
Routing MIDI messages in a shared music studio environment

The thesis submitted to Rhodes University in fulfilment of the requirements for the
degree of Master of Science.

by

Thabo Mosala

Computer Science Department,
Rhodes University, Grahamstown 6140.

December, 1994

.,: ...

To my mother, 'Makeneuoe and 'Masemetse

ACKNOWLEDGEMENTS

I would like to thank all those people who had, in one way or another, something to do with
this thesis, my fellow students and the staff members of the Computer Science department.
A special thanks to Sharlotte Jefferay, Dave Sewry and John Ebden for reading my thesis and
assisting in its improvement. A more special thanks to my supervisor, Richard Foss, for the
effort he made in seeing this thesis to fruition.

Abstract

The Rhodes Computer Music Network (RHOCMN) is a network which allows main studio
resources to be shared. RHOCMN is growing into a multi-workstation environment and
additional devices are being incorporated into the system. A star configuration is used for
transmitting MIDI from a MIDI patch bay to the workstations and MIDI devices. This
imposes several disadvantages on the use of the studio, such as wiring problems. In a quest
to avoid problems related to MIDI in RHOCMN, the MIDINet system was developed. The
idea was to acquire a viable solution to MIDI's main problems which does not involve a
redefinition of the MIDI specification.

CONTENTS

1. Introduction .. 1

2. Rhodes Computer Music Network :'. -' -.. .
2.1 Introduction .. .
2.2 Music Studio

2.2.1 Audio Generators
2.2.2 Audio Modifiers ,T. • • • • •

2.2.3 Audio Recorders
2.2.4 Audio Patch Bays

2.3 Computer Controlled Music Studios
2.3.1 MIDI .. .

5
5
5
5
6
6
7
8
9

2.3.2 MIDI specification 9
2.3.3 MIDI Applications 10
2.3.4 Sequencer .. 10
2.3.5 MIDI patch bays .. 11
2.3.6 Problems with MIDI 11

2.4 The Rhodes Computer Music Network (RHOCMN) 12
2.4.1 Hardware layout 13
2.4.1 Audio patch bay 13
2.4.2 MIDI patch bay 14
2.4.3 Workstation MIDI Sequencer and MIDI controller 14

2.5 Problems with MIDI in RHOCMN 14
2.6 Attempts to solve MIDI problems 15

3. The MIDINet Concept ... 18
3.1 Introduction .. 18
3.2 What is a MIDINet unit? 19
3.3 Configuring a MIDINet system ; .. -20

3.3.1 Configuration 22
3.3.2 Connection of devices 24

3.4 How the MIDINet system operates 25
3.5 MIDINet unit in relation to other systems .. 27
3.6 The advantages of the MIDINet system to the Rhodes Network. 27

3.6.1 MIDI patch bays 27
3.6.2 Channelisation 28
3.6.3 Other advantages .. 28

4. Implementation of the MIDINet System 29
4.1 Introduction ... 29
4.2 Hardware Configuration of a MIDINet system 29

4.2.1 The MIDI card (MUART) 29
4.2.1.1 Interrupts on the PC 30
4.2.1.2 INS8250 Addressable locations 30
4.2.1.3 Operations .. 31

4.3 PC-Xinu ... 32
4.3.1 Process Management and context switching 32

4.3.2 Memory management 33
4.3.3 Interrupt processing 34
4.3.4 Device drivers .. 34
4.3.5 Memory resident Xinu .. 35
4.3.6 Windowing ". .. 36
4.3.7 System initialization ;<. " ~ •• 37

4.4 Added drivers ... 37
4.4.1 MUART under Xinu 37

4.4.1.1 Initializing 38
4.4.1.2 MUART - Interrupts and reading ~" .. _ 40
4.4.1.3 Transmission 40

4.4.2 Ethernet .. 40
4.4.2.1 Initializing .. 43
4.4.2.2 Input routines .. 43
4.4.2.3 Output routines 44
4.4.2.4 Closing the device 44

4.5 MIDINet system .. 45
4.5.1 Analysis and Design of the system 45

4.5.1.1 The Essential Model .. 45
4.5.1.2 The Environmental Model 46
4.5.1.3 The Behavioral Model 48
4.5.1.4 Implementation Model 51

4.5.1.4.1 Task Modelling 53
4.5.1.4.2 Models of interfaces 53
4.5.1.4.3 Structure Charts 53

4.5.2 Software for the MIDINet System 55
4.5.2.1 Configuring devices 55
4.5 .2.2 Connections .. 57
4.5.2.3 MIDI 57
4.5.2.4 MIDI processing 58

4.5.2.4.1 MIDI parsing _.58
4.5.2.4.2 Guidelines for parsing the MIDI data stream . .. 59
4.5.2.4.3 MIDI Mapping 60

4.5.2.5 Routing MIDI 60
4.5.3 Initialization .. 61

4.6 MIDINet protocol .. 62
4.6.1 MIDINet system Layer Model 62
4.6.2 MIDINet messages 64

5. Performance Evaluation .. 68
5.1 Introduction 68
5.2 Problem statement .. 68

5.2.1 Goals .. 69
5.2.2 Services and outcomes 70
5.2.3 Selecting metrics 70

5.3 Selecting Techniques and Metrics 70
5.4 Analytic Modelling .. 71

5.4.1 Queuing analysis 71
5.4.2 Basic structure of a queuing system 72

5.4.3 Rules for all queues 72
5.4.4 Kendall Notation .. 73
5.4.5 The M/M/1 System 74
5.4.6 The M/M/1/K System 79

5.5 Simulation : '_.' .. 83
5.5.1 NETWORK 11.5 :< .-.•..•..••.••.•..••.••.••.• 84
5.5.2 Performance 84

5.5 .2.1 Response time 84
5.5.2.2 Packet size 86

5.6 Operational analysis --; -. ;.. 87

6. Pretocols .. 90
6.1 Introduction .. 90
6.2 Alternative protocols 90
6.3 Description of Netlink protocol 91
6.4 Communication in Netlink 93
6.5 Ring Maintenance in Netlink .. 93
6.6 Error Handling in Netlink .. 95
6.7 Packet Format ... 96
6.8 Internal control information .. 96
6.9 Advantages and disadvantages .. 97
6.10 Performance Evaluation 98

7. Conclusion .. 100
7.1 MIDI problems addressed ,. 100
7.2 Possible extensions 102

7.2.1 Hardware 102
7.2.2 Software. .. 102

7.2.2.1 MIDI Filtering 102
7.2.2.2 MIDI Mapping 103

7.3 Netlink protocol ... -103

Appendix 1 .. 110
1.1 Enviromental Model .. 111

1.1.1 Context Schema 111
1.1.2 Event List 113

1.2 Information Model , .. 114
1.3 Behavioural Model .. 117

1.3.1 Response List .. 117
1.3.2 Transformaton shema ... 120
1.3.3 Data Dictionary .. 133

Appendix 2 .. 136
2.1 Modelling the interfaces 137
2.2 Stucture Charts ... 141

Appendix 3 .. 146

Appendix 4 .. 147

4.1 Data flow diagram 148
4.2 AlgorithmJRules .. 150

GLOSSARy ... 154

Chapter 1 Introduction

Introduction

-:; .

MIDI is a standard protocol that permits music devices to communicate and share control

information. MIDI has opened up a whole new range of possibilities in elecfron1c music and

studiQ production. It is specialized to handle most direct musical communication, yet its

generality has allowed it to adapt to applications that were not foreseen when it was originally

drafted. It has been adopted in many related industries such as film editing and lighting

control.

MIDI was originally intended for connecting two keyboards in order to play one of them and

get the sound of both Gust as if you had played both keyboards simultaneously). Nowadays,

the most common application for MIDI is the recording of music using a sequencer. A

sequencer is a MIDI-based recorder or composition program.

MIDI transmits very simple messages, generated by user action on a musical device. When

you press a key on a MIDI keyboard, a message is transmitted, specifying which key was

pressed, and with what force you struck it. This is coded into three simple numbers, MIDI

bytes. MIDI bytes come in two types called status and data. Status bytes describe the kind

of information being sent. They inform the other instruments whether this is a key press, a

pitch wheel move, or another type of action. It is the first byte sent by a MIDI instrument

when an action occurs. On the other hand, data bytes indicate the actual value of the event.

For instance, if the status byte indicated a key press, then the following data bytes would

indicate which key was pressed, and the velocity with which it was pressed. A status byte is

followed by one or more data bytes depending on the type of message being sent.

MIDI offers the capability to remotely control and synchronize devices in a music studio.

Remote control allows bulky devices to be placed remotely while keeping control central. The

flow of control information between these devices provides them with the ability to

synchronize to each other.

In order to share control over these music devices, a music network was created at Rhodes

University, the Rhodes Computer Music Network (RHOCMN). RHOCMN comprises a server

1

Chapter 1 Introduction

and several workstation nodes. Each node enables access to a shared studio. The server and

the workstations are connected via Ethernet. The studio comprises several MIDI controllable
.;;: -.

devices. There is a MIDI patch bay and an Audio patch bay. The network was built with an

aim to improve the utilization of music resources. The goal of the network is to communicate

the media found within the network to and from each of its users. These media are related

to the control and performance aspects of composition.

In RHOCMN, most devices are MIDI controlled. This control information needs to be

communicated in real-time. Interconnecting all devices fitted with the MIDI interface are

MIDI interconnects. Devices are interconnected through a MIDI patch bay in a star

configuration. The MIDI patch bay allows the user to control routing of MIDI control data

between devices. The patching of MIDI is required in order that MIDI data transmitted from

the user reaches those devices in the main studio to which he has access. It also ensures that

MIDI data generated by these devices can be transmitted to the user. There are several

problems related to MIDI transmission in the network; one of these is low bandwidth. In this

thesis it is argued that the Ethernet network can be used to enhance transmission of the

control information.

This thesis discusses how network hardware and protocols can be used to enhance control

over shared music studio resources. Local Area Networks (LANs) are used in computer

systems and feature high-speed, bidirectional protocols that share and distribute large amounts

of information to a variety of devices. However, LANs typically do not distribute -this

information under real time constraints. What is needed is a protocol that gives the highest

priority to messages that need to be communicated in real time. There have been several

proposals and attempts to utilise LANs in music environments. Our attempt, the MIDINet

concept, follows one of the proposals described later.

The MIDINet concept is introduced in this thesis. The necessary hardware and software for

the implementation of the MIDINet concept is described as a means to provide the enhanced

control. The goal is to utilise cheap and readily available equipment in a quest to solve MIDI

transmission problems in RHOCMN. The hardware that was custom-built at Rhodes

University is utilised to achieve this goal. It is also indicated how the MIDINet system fits

into a shared music studio environment.

To show how the above mentioned goals were achieved, the thesis begins with a description

2

Chapter 1 Introduction

of the nature of RHOCMN, including both the hardware and software. The general problems

related to MIDI in music studios are discussed in" more detail. Following that, problems

inherent in RHOCMN are addressed. The MIDINet system is proposed as a solution to

overcome these MIDI related problems in RHOCMN. Current systems or networks that have

already been developed to solve MIDI related problems are evaluated.

