activators are present (Figure 4.4). This co-operation of 

transcription factors is similar to that proposed by Pessi and Haas (2000). 
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4.8 Concluding remarks and future research opportunities 

 

This study has demonstrated that transcriptional regulation of dhp, the gene responsible 

for hydantoinase activity in P. putida RU-KM3s, occurs via at least two binding sites 

upstream of the dhp ORF, one mediating activation and the other repression. The 

involvement of two global transcriptional regulatory proteins, namely Vfr and Crc, was 

also demonstrated, with Vfr playing a role in repression and Crc in activation of DHP 

activity. The regulatory machinery involved in modulating dhp expression is sensitive to 

growth phase, substrate induction, CCR and QS. As a future research opportunity, these 

effects on the transcriptional regulation of dhp may also be studied by quantitative 

reverse transcriptase PCR to determine the levels of dhp expression, which could prove 

to be more sensitive than a reporter study. 

   

The information regarding the regulation of the DHP activity provided in this study 

could assist in the development of bioprocesses using RU-KM3s. It has been reported 

that this strain has industrial potential as a whole-cell biocatalyst for the production of 

chiral amino acids, finding applications in the pharmaceutical, food and cosmetic 

industries (Buchanan et al., 2001; Bulawayo et al., 2007). It is now known that at very 

high cell densities, the expression of dhp is repressed via QS. However, genetically 

modified RU-KM3s strains, in which the vfr gene has been inactivated would allow a 

certain degree of relief from repression, thus improving DHP production. In addition, 

disruption of either the putative Anr binding site (site Y) or the protein that binds this 

site, may further enhance expression of dhp. To date, very little information is available 

regarding the use of such transcriptional regulatory mutants to optimise amino acid 

production by hydantoinase activity (Hartley et al., 2001; Leuchtenberger et al., 2005). 

Another avenue for improving enzyme production in strain RU-KM3s is the over-

expression of transcriptional activators, such as Crc.  

 

It is already well established that supplementation of the growth medium with hydantoin 

improves DHP activity (Matcher et al., 2004). However, further studies regarding the 

identification of the factors responsible for mediating induction by hydantoin would 
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allow for the development of an inducer-independent strain that would negate the need 

for an expensive substrate in the growth medium. In terms of CCR of DHP activity, a 

study has been conducted to find a carbon source that has a reduced repressive effect, 

while supporting reasonable biomass production (Kirchmann et al., 2007). An 

alternative approach to overcoming the adverse effects of CCR is to study the molecular 

mechanisms governing CCR and develop a genetically modified strain resistant to CCR. 

Such a strain would enable production the DHP enzyme in the presence of a more 

efficient carbon source, allowing for greater biomass generation in a fermentation 

reactor.  

 

Finally, besides the potential benefits to industry afforded by an understanding of the 

regulation of hydantoinase activity in P. putida RU-KM3s, the novelty of such studies 

must also be considered. Elucidation of the mechanisms governing the sophisticated 

regulatory systems in Pseudomonas promises to contribute greatly to the current 

fundamental knowledge about transcriptional regulation in bacteria.  
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APPENDIX 2 

 

Preparation and transformation of competent E. coli cells 

 
2.1. Preparation of competent E. coli cells 

 

The protocol for the preparation of competent E. coli cells was developed from Hanahan 

(1983). A test-tube containing 5 ml Luria-Bertani broth was inoculated with E. coli 

DH5α and grown to confluence overnight at 37 °C with shaking at 200 rpm. Four 

Ehrlenmeyer flasks, each containing 100 ml Luria-Bertani broth were then inoculated 

with 1.5, 1.0, 0.7 and 0.3 ml of the overnight culture respectively and incubated at 37 °C 

for approximately 2 hours until an OD600 nm of between 0.6 and 0.8 was obtained. The 

flasks were then cooled for 5 to 10 minutes on ice, after which the flask contents were 

processed separately until the final step. The cultures were centrifuged in a Beckman 

JA-14 rotor at 5000 rpm for 10 minutes, at 4 °C. The supernatant was discarded and the 

pellet resuspended in 50 ml RF1 (100 mM KCl, 50 mM MnCl2, 30 mM CH3COOK,     

10 mM CaCl2, 15 % glycerol, pH 5.8), followed by a further 20 minutes incubation on 

ice. The cells were once again pelleted by centrifugation as above and the supernatant 

discarded. All four pellets were then resuspended together in a final volume of 4 ml of 

RF2 (10 mM MOPS, 10 mM KCl, 75 mM CaCl2, 15 % glycerol, pH 6.8). The 

resuspended cells were frozen and stored at -80°C in 500 µl aliquots until required. 