The MIDINet system requirements specification is laid out in chapter 3. The requirements

specification describes how devices are identified and how to achieve routing between these

devices. It outlines the services provided to the user and how the user interacts with the

system. The advantages and disadvantages of having such a system are addressed. There are

added advantages provided by the system besides solving MIDI transmission problems.

The process conducted for the implementation of the MIDINet system is described in chapter

4. This includes the choice of an operating system, custom-built hardware and the analysis

and design of the system. The power of any operating system lies·in the services it provides.

PC-DOS is compared with PC-Xinu, the operating system used for the MIDINet system.

Following that, the hardware that forms an interface between the system and the MIDI

devices is described. After laying out the requirements specification of the MIDINet system,

a structured analysis and design of the system is presented.

Before and after the system was built, it was analyzed to measure its performance. This

analysis is explained in detail in chapter 5. Performance is a key factor in the design and-use

of computer systems. The goal of the designer is always to achieve the highest performance

at a given cost. Performance evaluation is required at every stage in the life cycle of a

computer system, including design, use and upgrade. It is required when the designer wants

to compare a number of alternative designs and find the best design. The results determined

from the analysis are explained; the analysis includes empirical analysis.

From the analysis it was verified that the non-deterministic nature of Ethernet could cause

problems in the system. Ethernet is efficient in transmitting large packets periodically, but its

efficiency decreases rapidly when the size of the packet decreases and when their frequency

increases. The problems are solved with the help of a protocol implemented above Ethernet.

The protocol, Netlink, is described and the performance of the system equipped with this

protocol is studied.

3

Chapter 1 Introduction

The conclusion to the thesis indicates the adequacy of the MIDINet system in its attempt at

solving the problems related to MIDI in the Rhodes Computer Music Studio. The description

centres around the dysfunctions of MIDI and the problems of MIDI in RHOCMN. Possible

improvements to the system are also suggested.

4

Chapter 2 RHOCMN

Rhodes Computer Music Network

.~ -

2.1 Introduction

The Rhodes Computer Music Network (RHOCMN) is a network which allows main studio

resources to be shared. These resources are often expensive, and must usually be shared by

numerous users. The motivation behind RHOCMN is to share music studio resources in an

efficient and cost-effective manner. The argument is that computers and networks can be used

to effect this sharing. In order to introduce this network, the fundamentals of a single user

studio need to be discussed.

This chapter introduces the terminology relating to a typical computer controlled music studio.

The chapter gives a general description of the devices found in a single user studio. It

describes the way these devices interact. Following this, the concept of a Computer Music

Network is introduced. In this network most devices can be controlled via the MIDI protocol.

Most devices today incorporate a MIDI interface. However, problems related to MIDI exist

in a computer music network. These problems are addressed and previous attempts to solve

these problems are discussed.

2.2 Music Studio

Current music studios are single user studios in which a user has control over all devices in

the studio. A music studio has several audio devices. The user can either control the devices

through direct physical control or by using a controller. A controller is a device used to

generate data to feed other devices. Audio devices can be classified into three categories;

audio generators, audio modifiers and audio recorders.

2.2.1 Audio Generators

Audio generators are responsible for generating sound. Typical examples of audio generators

are synthesizers and samplers. Synthesizers electronically produce audio information in the

form of waveforms. Analogue synthesizers use electronic circuitry to allow for synthesis and

shaping of sound timbres. This electronic circuitry includes voltage controlled oscillators,

5

Chapter 2 RHOCMN

voltage controlled amplifiers, and voltage controlled filters. Digital synthesizers use synthesis

algorithms for the production of digital audio wave~orms. These audio waveform producing

algorithms can create sounds rich in harmonics [De Furia, 1986].

Samplers offer the facilities for playing back already recorded sampled sound at various

frequencies. A digital sampler converts the analogue audio signal into a digital representation
~- ~

using an analogue to digital converter, in order to sample sound. The digital information is

then stored sequentially within the sampler's memory. This stored information can be

reconverted from the digital domain using a digital to analogue converter.

2.2.2 Audio Modifiers

After the sound has been generated from audio generators it can be passed through audio

modifiers to be manipulated. Audio modifiers help the user to alter, mix and listen to sounds.

They can modify the sound by compressing or limiting the dynamic range, filtering it, or

shifting the pitch. Altering sound is achieved through audio effects units. Typical examples

of modifications include equalization, echo and reverb, delay, pitch shifting, compression and

expansion. These modifications allow the user to create complex sound effects from the sound

the audio generators have produced.,

After being modified, the sound is usually mixed by an audio mixer. The mixer combines the

outputs of microphones and instruments, and routes these to various destinations. Huber

provides a short introduction to mixing [Huber, 1991]. The outputs may be sent to a

multitrack tape recorder for recording. Audio amplifiers and speakers allow the user to listen

to sound being produced either directly from an audio mixer and/or being replayed from an

audio recorder.

2.2.3 Audio Recorders

The sound that has been modified, can be recorded with the help of Audio recorders. This

recorded sound can be modified, listened to, and later edited. Associated with the recording

medium are tracks. Tracks are physical areas on the recording medium where an audio signal

is recorded. Multiple sound generators can be recorded simultaneously onto separate tracks

of a multitrack tape recorder, or they can be recorded in succession [Ziffer, 1991].

6

Chapter 2 RHOCMN

Audio recorders are either analogue or digital in nature. Analogue recorders are slowly being

replaced by their digital counterparts. Analogue a.udio recorders do not have the sound

reproduction capabilities of digital audio recorders [Hurtig, 1992]. Furthermore, digital

recorders allow for editing and random access to a recorded information. However, Brighton

indicates how analogue recording can be improved through carefully planned setups

[Brighton, 1993]. Some analogue decks outperform any commercially r~l_ea,§ed medium

including compact disc. A further point made by Hurtig is that some analog-to-digital and

digital-to-analog converters suffer from phase shift and quantizing noise, making it preferable

to have analogue throughout the recording process [Hurtig, 1992]. In digital recording, the

medium can either be a hard disk or a magnetic tape. Hard disk based recording systems

allow for the editing of the digital audio [Meyer, 1990], whereas tape-based digital systems

are used in a manner similar to the traditional analogue systems.

2.2.4 Audio Patch Bays

Audio signals are transferred between these audio devices through interconnects. The data is

transferred in two modes; analogue form or digital form, which is becoming more common.

The routing of audio signals can be effected with the aid of an audio patch bay.

Audio patch bays allow the user to control the routing of audio signals between audio

generators, modifiers and recorders (Figure 2.1). Audio patch bays enable interconnect~~ns

between the audio devices to be modified. Using audio patch bays, direct connectivity

between any audio devices can be achieved. Hence, audio signals need not be routed through

the audio mixer in order to travel from one device to another. The operation of manual audio

patch bays is described in [Brighton, 1992].

Audio patch bays originally required the user to make patches physically. Currently, audio

patch bays whose functionality can be accessed remotely by controllers are available

[Oppenheimer, 1991]. This speeds up access to the patch bay.

The possible interconnection between audio devices is shown in figure 2.1. The audio signals

created by the audio generators are transferred to the audio mixer where the overall gain and

tonal attributes of these audio signals is first altered. A modified form of these audio signals

is then routed to the audio effects units and audio recorders. The audio mixer is also fed with

7

Chapter 2 RHOCMN

AudIO Recorder

Audio Generator Audio Patch Bay AlJdlo Mixer

Audio Effects UnIt Audio Amplifier

Figure 2.1 Interconnections between audio devices

audio signals returning from audio effects units. Audio signals coming from audio recorders

are processed in the same manner as audio signals coming from audio generators.

2.3 Computer Controlled Music Studios

Computers running suitable software introduce the capability to control remotely the devices

within the studio. Devices such as audio recorders can be placed remotely while keeping their

control central. Audio controllers need to transfer control information to the audio devices

under their control. This control information can be communicated via a computer. Changes

to the communicated data can be effected within the software run by the computer. In the

past, this control over devices was performed via various protocols. Manufacturers of music

equipment used proprietary protocols, often above the RS422 or RS232 physical protocols,

to effect control over audio devices. These protocols were used to control devices such as

multitrack tape decks. Now, MIDI is largely being used to control studio devices. However,

some devices such as multitrack tape recorders and mixers still have their own proprietary

protocols.

8

Chapter 2 RHOCMN

2.3.1 MIDI

MIDI is a standard for interconnecting musical eql}.ipment fitted with the necessary electronic

hardware [IMA, 1989b]. MIDI provides a way of getting musical devices to talk to one

another. It permits devices built by different manufacturers to communicate with one another.

Hence, it provides a common ground for communication. MIDI works in the same way as an

RS232 modem protocol, but it is optimized for musical data. Modem MID(rec"brd/playback

systems can be regarded as a type of multiprocessor network, because an intelligent master

(keyboard or computer) controls several devices, each with its own onboard intelligence.

2.3.2 MIDI specification

The MIDI specification comprises both a hardware and a software specification: the hardware

consists of a 32 kHz optically isolated serial loop with separate cables for sending and

receiving. MIDI uses a five pin plug called a DIN plug for connection onto a device. MIDI

uses only a single wire to transmit information. The information travels in only one direction

over a single MIDI cable. At the sender side, data is converted into serial form by a standard

UART (Universal Asynchronous Receivertrransmitter). A UART at the receiver converts the

serial data to parallel form for reception by the MIDI instrument. Each MIDI instrument has

three separate connectors: one to send data out (OUT port), one to receive data in (IN port),

and another to pass incoming data on through to another MIDI instrument (THRU port).

The software specification provides detailed methods for transmitting note-control data. MiDI

messages are divided into several groups. The most common messages are CHANNEL

VOICE MESSAGES. Channel voice messages include NOTE-ON and NOTE-OFF, which tell

the receiver what note to play, REAL-TIME messages for coordinating events, and

CONTROLLER MESSAGES which control the response characteristics of the receiving

device. SYSTEM EXCLUSIVE MESSAGES form a looser specification for handling

manufacturer-specific interaction between products. A more detailed description of MIDI

messages is given in section 4.5.2.4. A useful description of MIDI can be found in

[Wilkinson, 1993].

Associated with each channel voice message is a channel number. Channel numbers make it

possible for sounds to be layered on top of one another. Different musical parts, each meant

to be played on different instruments, can be transmitted together over the same MIDI cable.

9

Chapter 2 RHOCMN

Each part has a channel number associated with it and will be played by the instrument set

to this channel. In a setup where multiple instrument~ are connected to a single controller, the

controller could select particular synthesizers to acti.vate, by sending channel voice messages

with the appropriate channel numbers.

The MIDI standard has been extended to allow for the transmission of timing information
r - ~

over MIDI lines. This extension is known as MIDI Time Code [IMA, 1986] [IMA, 1989b].

It enables devices to synchronize to one another. Synchronization is the process of ensuring

that two time-based devices stay in time with one another. Typically, the requirement is to

synchronize MIDI sequencers and audio recorders.

2.3.3 MIDI Applications

The original motivation behind MIDI was to allow a performance on one instrument to be

played by any other instrument. This capability was extended to the recording of performance

information. It has evolved into a communication pipeline that can link all the equipment used

in music production. It has found acceptance in many related industries such as lighting

control, film editing, and automated audio mixing. It has opened new dimensions for

recording, composition, and live performance, because of supporting real-time access to

interconnected devices.

2.3.4 Sequencer

MIDI-based recorders or composition programs are known as sequencers. With the aid of

sequencers, computers have the ability to intercept and record musical events in the form of

MIDI messages. The recorded data can be manipulated in ways that were impossible using

standard audio tape recorders. Transposition (pitch shift), copying, and rearranging can be

accomplished with software alone. The errors made during the recording process can be

corrected without having to do the recording again.

A sequencer records data digitally. It allows MIDI data generated by a controller to be

recorded onto separate tracks, analogous to an audio recorder. Once recorded, the MIDI tracks

can be 'played back' by the sequencer. The sequencer transmits the recorded MIDI

performance data to one or more synthesizers. The synthesizers respond to the MIDI messages

as they would in a controller-synthesizer interaction.

10

Chapter 2 RHOCMN

In the modern context, a sequencer might be visualized as being much like an audio tape

recorder. Facilities such as fast-forward, rewind and tracking can be effected from within the

sequencer. Some sequencers are built into keyboard instruments while others come in the

form of a separate piece of hardware. Hardware s~q~encers are dedicated devices that record

and play back performance-related MIDI messages. The major difference between an audio

tape recorder and a sequencer is that the tape records the sounds of a performance, a

sequencer records the events in a performance. A MIDI sequencer not only permits the editing

of performance data but it also allows the manipulation of the entire compositions.

2.3.5 MIDI patch bays

It is necessary to mention MIDI patch bays since this work is centred around developing a

system that adapts the functionality of a MIDI patch bay. Interconnecting all devices fitted

with the MIDI interface are MIDI interconnects. These interconnects allow for the routing of

MIDI control data between the devices. These interconnects can be directed to a MIDI patch

bay.

MIDI patch bays allow the user to control the routing of MIDI control data between devices.

Similar to audio patch bays, MIDI patch bays originally required the user to make the patch

physically. MIDI patch bays whose functionality can be accessed by using MIDI are now

available [Oppenheimer, 1991].

MIDI patch bays offer features such as MIDI merging, filtering, transformations _ and

transposing. They also can be used as MIDI thru boxes. MIDI merging is a process by which

the messages on two or more MIDI links are merged into one. MIDI transformation is the

process by which MIDI messages passing through the patch bay are altered in a manner

specified by the user. MIDI filtering allows for the removal of MIDI events from a MIDI

link. MIDI transposing permits the pitch of MIDI note information to be altered.

2.3.6 Problems with MIDI

There are problems associated with MIDI. Firstly, MIDI is slow, it does not have the

bandwidth to handle large complex setups and MIDI cables are restricted to 30 metres in

length. However, the problem of bandwidth may be caused by a poor implementation within

a particular device [Buxton, 1987]. It may also arise when there are several devices being

11

Chapter 2 RHOCMN

controlled by a computer or a sequencer. This could be alleviated by having multiple ports

on the sequencer. The amount of data to be communicated to the devices may saturate the

channel capacity of MIDI. This problem is further dis'cussed by Dimuzio in his article on real­

time control of several devices [Dimuzio, 1990(The speed problem can occur because of

propagation delay, where several devices are 'daisy chained' together. Daisy chaining refers

to several devices being connected to one another using the MIDI THRU feature.

Secondly, MIDI ports are unidirectional. If a device has to send and receive MIDI data, then

it must have two MIDI cables connected to it: one incoming, another outgoing. The hardware

communication links lead to a cluttered hardware configuration.

One of the motivations for the MIDINet system discussed in this thesis is to solve the above

mentioned problems.

2.4 The Rhodes Computer Music Network (RHOCMN)

As mentioned in the introduction, the motivation behind RHOCMN is to effect sharing of

music studio devices using computers and networks. A network has been constructed to allow

the sharing of devices in a studio. The network provides several workstation nodes. Each node

enables access to a shared studio, with a view to improving resource utilization [Foss, 1990].

The objective of the music network is to communicate several media found within a music

studio to the nodes. The media include MIDI, SMPTE and audio. The information that is sent

across relate to both control and performance aspects of composition. A real time response

is required in communicating most of the media.

The nodes allow the booking of resources such as tape decks and synthesizers. A user is also

able to do MIDI patching, and audio patching and mixing of the inputs and outputs from

these resources. Mixing can be automated. A MIDI-based sequencer can be used at the

workstation. Thus, users can share the resources of a common studio. The workstation node

provides mixing and channel selection capabilities, which normally have to be done. nhands

onn in the studio. The workstation node allows for two-way MIDI communication between

any booked music resources.

12

Chapter 2 RHOCMN

2.4.1 Hardware layout

The hardware configuration of the initial network is' shown in Figure 2.2. Ethernet connects
.: .

the workstations and the server computers. Booking, patching and tape control information

is transmitted over Ethernet from the workstations to the server. The server has direct control

over the audio and MIDI patch bays, and over the multitrack tape. Both the audio and MIDI

patch bays were custom-built for the network project.

2.4.1 Audio patch bay

M1Dldlla

Audio

E1I1Il11lOl

Main Studio

.~ .

............. ~.MJDI_ .. L., ...
• :"Tj. • .. :

.' ,"' 7 1 .,'? ~
, ' . .

,

~ '...' .
Workstation ~'-e I· : ~

M;;.~~· / ~ :;> ... ~ ~

SynttI \ •.• ~ynth L.......---7liIIii •. '<........ . ~ .
................. ~ :::~

Figure 2.2 Multi-user studio

The audio patch bay allows the interconnections between the audio devices. It also allows for

mixing of signals at patch nodes and volume control at these nodes. It enables the user to

control the routing of audio signals between audio generators, modifiers and recorders. An

audio patch bay has 16 inputs and 16 outputs. It can be extended to increase the number of

In and Outs. It has a pool of nodes assigned to patch points by an embedded processor. The

audio patch bay is MIDI controllable, patching being performed by the server.

A star configuration is used for transmitting audio from the audio patch bay to the

13

Chapter 2 RHOCMN

workstations. Two lines transmit audio from the audio patch bay to a workstation and from

the workstation to a patch bay. Further information on this patch bay can be found in [Wilks,

1994].

2.4.2 MIDI patch bay

The MIDI patch bay is built as a matrix of patch points. Patching within the~MIDI patch bay

is performed by an on-board processor. The MIDI patch bay allows the user to control the

routing of MIDI control data between devices and workstations. It can also be extended to

provide more MIDI Ins and Outs.

A star configuration is used for transmitting MIDI from the MIDI patch bay to the

workstations and MIDI devices. Two lines transmit MIDI from the MIDI patch bay to a

workstation and from the workstation to the patch bay. Further information can be found in

[Wilks, 1994].

2.4.3 Workstation MIDI Sequencer and MIDI controller

The workstation can be configured to have the MIDI sequencer software on the same

computer as the workstation network software. Alternatively, the MIDI sequencer can be

independent of the workstation network computer. This permits any commercial MIDI

sequencer to be used at the workstation. This is an advantage to the users as they can use

sequencers of their own choice.

Each workstation has its own MIDI controller which allows the user to record MIDI data

using the MIDI sequencer in the normal manner. A MIDI controller, within a MIDI based

computer music studio, is a device capable of generating MIDI events for the control of

devices fitted with the MIDI interface. The MIDI controller may combine a synthesizer to

provide the user easy access to voices. These voices can be used for the initial development

of compositions. The recorded MIDI data can then be broadcast to all booked devices.

2.5 Problems with MIDI in RHOCMN

RHOCMN is growing into a multi-workstation environment and additional devices are being

incorporated into the system. When several devices are being controlled by a computer or a

14

Chapter 2 RHOCMN

sequencer, a problem of bandwidth may arise. This is exactly the same problem discussed for

the single user studio situation. In the case of the network, only one MIDI link exists to carry

data for the control of all the devices booked by a user. The amount of data to be
.: .

communicated to these devices may saturate the channel capacity of MIDI.

A star configuration is used for transmitting MIDI from the MIDI patch bay to the

workstations and MIDI devices. Two lines transmit MIDI from the MIDt" palch bay to a

workstation and from the workstation to the patch bay. The hardware configuration becomes

complex.

MIDI cables are restricted to fifteen metres in length. This imposes constraints on remote

access to the studio. Workstations must be within 15 metres of the main studio. Some

manufacturers have provided RS422 or fibre optic links which extend the carrying length of

MIDI [Lone Wolf, 1989]. They are typically expensive solutions and do not solve the

configuration problem.

2.6 Attempts to solve MIDI problems

In an attempt to solve the above mentioned problems, the concept of a MIDINet unit was

introduced. A MIDINet unit is an IBM PC with custom-built MIDI interface cards. The

MIDINet units are connected via Ethernet. They have In and Out ports to which MIDI

devices connect. A MIDINet unit provides an interface between MIDI devices and the

network. The MIDI interface is effectively distributed over the network. Messages from- any

source device(s) on any unit are routed to any destination device(s) on any unit. These

routings between devices can be set up via software interfaces on the MIDINet units, or by

sending routing messages over the Ethernet according to the MIDINet protocol.

The concept of transmitting MIDI over a network is not new. Buxton in his paper introduces

the concept of a MIDI server [Buxton, 1987]. The MIDI server is a node on a LAN which

serves one or more MIDI devices. The MIDI server is able to communicate with the LAN,

and it can also communicate with the MIDI world. The introduction of MIDI servers into a

LAN permits the communication of MIDI data across a network.

The problem with Buxton's proposal is that most LANs today have communication protocols

that do not support the real time communication of data. However, one company, Lone Wolf,

15

Chapter 2 RHOCMN

devised a protocol (The Medialink: Protocol) that gives the highest priority to messages which

need to be communicated in real time [Westfall, 1989]. The MediaLink: protocol is designed

for high speed fiber optic networks optimized for real-time applications such as MIDI and
.: ".

SMPTE (Society of Motion Picture and Television Engineers). Analogous to Buxton's MIDI

server, medialink uses the MIDITap unit to interface with MIDI devices. It is designed to

interconnect large arrays of electronic musical instruments and other devices. The MIDITap

is a single rack unit featuring four pairs of MIDI In and Out ports, a pair ofl1ber optic ports

and ~ RS232/422 computer port [Lone Wolf, 1990] [IMA, 1989a]. MIDI messages can be

routed from any MIDI in, on any MIDITap unit, to any MIDI out, on any MIDITap unit. A

MIDITap unit provides a bridge between MIDI and MediaLink protocol by accepting MIDI

messages sent to any In port in the system, converting them to MediaLink messages.