 

2.2. Transformation of competent E. coli cells 

After thawing on ice, 100 µl competent E. coli cells were mixed with the plasmid DNA 

in a sterile 1.5 ml Eppendorf tube and incubated on ice for 20 minutes. The cells were 

then subjected to a heat-shock step by incubation at 42 °C for exactly 45 seconds, 

followed immediately by incubation on ice for 5 minutes. 1 ml cold Luria broth was then 

added and the cells incubated at 37 °C for 1 hour after which the cells were spread-

plated onto Luria agar plates containing the appropriate selective antibiotic.  
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APPENDIX 3 

 

General protocols used in DNA manipulation  

 

 

3.1 Plasmid DNA extraction from E. coli 

E. coli DH5α cells containing the recombinant plasmid were grown to confluence 

overnight at 37 ºC, with agitation at 200 rpm, in 5 ml Luria broth supplemented with the 

relevant antibiotic. The plasmid constructs were then removed from the E. coli cells 

using the ‘Easyprep’ method described by Berghammer and Auer (1993). The constructs 

were screened by means of restriction endonuclease digestion according to 

manufacturer’s specifications. Thereafter the resulting DNA fragments were analysed by 

electrophoretic separation on 1 % agarose gels (unless stated otherwise) containing      

10 µg/ml ethidium bromide. The buffer used in the preparation and electrophoresis of 

the agarose gels was 1 x TAE [50x TAE (1L): 242 g Tris HCl, 57.1 ml glacial acetic 

acid and 100 ml 0.5 M Na2EDTA, pH8.0]. The DNA in the agarose gels was visualised 

under UV light and images captured using the “UviPro Chemiluminescence and 

Fluorescence Documentation System”. 

 

The desired plasmids were then extracted from E. coli to a high degree of purity using 

the High Pure Plasmid DNA isolation kit (Roche), according to manufacturer’s 

specifications. This high quality DNA was used in further manipulation and in-depth 

analysis using DNA sequencing. 

 

3.2. Sequencing of DNA 

Where constructs required DNA sequencing, the “Di-deoxy Chain Termination Method” 

(Sanger et al., 1997) using the ABI Prism Big Dye Terminator Cycle Sequencing Ready 

Reaction kit version 3.1 (PE Applied Biosystems) was carried out. The thermal cycling 

reaction parameters were performed according to the manufacturer’s instructions for the 

GeneAmp PCR System 9700 thermal cycler. The amplified products were then purified 

using the DNA Clean and Concentrate kit (Zymo) and dried by vacuum centrifugation 

(Speedvac concentrator, Savant). Thereafter the samples were sequenced using an 
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ABI Prism 3100 Genetic Analyser (Hitachi Applied Biosystems) at the Rhodes 

University Sequencing facility.  

 

3.3. Genomic DNA extraction 

Genomic DNA was extracted from P. putida RU-KM3s and its transconjugate mutants 

using the detergent lysis/CTAB and organic solvent extraction method, developed by 

Ausubel (1983). The resultant DNA was treated with 5 µl of 10 µg/ml RNAse A to 

remove the RNA, and the DNA was then precipitated by adding a tenth of the volume of 

3 M sodium acetate buffer (pH 5.2) together with two times the volume of ice-cold 96 % 

rectified ethanol and incubated at -20 ºC overnight. The DNA was then pelleted by 

centrifugation at 13 000 rpm for 10 minutes in a Heraeus microfuge, washed twice with 

ice-cold 70 % rectified ethanol and dried by vacuum centrifugation (Speedvac 

concentrator, Savant), before resuspending in 50 µl TE buffer (pH 7) for 3 hours at room 

temperature. The genomic DNA was then analyzed by agarose gel electrophoresis as 

detailed in Section 3.1 above. 

 
3.4. PCR amplification of DNA 

In this study, four different DNA-dependant DNA polymerases were utilised, namely 

Taq DNA polymerase (Bioline), KapaTaq DNA polymerase (Kapa Biosystems), Kapa 

High Fidelity DNA polymerase (Kapa Biosystems) and Expand High Fidelity DNA 

polymerase (Roche). All enzymes were used according to manufacturer’s specifications. 

The general cycling parameters are detailed in Table A2. 

 

Table A3. General reaction conditions for PCR carried out in this study 

Cycling parameters for each DNA polymerase No. of 

cycles 

Step 

Bioline Taq Kapa Taq Expand High 

Fidelity 

Kapa High 

Fidelity 

 

Initial denaturation 92 ºC, 2 min 94 ºC, 2 min 94 ºC, 2 min 95 ºC, 2 min 1 

Denaturation 92 ºC, 45 s 94 ºC, 30 s 94 ºC, 30 s 98 ºC, 15 s 

Annealing X ºC, 45 s X ºC, 45 s X ºC, 45 s X ºC, 15 s 

Extension 72 ºC, 

1min/Kb 

72 ºC, 

1min/Kb 

72 ºC, 

1min/Kb 

72 ºC, 30 

s/Kb 

30 

Final Extension 72 ºC, 3 min 72 ºC, 2 min 72 ºC, 3 min 72 ºC, 1 min 1 
Where the annealing temperature, X ºC, varies according to the melting temperatures of the primer pair 

used in the reaction.
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