Unfortunately, MIDITap units could not be used in RHOCMN. This was due to the lack of

IBM PC cards which implement the Medialink protocol, and meant that server control over

the MIDITap units could not be achieved. This inspired the idea to develop MIDINet units

whose control could be effected from the server in RHOCMN.

ArcoNet (Artist's Computer Network) is another proposal for a LAN which provides real time

communication of MIDI data [Allik, 1990]. The motivation behind ArcoNet was to provide

a standard network for real-time communication between devices used in the performing and

recording arts. It was not supposed to be restricted to musical equipment alone. The network

requires specialized hardware that forms an interface between the devices and the network

medium. There has been no implementation of ArcoNet.

ZIPI is a recent network protocol that was proposed for electronic musical devices [McMillen,

1994]. Its network specification defines a collection of protocols that allow musical

instruments, computers and other similar devices to communicate. The architecture provides

for a deterministic, low-cost, efficient and low latency network. ZIPI contains several

application layer protocols such as the Music Parameter Description Language (MPDL) for

musical control and the MIDI protocol. MPDL forms an interface between the controller and

other devices. MPDL allows for editing of the control messages. There is a possibility of

defining other application layer protocols such as studio automation, lighting and other media.

Once again, there is no available implementation of ZIPI which would allow its use in the

music network.

16

Chapter 2 RHOCMN

Fober has also recently proposed a way to transmit real-time musical data flow on Ethernet

and described an Apple-Mac based implementation of it [Fober, 1994]. The implementation

is based on the software architecture of MIDIShare: MIDIShare is a real-time multi-tasking

MIDI operating system. The motivation behind Fober's proposal is to extend the

communication capabilities of musical applications, allowing them to share remote resources

(hardware and software). This is achieved through overcoming the non-deterministic nature

of Ethernet and improving the efficiency of Ethernet when small size packets Bre transmitted

frequ~ntly. The implementation is similar to the MIDINet system in several aspects. The

MIDINet system also utilises Ethernet, and implements a protocol above it to overcome its

non-deterministic nature. Analogous to MIDIShare, the MIDINet system employs the PC-Xinu

multi-tasking operating system. PC-Xinu is modified to include MIDI drivers (refer to section

4.3).

The remainder of this thesis describes the concept and development of a MIDINet unit.

Chapter 3 describes the MIDINet system requirements specification and the facilities it

provides the user. Chapter 4 gives a detailed description of how the MIDINet system was

implemented. Chapter 5 depicts the analysis that was followed to study the performance of

the MIDINet system, before and after it was implemented. Chapter 6 describes the Netlink

protocol, designed to overcome the nondeterministic nature of Ethernet.

17

Chapter 3 MIDINet Concept

The MIDINet Concept

3.1 Introduction

In the previous chapter, problems related to MIDI in RHOCMN were discussed. It was shown

that RHOCMN is growing into a multi-workstation environment and additional devices are

being incorporated into the system. There is a single MIDI cable which carries MIDI to the

main studio. As a result there are only 16 channels available. The problem of limited

bandwidth may arise when several devices are being controlled by a computer. There may be

large amounts of data to be communicated that would saturate the capacity of MIDI cables.

It was also shown that a star configuration is used for transmitting MIDI from the MIDI patch

bay to the workstations and MIDI devices. Each workstation is connected to the MIDI patch

bay through two MIDI cables. Consequently, the hardware configuration is complex. A further

complicating factor is that MIDI cables are restricted to fifteen metres in length. Remote

access to the studio is restricted.

In this chapter the MIDINet concept is described. The goal of a MIDINet system is to

overcome the MIDI problems in RHOCMN. The MIDINet system can also be used in a

typical single user studio. It allows the user to control the routing of MIDI control data

between devices. Features such as MIDI merging, filtering, transformations and transposing

can be easily effected within the system. A MIDINet unit can also be used as a MIDI THRU

box, passing identical data to multiple devices.

The MIDINet system allows the user to look at the collection of his MIDI devices as a single,

unified system. It comprises several units connected via Ethernet.

As was indicated in the previous chapter, there have been several attempts to solve MIDI

routing and transmission problems. Some of these attempts are expensive to implement. One

of the advantages of the MIDINet approach is that standard off-the-shelf components are used

to effect transmission and routing of MIDI.

18

Chapter 3 MIDINet Concept

3.2 What is a MIDINet unit?

A MIDINet unit is an IBM PC configured with h.vo proprietary MIDI cards. Each card has

two Ins and two Outs. A MIDINet unit can be configured with more than two cards. Section

5.4.3 provides a more complete analysis of this problem with guidelines regarding how many

cards a unit should be configured with.

-
Any MIDI-based resources can have their MIDI Ins and Outs connected to MIDI Net units as

shown in Figure 3.1. A MIDINet unit accepts data from a source device and performs

routings. Any device connected to a MIDINet unit can transmit MIDI data to any other device

connected to a MIDINet unit.

MidjNet~~~ ~~ j.;y. I
• • .* : . : :-
: :,' Dt1Ml1ftI Ift)u

· . ; · . .
: : I .-

~~.: :~"~ ~~

MidiN&t unit

~
. : -......... ~.: ... :.::.:::::"

. . ·· ··.,·· .. -l~ai -.. It\.~

To other MIDINet Units

Figure 3.1 MIDINet system

Sequencer

MIDI lines

Ethernet

The MIDINet units are connected to each other via Ethernet thus forming a network of units.

The MIDI Net unit software runs under a modified version of the multitasking Xinu operating

system [Comer, 1888b] [Watkins, 1990]. Like any other operating system, PC-Xinu's essence

lies in services it provides to user programs. An important feature of PC-Xinu for this project

19

Chapter 3 MIDINet Concept

is its multitasking capabilities. A user can create processes that could run concurrently. This

feature is lacking in DOS and was the major motivating factor in choosing PC-Xinu. The PC-
.: .

Xinu operating system was enhanced with a text-based window manager and will run on IBM

PC AT's in lOOk of memory [Rehmet, 1992].

Figure 3.2 shows how MIDINet units can be incorporated into RHOCMN~ One or more

MIDINet units provide the functionality of a MIDI patch bay. All MIDI devices are connected

to MIDINet units. Each device is accessible from any workstation. Routing performed through

a patch bay can now be done via MIDINet units. Patching capabilities are effected within the

MIDINet units. Any device on any MIDINet unit can be 'patched' to any device on the same

or another MIDINet unit. Devices can route MIDI data down the Ethernet through MIDINet

units.

MJDJdaIa

Audio

EIIlIllm81

Effects

D Main S1udio

server

Mixllr

............ ~
Figure 3.2 MIDINet system incorporated into RaoCMN

3.3 Configuring a MIDINet system.

Each MIDI device is connected to an In or an Out port on a MIDINet unit. These devices

need to be identified to the system and configured. The MIDINet system is menu driven and

20

Chapter 3 MIDINet Concept

this identification can be done via a menu. The identification includes a MIDINet ID, a Port

1!6 a Channel number, and a symbolic name.

The MIDINet ID is a number between 1 and 10 inclusive. There had to be a limit as there

is a limit to the number of MIDINet units that can be connected together. The limit is

determined from the simulation results. The results show that as more devices ~are added to

the network, the throughput declines and the response time increases (discussed in more detail

in chapter 5). The MIDINet ID uniquely identifies a particular MIDINet unit in the whole

system. The system has no way of checking if two or more units have the same MIDINet IDs.

It is the responsibility of the user who is carrying out the configuration process to maintain

uniqueness in identifying the units. Another option was to use network physical addresses as

a form of identification, as these addresses are unique in the case of Ethernet. However, it is

easier to store and manipulate numbers rather than strings of digits. Hence, numbered IDs

were preferred over physical addresses. More importantly, this makes the MIDINet system

portable to other network topologies such as token ring.

The Port ID is a number between 1 and 4 inclusive. Each MIDINet unit has 4 Ins and 4 Outs.

The manner in which In and Out ports are identified is similar. Both types are identified by

numbers in the range of 1 to 4. Differentiation is maintained at a user level. From the menu,

a user is able to configure a destination device (any device connected to an Out port) or a

source device (any device connected to an In port).

The symbolic name is a-string of not more than 10 characters. This is a name given to a

device by the user who configures it. Symbolic names are assigned by users. Different users

may choose to assign different names for the same device.

A channel number is a number between 1 and 16. Channels are used in MIDI to select

devices or device parts. The channel number entered when configuring a device must be the

same as the receive channel number set on the physical device being configured. OthelWise,

this device will not respond to messages sent to it.

A combination of a MIDINet ID, Port ID, and a channel number form a unique identification

for a particular device within the system. In the case of multi-part receivers connected to an

Out port, each part may be assigned a different channel number. MIDINet IDs and Port IDs

for these parts will be the same. The same concept applies to sequencers connected to In

21

Chapter 3 MIDINet Concept

ports, different sequencer output channels are assigned symbolic names. MIDINet IDs and

Port IDs will be the same for each output channel. Before a MIDI message is transmitted to

an Out port, the channel number is mapped to the channel number set on the receiving device.

M-Id

"

P-Id II S-Name C#

#1 #1 Dx7 6

#1 #2 Casio 2

... .; .. ; .. .;

\1.-Jd

P-Id
S-Name
C#

. . .
: : : · . · . · . · . · . : :

MIDlNet IdentificatIOn number
Port identification number
Device's symbolic name
Channel number

Figure 3.3 Configuration information for a device

3.3.1 Configuration

-
The user must configure every device in the entire MIDINet system. The user captures

particular information for every device that is connected to any port on any MIDINet unit.

The information includes the MIDINet unit ID, Port ID and the device's symbolic name. The

device being configured need not be local to the unit being used for configuration (see Figure

3.3).

Four types of devices exist, namely, multi-channel transmitters, single channel transmitters,

single-channel receivers and multi-channel receivers. For multi-channel transmitters,' which

are normally sequencers, channel numbers are assigned symbolic names and are treated as

independent devices within the system (fig 3.4). The information related to these devices is

sent to other units to update their tables or lists.

Multi channel receivers usually have 'parts' associated with their channels. These parts are

22

Chapter 3 MIDINet Concept

M-Id II P-Id
II

S-Name C#

#1 #2 Voyetra 1 1

#1 #2 Voyetra 2 2

. '11 •• ,. •• '1

\Il-ld
P-Id
S-Name
C#

. . .
: : :

MIDINet IdentificatIOn number
Port identification number
Device's symbolic name
Channel number

Figure 3.4 Configuration Information for a multi-channel transmitter

1?====M=-=I=d==~IIF====P=-I=d====~IIF=====S-=N=a=m=e====~====C=#==~
#1 #2 Dll0 Part 1 1

#1 #2 D110 Part 2 2

...

··T···r··r············

\Il-IU

P-Id
S-Name
C#

: :: ::
M lNet IdentificatIOn number
Port identification number
Device's symbolic name
Channel number

Figure 3.5 Configuration Information for a multi-channel receiver

assigned symbolic names and are treated as independent devices within the system (See

Figure 3.5). The MIDINet IDs and Port IDs of the various parts will be the same, since a

multi-part device only has a single MIDI in and single MIDI out.

Configuration for single channel transmitters and receivers is the same. They are assigned a

23

Chapter 3 MIDINet Concept

MIDINet ID, Port ID, symbolic name and the channel number each device is set to transmit

or receive on. It should be pointed out that sequencers can transmit to multiple ports. A
.: .

sequencer can be connected to more than one port on a MIDINet system. These ports need

not be on the same MIDINet unit.

3.3.2 Connection of devices

-
After configuring all the devices, a user can establish connections between source and

destination devices. A user pulls down a list of source devices, selects a source device, then

M-Id

\'I-ltl
P-Id
S-Name
C#

#1

#1

#3

II

Device List

P-Id

"

S-Name

#2 D110 Part 1

#3 DX7

#4 Voyetra 3

MIl} lNet IdentificatIOn number
Port identification number
Device's symbolic name
Channel number

Figure 3.6 SourceIDestination device list

C#

1

2

2

pulls down a list of destination devices and selects a destination device. A typical pull down

menu of source devices is shown in figure 3.6. The lists for source and destination devices

are similar. Figure 3.7 shows a list of connections.

A connection is a path for MIDI messages between a source(s) and destination(s) devices. The

source and the destination devices can be on different MIDINet units. A user can establish

new connections or break already existing connections. The user can choose to connect

several sources to a single destination (merging) and connect a single source to several

destinations.

24

Chapter 3 MIDINet Concept

Connection Table at application level

Source Devices Destination Devices

1 M·ID " P·ID II S·Name 1001 M·Id I~I S·Name C#
r - -

#2 #2 Voyetra 1 2 #1 #2 Casio 1

#2 #2 Voyetra 2 3 #1 #3 DX 110 2

..

..................... i i u ••••••••••••••••••• ~ •••••••••••••••••

Vl-Id
P·Id
S·Name
C#

MIDINet IdentificatIOn number
Port identification number
Device's symbolic name
Channel number

Figure 3.7 Connection Table

3.4 How the MIDINet system operates

· . · . · . · . · . · . · .

At startup, a MIDINet unit (client) broadcasts a startup request to other units in the MIDINet

system and then waits. If there is no response, it tries three times. If there is still no respqn,se

after three attempts, then the unit assumes that it is the only unit running. On the other hand,

any running unit (server) will respond to the request and will send an acknowledge message.

At this stage, a communication link has been established between a client and a server. The

client will consider the first response and ignore others. The client will send a message to the

server to be loaded with configuration information. This message is sent specifically to the

server. The server will respond by loading any configuration information. If there is no

configuration information, that is, no devices have been configured and no connections have

been established, then the server will ignore the request and the client will time out. The user

can then configure devices and establish connections on this new unit.

MIDI bytes entering the In port of any unit are parsed. There are two types of MIDI bytes

called status, and data bytes. A status byte describes the nature of the MIDI messages being

sent. This is the first byte sent by a MIDI instrument when an action occurs. Data bytes

25

Chapter 3 MIDINet Concept

follow the status bytes and indicate the actual values of the event. A status byte is followed

by one or more data bytes depending on the type of information being sent. For a more in-
.,;: .

depth description of MIDI bytes refer to [Rona, 1987].

The MIDI parser forms messages from these bytes. MIDI messages can be grouped into

several groups and subgroups:

1) MIDI channel messages.

a) MIDI channel voice messages.

b) MIDI channel mode messages.

2) MIDI system messages.

a) MIDI system common messages.

b) MIDI system real time messages.

c) MID I exclusive messages.

MIDI channel Messages are the most commonly used messages in the communication

standard. The status byte in all MIDI channel messages contains the MIDI channel number.

It is this channel number that is extracted from the MIDI message for identifying its source.

The destination for a message is determined from the connections table. The message is

identified by the MIDINet ID, port ID and channel number on which the device is

transmitting. If the destination device is local, then the message is sent through an appropriate

out port. If the destination device(s) is not local, then the message is packed into a packet and

broadcast to other MIDINet units. The message is sent with the particulars of the source

device: MIDINet ID, Port ID and Channel Number.

When a MIDI message is received by a unit from the network, again the unit determines its

destination from the connection table. If the message is destined to a non-local device, then

the unit discards the message. This is possible since all units receive the same message.

If a unit determines that the message is destined for one of its local devices, then the message

has to go through some processing; the channel number on the MIDI message is mapped to

the channel number configured on the destination device. This is the stage where

modifications such as filtering and transposition can be effected.

26

Chapter 3 MIDINet Concept

3.5 MIDINet unit in relation to other systems

In order to configure devices connected to MIDINei units and establish connections between

these devices, a non-MIDINet unit may be used. A non-MIDINet unit has to send a message

that conforms to the MIDINet protocol. This feature enables the MIDINet system to be

incorporated into RHOCMN. A user could establish and break: connections from a workstation

if it had suitable software. However, any foreign device in a MIDINet system must conform

completely to the MIDINet protocol. It must update the configuration and connection

information correctly.

Permitting foreign devices to update configuration and connection information overcomes the

problem with Lone WolfMIDITap discussed in the previous chapter (section 2.6). Any device

configured with an Ethernet card can communicate with the MIDINet system, if it adheres

to the MIDINet protocol.

3.6 The advantages of the MIDINet system to the Rhodes Network

One of the reasons why LANs are becoming increasingly popular is that they permit personal

workstations to communicate. They permit users to share expensive resources that are

typically attached to dedicated processors on a network. The MIDINet system also offers the

ability to share MIDI devices among users.

MIDI devices are connected to the network through MIDINet units. The MIDINet unit can

replace the conventional computer-MIDI interface. The workstation can be set up to use the

IAN interface for transmitting MIDI data. Under this architecture, the MIDI interface is

distributed over the network.

3.6.1 MIDI patch bays

In the main studio, a star configuration is currently used for transmitting MIDI from the MIDI

patch bay to the workstations and MIDI devices. As previously mentioned, two lines transmit

MIDI from the MIDI patch bay to a workstation and from the workstation to the patch bay.

The hardware communications links lead to a complex hardware configuration.

The MIDINet unit provides the functionality of the MIDI patch bay as shown in figure 3.2.

27

Chapter 3 MIDINet Concept

Each device is independently connected to a unit. The star configuration is dissolved, which

leads to reduced wiring complexity. Routing is performed via the network. If more, devices

are required, then additional units are incorporated "into the system.

Ethernet LANs can extend to 2.5 km. The enhanced system permits users outside the studio

to have more distant access to MIDI devices in the main studio.

3.6.2 Channelisation

Most MIDI synthesizers provide a way of selecting the channel numbers on which they will

send and receive MIDI data. In RHOCMN, the selVer sends system exclusive messages to

MIDI synthesizers to select the channel number on which they should send and receive MIDI

data. This means that manufacturer specific information must be kept in the system. When

a new MIDI device is installed in the studio, the selVer has to be loaded with the device's

system exclusive message type for changing channels.

Each device on any MIDINet unit is uniquely identified. It is immaterial whether there is

more than one device using the same channel number. Any MIDI message transmitted bears

the source device's identification. Hence, the message is routed to connected destination

device(s) only, not broadcast as it is in the original system. Channel mapping occurs at the

destination. The selVer is not required to send system exclusive messages to select channel

numbers.

3.6.3 Other advantages

In a typical single user studio, the MIDINet system offers a MIDI thru facility, MIDI merging

and channelization. Merging is achieved by creating a connection between more than one

source device and a single destination. The channelization feature has been described in

section 3.6.2 above.

In conclusion, a MIDINet LAN is a high-speed network capable of distributing MIDI

information in a complex system. It offers the advantages of bidirectionality and greater

bandwidth. A potential problem is the non-deterministic nature of Ethernet. This will be

explored in the following chapters.

28

Chapter 4 Implementation

Implementation of the MIDINet System

4.1 Introduction

This <:.hapter provides details of how the MIDINet system was implemented. In modelling the

MIDINet system, the Ward and Mellor Design tools were adopted [Ward, 1988a,b,c]. The

Ward and Mellor Design tools are real-time systems design tools. They model the complex

event capturing and device control required in a real-time system.

PC-Xinu, the operating system under which MIDINet system was implemented is introduced.

PC-Xinu is a small operating system which supports preemptive multitasking. User processes

can be prioritized. It supports a wide selection of interprocess communication facilities. It runs

on IBM PC or compatible machines and resides on top of MS-DOS.

Serial cards were adapted to provide MIDI interfaces to the MIDINet units (MUART -

MIDlJUniversa1 Asynchronous Reciever/Transmitter). These cards were built for the purpose

of this project. The cards are built using the INS8250 chip. The INS8250 is a general purpose

Universal Asynchronous Receiver/Transmitter. These cards are another factor contributing to

the cost effectiveness of the MIDINet units. PC-Xinu was modified to add drivers for the

MUART and Ethernet devices.

4.2 Hardware Configuration of a MIDINet system

Each MIDINet unit is an IBM PC configured with two proprietary MIDI cards. Each card has

two Ins and two Outs. Any MIDI-based resources have their MIDI Ins and Outs connected

to the MIDINet units. The MIDINet units are connected to each other via Ethernet, to form

a network.

4.2.1 The MIDI card (MUART)

As already mentioned, the MUART cards are modified serial cards. The idea was to build

non-intelligent and cheap cards. Each card contains two INS8250 chips. The INS8250 is a

29

Chapter 4 Implementation

general purpose serial I/O chip. The chip is manufactured using NMOS technology and

packaged as a 40-pin dual in-line package (DIP) arid uses a single +5V power supply. All

input and output signals are TTL-compatible [Kane, 1978]. Each chip has a receive and

transmit pin. In order to avoid having several cards plugged into a PC, these cards were built

in such a way that each would provide two Ins and two Outs, hence, the need for two chips

on one card.

4.2.1.1 Interrupts on the PC

Data transfer between the CPU and peripheral devices is accomplished in various ways.

Frequently, both software and hardware interrupt techniques are involved. In the IBM PC,

an interrupt controller chip manages interrupts [Holt, 1985]. This chip receives interrupt

requests from peripherals, examines their priorities, and sends an interrupt request signal to

the processor. When an interrupt acknowledgement is received from the CPU, the controller

transmits a code to the processor via the data bus. This code is used to provide a vector

address mapping to a routine in memory. The routine is designed to perform the service

required by the device. During initialization, the address of an interrupt service routine should

be installed in the vector, so that it can be called when an interrupt occurs.

4.2.1.2 INS8250 Addressable locations

The INS8250 has only a few control signals associated with its serial data input and oUfput.

It makes extensive use of internal registers. Most serial I/O devices commonly output a

control signal to identify parallel data being transferred from the Transmit buffer to the

Transmit register. Another control signal normally identifies data being transferred from the

Receive register to the Receive buffer. The INS8250 uses a different mechanism. It uses

Status register bit settings to indicate these operations.

The INS8250 has ten addressable locations. Seven of them are read/write locations. The

receive buffer and the Interrupt ID register are read only locations, while the Transmit buffer

is a write-only location. The device is accessed as eight I/O ports or eight memory locations.

The Address Bus can be used in many ways to select INS8250 locations. Read and write

control signals on the CPU interface to the INS8250 have been designed to make this device

interface easily with any microprocessor. Figure 4.1 shows the ten addressable locations of

an INS8250 chip.

30

Chapter 4

#define TX DATA 1
#define RX-DATA-l
#define DIV LSB-l
#define DIV-MSB-l
#define INT-ENABLE 1
#define INT-IDENT 1
#define LINE CTL 1
#define MODEM CTL 1
#define LINE STATUS 1
#define MODEM_STATUS_l

Ox3E8

(MIDI_BASE_PORT_l + OxOO) /* Transmit data */
(MIDI BASE PORT 1 + OxOO) /* Receive data */
(MIDI-BASE-PORT-l + OxOO) /* Baud Rate Divisor lsb */
(MIDI=BASE=PORT=l + OxOl) /* Baud Rate Divisor msb */
(MIDI BASE PORT 1 + OxOl) /* Interrupt Enable */
(MIDI=BASE=PORT=l + Ox02) /* Interrupt ID */
(MIDI_BASE_PORT_l + Ox03) /* Line Control */
(MIDI_BASE_PORT_l + Ox04) /* Modem control */
(MIDI_BASE_PORT_l + Ox05) /* Line Status */
(MIDI_BASE_PORT_l + Ox06) /* Modem Status */

Figure 4.1 INS8250 registers and addresses

Implementation

The Transmit and Receive buffers share a single address. The Transmit buffer is a write-only

location and the Receive buffer is a read-only location; therefore, conflicts do not arise. In

order to identify Transmit and receive operations, a control code has to be written into the

Line Control register.

4.2.1.3 Operations

The INS8250 can be used for transmitting only, receiving only, transmitting and receiving

alternatively, or transmitting and receiving in parallel. Before any transmit or receive

operation, Interrupt Enable, Line Control, Modem Control, and Divisor registers should be

set. The INS8250 has no enable and disable logic for serial data transfer.

The Modem handshaking protocol that may be associated with any data transfer must be

handled under program control by sending appropriate data to the Modem Control register,

and by reading back data from Modem Status register. Once the required protocol exchange

has been established, the program monitoring the INS8250 can attend to other affairs.

Separate routines will handle serial data output or serial data input, reading from the Line

Status register and the Modem Status register to determine conditions within the INS8250 -

and therefore the required response.

If interrupt logic is not used, then the program which monitors the INS8250 must poll the

device by reading the contents of the interrupt ID register. If bit 0 of this register is 0, then

further service is required; if bit 0 is 1, then no service is required.

31

Chapter 4 Implementation

4.3 PC-Xinu

.<

PC-Xinu is a multitasking operating system developed initially by Douglas Comer and

modified for the IBM PC by Tim Fossum [Comer, 1988]. It is small, and yet relatively

complex. It has a mechanism of prioritized processes and has a wide selection of interprocess

communication facilities such as semaphores and message passing. Its kerner consists of a set

of routines to implement operating system services. A user program can bind to these routines

to perform various tasks.

PC-Xinu programs can access the MS-DOS file system, making it easy to exchange data

between ordinary MS-DOS programs and PC-XINU programs. New device drivers can easily

be added to the operating system for new devices. These facts make PC-Xinu an attractive

option for the writing of real-time software programs on the cheap and popular IBM PC

computers.

PC-DOS, the standard operating system for IBM PCS does not support multitasking. PC-DOS

does not support processes running concurrently or any kind of interprocess communication.

The MIDINet system comprises several independent tasks. Some of these tasks are similar.

For example, processing MIDI from the In ports. Some tasks generate inputs for others, hence

coordination must be maintained between them. Under PC-Xinu, a user can create several

processes carrying out similar or different tasks. Processes are not uniquely associated with

a piece of code; multiple processes can execute the same code simultaneously [Comer, 1988].

At the heart of the system lies the scheduler and the context switching mechanism. These are

responsible for switching the CPU among processes ready to run. Multitasking and the

capability to offer coordination between processes made PC-Xinu a suitable choice for this

project. However, PC-DOS development tools can be used to create PC-Xinu programs.

4.3.1 Process Management and context switching

The backbone of PC-Xinu process management comprises linked lists and the procedures

which manipulate them. These procedures perform such tasks as inserting items into lists,

removing them from the lists and allocating new lists.

The process manager often needs to select the process with the highest priority key from a

list. The linked list routines must be able to maintain lists of processes that have an associated

32

Chapter 4 Implementation

priority. Priority is an integer value assigned to a process.

This priority scheme is suitable for the implementation of the MIDI Net system. Tasks in the

MIDINet system can be assigned varying priorities. For instance, tasks carrying out MIDI

data reading, processing and writing can be assigned high priorities. A process that is carrying

out reading will be assigned the highest priority, since data should not be missed.

Processes use coordination primitives to synchronize their actions and to share resources.

Semaphores are a basic coordination technique in PC-Xinu. Under the MIDINet system,

semaphores are used to coordinate buffered I/O.

Message passing is a form of inter-process communication in which one process requests the

operating system to send data directly to another process. Messages can also provide a means

of process coordination, because the receiver can be delayed until it receives a message.

Unlike semaphores, message passing need not be synchronized. This way, a process need not

know how many messages it will receive, and which process sent the message. A typical

example in the MIDINet system is when an interrupt service routine sends a message to a

process to inform it that data is available on one of the ports. The process can then retrieve

the data.

At any time, the highest priority process eligible for CPU service is executing. For equal

priority processes, rescheduling is in a round robin fashion. The processes are kept in various

lists depending on their states.

Scheduling and context switching are closely related activities that make concurrent execution

possible. Scheduling consists of selecting a process for CPU usage, from the eligible

processes. Context Switching consists of stopping one process and starting another.

4.3.2 Memory management

Memory is an important resource, essential for program execution. The operating system

keeps track of the location and size of available free space, allocating it on demand and

recovering it when a process completes.

PC-Xinu allocates memory dynamically. It keeps track of storage that has been released. At

33

Chapter 4 Implementation

this level, free space is treated as an exhaustible resource-the system simply passes it out

provided requests can be satisfied. The low-level memory manager rejects requests that cannot

be satisfied; mechanisms to prevent processes from using all the free memory or to block

processes until their requests can be satisfied, do not exist. Processes need space for stacks

to hold procedure frames and local variables, and the so-called heap space for other

dynamically allocated variables. The table below shows the storage layout dUring execution.

II
Code data heap stack I free

II

The original version of PC-Xinu was written for a small memory model, where the code of

the operating system kernel and user program are bundled into a single code segment (64k).

In a similar fashion, user and system data are stored in the same data segment. This imposes

a severe restriction on the size of any user programs or kernel extensions. This was one of

the motivations for altering PC-Xinu for the implementation of the MIDINet system [Rebmet,

1992] [Comer, 1987]. This altered PC-Xinu is discussed in section 4.3.5.

4.3.3 Interrupt processing

Hardware interrupts offer a powerful mechanism that provides support for many of the

services the operating system supplies. Without an interrupt mechanism, the operating system

could not guarantee that it would ever regain control once it started executing a user process.

In PC-Xinu, BIOS, the basic input/output routines of DOS, are used to process keyboard,

timer, and clock interrupts. For MUART and Ethernet interrupts, there is no BIOS handling.

4.3.4 Device drivers

The hardware interface to most devices is relatively crude, requiring complex software to

control them. Control is provided by routines called device drivers. The operating system

should employ a fair and safe policy in making the devices available to processes. The users

in their programs refer to the devices by their names, not knowing the machine configuration.

The programs access the services provided by these devices by making system calls. System

calls provide an interface between the operating system and user programs.

34

Chapter 4 Implementation

In PC-Xinu the device switch table, devtab, contains the entire I/O configuration, and is used

when the system is compiled. The information stored in this table includes the I/O primitives
.: "

and interrupt vectors that enable operation of devices. The structure of entries in the devtab

table is shown in figure 4.2.

/*--
* Format of each entry is:
* -
* device number, device name,
* init, open, close,
* read, write, seek,
* getc, putc, cntl,
* port addr, device input vector, device output vector,
* input interrupt routine, output interrupt routine,
* device i/o block, minor device number
*--
*/

Figure 4.2 Structure of entries to the devtab table

A driver can be added to the PC-Xinu operating system without any manual changes being

made to the existing kernel modules. Only the configuration file, pcxcon/, needs to be

changed [Comer, 1988]. A new system configuration can then be generated by running the

config utility, in order to build the modules conf.h and conf.c. These modules contain

configuration declarations and the entries to the device switch table, respectively. MUl\RT

and Ethernet devices had to be added to the operating system, hence they have entries in the

devtab table. This is further explored in section 4.4.

4.3.5 Memory resident Xinu

The original PC-Xinu system is structured in such a way that the system kernel and the user

program are linked together in one executable file. As a result, a PC-Xinu program must have

a copy of the operating system kernel linked to it [Watkins, 1990]. Hence, PC-Xinu programs

become unnecessarily large, and development becomes a tedious process. Any changes or

updates to the system kernel of the original PC-Xinu system require the relinking of user

programs.

These problems formed a motivation to build a memory resident version of PC-Xinu. Under

35

Chapter 4 Implementation

the resident version, user program binaries can be run without modifications when slight

modifications are made to the kernel. Software interrupts are used in order to build an
.~ .

interface between the user program and the PC-Xinu kernel. System calls are uniquely

identified by numbers. Via this number, a proper routine in the kernel can be executed.

Heap

Stack

User code
segments

User data

Stack

Kernel code
segments

Kernel data

- Used fer dylJl/mC:lIl~ IIllcc1ltlld dlllII
R'ccesses . BIlIdCs ere Illlca1ted)J tlilllre!l

- Uaed only whJle thellllllllCl'l/rssJdent kernel 19
bel'll balled !lItO IIIGIOOIY

Figure 4.3 Memory map of large model resident PC-Xinu

Figure 4.3 shows a memory map of the memory resident PC-Xinu system, with an application

program. The memory resident version offers much more space for code and dynamically

allocated data. At initialization, all available memory in the DOS heap is allocated for PC­

Xinu to use. User programs become reasonably small and development is more efficient.

4.3.6 Windowing

The memory resident version of PC-Xinu was extended to provide a windowing interface. It

was styled after MS Windows [Rehmet, 1992]. A fundamental characteristic of this

windowing interface is that it is event driven. This means that when an event such as a mouse

button click occurs, a message is sent to an active window or a window currently receiving

mouse messages. The windowing system provides facilities such as creating menus and scroll

36

Chapter 4 Implementation

bars. Other useful features include controls such as push buttons, which allow a user to make

simple choices between different options, and teX! iditing keys to edit the text.

The event driven approach provides a close link to the event driven style of modelling used

for the MIDINet system. Hence, the MIDINet system could be easily implemented under the

windowing system.

4.3.7 System initialization

When the PC-Xinu system starts, initialization routines are called in order to create the PC­

Xinu operating environment, before the user program is started. In the memory resident

version, at initialization, instead of starting up the initialization code, the memory resident

operating system is loaded into memory. Initialization now only takes place when a user

program is executed. The original initialization code is called via the interrupt mechanism

which is used for the PC-Xinu system calls.

4.4 Added drivers

PC-Xinu device drivers had to be written to provide easy access to MUART and Ethernet

cards. Following the discussion in section 4.3.5, the configuration file pcxcon/was modified

to add drivers for two MUART cards and one Ethernet card.

4.4.1 MUART under Xinu

Like other devices, the details behind MIDI devices or MIDI ports are hidden in the device

drivers. Since two ports are on the same card, they are treated as a single device under

PC-Xinu, that is they are referenced via the same routines. They are distinguished by

parameters.

MIDI devices do not make use of all the PC-Xinu I/O primitives. Only read, write, init and

close are used. Each device has an entry in the device switch table. Each entry in this table

corresponds to a single device; it contains the device name, the addresses of the device driver

routines for that device, the device port and vector addresses, and other information used by

the drivers. Figure 4.4 shows the two entries in the device switch table for the two MIDI

devices.

37

Chapter 4

/ * MUARTA is muarta on MUART * /
37, "muarta",
muartinita,ioerr,muartclosea,
muartreada,muartwritea,ioerr,
ioerr,ioerr,ioerr, ° , MUAVECA , 0,
muartiinta,ioerr,
NULLPTR,O,

/ * MUARTB is muartb on MUART * /
38 ,.."muartb" ,
muartinitb,ioerr,muartcloseb,
muartreadb,muartwriteb,ioerr,
ioerr,ioerr,ioerr,
O,MUAVECB,O,
muartiintb,ioerr,
NULLPTR,O,

Figure 4.4 Maurt entries in the device switch table

Implementation

Like most device drivers, the MIDI driver routines can be partitioned into two sets; the upper­

half and the lower-half. User processes call upper-half routines to read and write bytes. The

two halves of a driver communicate only through the shared buffers. The upper-half routines

enqueue requests for data transfer. Lower-half routines transfer data from buffers to devices

or from devices to buffers (Figure 4.5).

The MUART device has a control block (muartblk). This structure defines the input and

output buffers and the semaphores controlling access to the buffers. A buffer is an array -of

characters with head and tail pointers. The buffers are treated as circular lists.

4.4.1.1 Initializing

At initialization (muartinit), the format of the asynchronous data word is specified by writing

to the Line Control Register. The format specifies the length of the word and the presence of

parity and stop bits. The length of the word is set to 8 bits. There is no stop bit and no parity.

The last bit of the Line Control Register is used to determine addressable locations.

The divisor latches are programmed before communications to give the desired bit rate. The

baud rate is set to match the rate of MIDI, 31.25 kHz.

The Modem Control Register is set. This register controls the interface with the device

38

Chapter 4 Implementation

Figure 4.5 The relationship between the Lower and the upper half
routines of a device driver

connected to the card. The loopback feature for diagnostic testing is enabled. When activated,

the output of the transmitter shift register is fed internally into the receiver shift register, so

that a word written to the transmitter buffer register returns immediately via the rece!~er

buffer register. This can be read and compared with what was written, which provides a way

of verifying the transmit and receive data paths. This method is used to detect the presence

of MUART cards in a MIDINet unit.

Using the MUART's Interrupt Enable register, interrupts are enabled in the MUART card.

The four low-order Interrupt Enable register bits are used to enable or disable interrupts by

priority levels.

The input and output driver semaphores are created. Pointers to I/O buffers are also

initialized.

39

Chapter 4 Implementation

4.4.1.2 MUART - Interrupts and reading

In PC-Xinu, interrupts are first handled by an interrupt dispatcher, which calls the routine that

is designed to perform the selVices required by the device. The interrupt handling routine

(muartiint) sends a message to an input process (muart _iproc), which first clears interrupts

so that data cannot be ovelWritten. The Line Status register of INS8250 is used to determine

the status of the data transfer. Then, the byte is read and interrupts are enabled.

The byte that has been read is pushed into an input buffer. The upper half input routines are

signalled to read data.

Since two ports are selViced by the same routines, when an interrupt occurs, there is no way

of determining which port caused an interrupt. Hence, each time an interrupt occurs, both

ports are polled.

The parameters of the PC-Xinu device read functiml include a buffer and the number of bytes

to be read. However, in the case of the MUART device, bytes are read one at a time. The

parameter that indicates the number of bytes to be read, is used to distinguish between two

ports since they are on the same card. For example, a read instruction is read(.. ,bufJ, x), where

x indicates the port number. Hence, the reading routine is passed 1 or 2 to indicate which port

to poll.

4.4.1.3 Transmission

At the lowest level, transmission is performed by the routine muartwrite. Before data is

transmitted, the status is determined using the Line Status register. If the status permits

transmission of data, then data is transmitted by writing to the transmitter buffer register.

An application writes a byte by specifying write(.. ,bufJ, x) , where x indicates the port

number. To indicate the port to transmit on, the function is passed 1 or 2.

4.4.2 Ethernet

At the lowest level, network communication consists of transferring a copy of data from one

machine to another over a network to which both machines directly connect. Data is

40

Chapter 4 Implementation

transmitted in the form of packets, which could be de~cribed as lIa quantity of data sent across

a packet-switched networkll [Comer, 1987]., .

The packet driver provides the network interface between the medium and the operating

system. It is loaded at the DOS level before the PC-Xinu operating system is run. Packet
r· ~

drivers provide a simple, common programming interface that allows multiple applications

to share a network interface at the data link level [FTP Software, 1989]. The packet driver

provides calls to initiate access to a specific packet type, to end access to it, or to send a

packet. There are packet drivers for specific classes. The class tells what kind of medium the

interface supports, such as Ethernet, Token Ring, and so on. Within a class of medium there

are particular instances of an interface supporting this class such as 3Com and Western

Digital.

Applications which use the packet driver can also run on different network hardware of the

same class without being modified; only a new packet driver need be supplied. So, the

MIDINet system can run on any PC that has an Ethernet interface and for which there is a

packet driver.

Under PC-Xinu, Ethernet device drivers were built to make calls to services provided by the

DOS packet driver. A process writes to the Ethernet device interface to send a packet and

reads from the Ethernet device interface to receive a packet.

In the case of Ethernet, the destination network address is required when writing data. This

makes Ethernet slightly different from other devices. The design followed was to pack the

destination address with the data. The aim was to have the higher level software accept and

deliver packets already in the proper form expected by the packet driver.

The Ethernet device also has an entry in the device switch table of PC-Xinu. The Ethernet

device does not make use of all the PC-Xinu I/O primitives. Figure 4.6 shows the Ethernet

device entry in the table.

Definitions for Ethernet constants and packet format are given in a file ether.h shown in

Figure 4.7. The header of a packet refers to all components of a packet except the data. The

structure eheader describes the format of an Ethernet packet in memory. The packet consists

of a header followed by data for that packet. The format of structure epacket differs from the

41

Chapter 4

/* ETH is eth on ETHERNET */
39, l eth" ,
ethinit,ioerr,ethclose,
ethread,ethwrite,ioerr,
ioerr,ioerr,ioerr,
0,0,0,
ioerr,ioerr,
NULLPTR,O
}; -

Figure 4.6 Ethernet entry in the device switch table

/* ether.h */
/* Ethernet definitions and constants */

Implementation

#define EPADLEN 6 /* number of bytes in physical address */
typedef byte Eaddr[EPADLEN1; /* length of physical address(48 bits) */

struct

};

eheader {
Eaddr e dest;
Eaddr e-src;
byte e~type[21;

/* format of header in ethernet packet */
/* destination host address */
/* source host address */
/* Ethernet packet type */

• struct epacket { /* complete structure of ethernet packet */
struct eheader ep_hdr; /* packet header */
char ep_data[EDLEN]; /* data in packet */

};

/* Ethernet control block descriptions */

struct etblk {

};

Eaddr etpaddr; /* Ethernet physical device address */
byte ptype[2]; /* ethernet packet type */
byte far *rbuff; /* pointer to packet driver read buffer*/
int pkt_len; /* length of the read packet */
int etr_request; /* flag to indicate a read request */
int etrpidj /* id of process reading from ethernet*/
int etwpidj /* id of process writing to ethernet*/
int etrsemj /* mutex for reading from ethernet */
int etwsemj /* mutex for writing to the ethernet*/
int pdintj /* software interrupt for packet driver*/
Bool packet_in_rbuffj /* New packet in buffer? */
class; /* class, type and number relate to */
type; /* hardware interface card */
numberj
handlej /* handle onto packet driver */

Figure 4.7 Contents of ether.h

format of packets transmitted on the Ethernet, because the structure contains neither the

42

Ir.njOler.nentation

Ethernet preamble nor CRC.

Field eytype encodes the packet type, which specifies to the receiver the purpose and format

of the data area. A special comment should be made here about the packet type used. In this

work the type Ox2000 was adopted for music packets, a packet type not already in use by

standard protocols was selected.

Like other devices, Ethernet has a control block defined in the structure etblk. Fields in the

etblk structure define all the data kept by the device driver. There are two semaphores that

provide mutual exclusion among processes reading or writing to the Ethernet; fields etrsem

and etwsem contain the ids of these two semaphores. Once a process calls the upper-half read

routine, it is blocked until a packet arrives.

4.4.2.1 Initializing

At initialization time (ethinit), the initializing routine determines if the DOS packet driver has

been installed. If it has been installed, then initialization continues, otherwise it stops. The

Ethernet device control block is filled, including creating mutual exclusion semaphores etrsem

and etwsem.

Figure 4.8 shows the communication links between drivers. The class, type and number of

the DOS packet driver is determined. The DOS packet driver is passed the address of the

receiving routine and the receiving mode is set. In this case mode 3 is used which means

receive 'broadcast and packets set for this interface only'. The physical address is also

determined.

The input mechanism is initialized; the pointers to the circular buffer are initialized and the

input semaphore isem is created. The semaphore ensures synchronization between the lower

and the upper half input routines.

4.4.2.2 Input routines

The DOS packet driver is passed an address of a routine to call when a packet arrives

(ethdisp). This routine calls another routine, ethrcv. The DOS packet driver makes two calls,

43

Ir.nl'ler.nentation

Ethernet card

Ethernet

Figure 4.8 Communication flow between drivers

the first to obtain a buffer for copying data into, the second to confirm successful copying.

The packet is then stored in a circular buffer by the lower half routine.

The upper half routine, ethread waits on two semaphores; one to ensure mutual exclusion if

several process are reading from this device, etrsem, and the other to ensure synchronization,

lsem.

4.4.2.3 Output routines

At the lowest level there is the ethwpdrv routine which interacts with the DOS packet driver.

It executes the packet driver's transmit function. This routine is called by the upper half

routine, ethwrite. The ethwrite routine sets up the source address component of the packet

header. It also waits on a semaphore to ensure mutual exclusion.

4.4.2.4 Closing the device

When closing the ethernet device the release function is executed. This function breaks the

44

Chapter 4 Implementation

connection between the DOS packet driver and the lower half receiving routine .

. : .

4.5 MIDINet system

In the previous chapter the requirements specification of the MIDINet system was laid out.
~- -

The next step was to go through a structured analysis and design of the system. Structured

design is the art of designing the components of a system and the interrelationship between

those components in the best possible way [Yourdon, 1979]. The design process determines

the major characteristics of the final system, and establishes the upper bounds in performance

and quality that the best implementation can achieve.

4.5.1 Analysis and Design of the system

Ward and Mellor design tools were adopted for the modelling of the system [Ward,

1985a,b,c]. They have their roots in the data flow oriented approach to systems analysis

proposed by DeMarco [DeMarco, 1979] and structured approach of Y ourdon and Constantine

[Y ourdon, 1979].

A real time system development methodology provides modelling tools to model the control

aspects of real time systems. It ensures that the development of a system is well structured

and documented. This has the added advantage that the system is more easily understood by

its users and those wishing to modify it.

The Ward and Mellor development methodology uses symbols for modelling the system. It

also separates the essence of the system from its implementation. The essential model

describes what the system must do in response to events in its environment. This model is

independent of the technology employed. The description of a particular technology used in

realizing the system is called the implementation model. The implementation model is an

elaboration of the essential model.

4.5.1.1 The Essential Model

The essential model consists of two parts, the environmental model and the behavioral model.

The environmental model describes the boundary between the system and its environment,

the interfaces between the two, and the events that occur within the environment to which the

45

Chapter 4 Implementation

system must respond. The behavioral model describes how the system is required to behave

in response to events. These models are accomp~nied by the data dictionary. The data

dictionary gives the descriptions of objects, data flows and the content of these flows (see

appendix 1).

4.5.1.2 The Environmental Model

The environmental model describes the context of the system, that is the interfaces between

the system and its environment. The Context schema describes the boundary between a

system and its environment, and the interfaces between the two [Ward, 1985b].

The context schema for the MIDINet system is shown in Figure 4.9. The notation used is as

follows:

Each box represents a terminator; something outside the system boundary with which

the system interacts.

A circle denotes a transform. In the context schema a single transform denotes the

entire system and its activities.

Inputs and outputs are shown as labelled arrows (flows). A time-continuous flow is

shown with a double-headed arrow, a time-discrete flow is shown with a single-headed

arrow. A broken line with a single headed arrow denotes flows which have no content,

and are either signals or commands. The direction of the arrow indicates the direction

of causality.

The main feature of the environmental model is the specification of the events to which a

system must respond. These external events occur in the system's environment, at a specific

time, and elicit a preplanned response from the system. The external events that occur in the

MIDINet system's environment are given in appendix 1.

The environmental model further describes the information model of a system. Ward and

Mellor's description of the information model or data schema for a system is not particularly

thorough. The description does not reflect the importance of the information model in the

system analysis process. The information model is the foundation upon which the rest of the

system is built. It is the most fundamental and stable part of a system. Consequently, Shlear

and Mellor [Shlear, 1988] tools were adopted in the discussion of information modelling.

46

~- ~--~- -.------~"~.~ .. ,-~ . - -~~~;:";'~-:l~=-==~__ ---=-~

P "- device confia. table

User I Portld

-~ ~ I User

device s~mbolic name device list

channel number

n_reg~ \ source device list

source device lis~

source device
MIDINel System destination device list

dest. device list re
connection list

~
I the system ~.

MIDINel
Unit

to the system

device Infor. to the s~stem

MIDI messa es from a device \.. /.- connect. infor to the system

MIDI
Device -- MIDI message from the system

;\

Figure 4.9 Context Schema for the MIDINet system

-

Chapter 4 Implementation

Shlear and Mellor's approach is to name the objects within the system, list their attributes,

and indicate the relation between these objects .. Refer to [Shlear, 1988] for a formal

description of an object and attributes.

Figure 4.10 shows part of the information model of the MIDINet system. The whole
~

information model is shown in appendix 1. A box shows an object with its attributes.

Attributes preceded by an asterix form an identifier to that object. An identifier is a set of one

or more attributes which uniquely distinguishes each instance of an object. Some attributes

are referential attributes, they are denoted by an (R) at the end. Referential attributes capture

information which ties an instance of one object to an instance of another object. The arrows

indicate the relationship between the objects. Relationships involving only two objects can be

classified into three fundamental forms; one-to-one, one-to-many, and many-to-many. Refer

to [Shlear, 1988] for a formal description of these relationships.

4.5.1.3 The Behavioral Model

The context schema with the external event list and the information model constitute a

detailed model of a system's environment. This does not contain a detailed description of a

system's behaviour. The next step is to describe the response of the system to each event in

the external event list. This is the task of a behavioral model.

The list of events and the response of the system to the events is shown in appendix 1. The

description of the response must include at least:

the most common or most likely response to the event.

alternate responses and the conditions under which they are made.

conditions under which the system will not respond to the event [Ward, 1985b,

p41].

Most of the events in the MIDINet system are associated with the arrival of discrete data, and

the system responds in a similar way for all possible values. Such responses are best modelled

using data transforms. These data transforms make up what is known as the transformation

schema [Ward, 1985b, p46]. The transformation schema models a system as an active entity -

as a network of activities that accept and produce data and control messages. The transforms

receive and produce data and event flows. Figure 4.11a shows part of the MIDINet unit

transformation schema. It shows connection related flows. The complete transformation

48

.- . -.- - ." •.. --- .--.-

IN port Source device

* Midinet Id * Midinet Id
I fonnected to connects

* Port Id / * Port Id r--.
II • Channel 1# v

• Port type
. Symbolic name

. device name (R)

MIDINet Port device

* Midinet Id
~~Iongs to has / * Midinet Id

I-- * Midinet Id
• 1# of IN ports

II "- * Port Id · Port Id

• 1# of OUT ports . Port type · Channel 1#

• device name (R) . symbolic name

• device type.

1

OUT port Destination device

* Midinet Id connected to * Midinet Id
connects * Port Id II L t...... * Port Id II * Channel 1# V

. Port type • Symbolic name

. device name (R)

ystem

MIDI message from Ethern

D source devices

D connections

P21

Process MIDI
Messages from

Ether

D destination
cfC\llroe.

MIDI message from a port

Figure 4.11a Part of the Transformation Schema for the MIDINet system D source devices

D connections

P22

Process MIDI
Messages from

a por

\, MIDI message to an out po~

D destination devices

Ir.nl'ler.nentation

schema is shown in appendix 1.

The notation is similar to the notation used in presenting the context schema except for the

addition of stores. The store notation is used to represent an item or a set that is operated on

by a group of transformations but whose basic character remains unchanged. The flow

connecting the store and the transformation is not labelled, it represents the avail1bility of the

store to the transformation.

The approach followed to create the transformations was to independently transform each

flow on the context schema. At this stage the transformation schema has each transformation

at approximately the same level of detail and with minimum interfaces between the

transformations. Minimizing interfaces is important because the understandability of a section

of the model is proportional to its independence from other sections. This transformation

schema contains many transformations and requires levelling to attain a verifiable and

reviewable form. Hence, the process of upward levelling was conducted.

Upward levelling is the grouping of event responses and associated flows and stores into

larger units. Similar to event responses, the upper-level groupings, must continue to reflect

the structure of the environment in which the system will function. Ward and Mellor suggest

three criteria that could be followed to do upward-levelling: response-related groupings,

terminator-related groupings, and name ability of groupings [Ward, 1985b p66]. The Response­

related grouping criterion was followed. The basic structure of the essential model is based

on responses, hence it helps to maintain this perspective when choosing upper-level

groupings. For example, in the MIDINet system, MIDI data is processed in a much similar

way despite its source. Consequently, parts of the transformation schema that transform MIDI

related inputs can be grouped together. Figure 4.11b shows upward levelling of MIDI related

transforms shown in figure 4.11a. Refer to Appendix 1 to get a clear picture of upward

levelling.

4.5.1.4 Implementation Model

The essential model can be considered as an idealized model of the system which must now

be reorganized to fit into the constraints of the implementation technology. The

implementation model is derived by doing a top down allocation of the essential model to the

implementation technology. The top down allocation process must be guided by heuristics.

51

Midi message from a port

Midi message from Ethernet

•

D sourc~ devices

Figure 4.11 b Upward levelling of MIDI related transforms

----__ ~ ... _-.. -::::~.:::~-'_'--'__ __ '_=::c

D Connections

P2

Process MIDI
Messages

-- - ------------ ~

Midi message to an out port

midi message to Ethernet

D destination devices

Chapter 4 Implementation

The main heuristic for this allocation is that it should .cause minimal distortion to the essential

model [Ward, 1985c, p3]. The MIDINet system is allocated to a single processor. A processor

is a person or machine capable of performing instructions and storing data. The entire

essential model is allocated to this single processor, a computer. Therefore, this allocation

causes no distortion to the essential model.

4.5.1.4.1 Task Modelling

The processor is required to perform several tasks. A task is a set of instructions that can be

started, stopped and interrupted by the processor. The MIDINet system has the following

main tasks: Read MIDI data, Process MIDI data, Send out MIDI data, Process configuration

information, and Manage devices and Connections. The upper level transforms abtained from

performing upward leveling were assigned to these different tasks. In the case of MID 1 related

tasks, several tasks had to be derived in order to assign highest priority for the task that

performs reading of MIDI data, so that the data is not lost. MIDI data is read from the ports

or from the network and queued in buffers. It is then processed. Mter being processed it is

queued in buffers waiting to be transmitted to its destination.

4.5.1.4.2 Models of interfaces

The allocation of transforms to processors and tasks tends to fragment the transforms and

tends to introduce additional inter-task data flows and stores. Potential problems exist

involving data exchange, stored data access, and control synchronization. The problems can

be detected by modelling the interfaces between the tasks [Ward, 1985c, p52]. In the case of

MIDINet systems, the important aspect is synchronization of access to stored data such as

MIDI data. Since the data items (MIDI messages) are organized into a queue, the consumer

task takes a unit of data previously placed by the supplier. Therefore, synchronization between

the consumer and the supplier tasks must be maintained. This synchronization is modeled as

control transformation when modelling the interfaces. Figure 4.12 shows the modeled

interfaces related to the acceptance and processing of data from MIDI ports. The remaining

interface related control transformations can be found in appendix 2.

4.5.1.4.3 Structure Charts

A task is composed of modules. A module is a set of instructions that is activated by the

53

D Incoming
MIDI data

buffer

\
interrup\

~,
,/ p \

! Interrupt)
\ handler

'- / ,-
trigger I

~

" '- ~IDI data available

'- --~/./' P "" \

! Control MIDI \
I processing J

,/

,/ \ /
,/ '- /'

enab~'/ ,/-r- T -I
,/ ,/ I 1

,/ /'

j..: /' I I
-----~ ,/

MIDI data processed I I

D outgoing port MIDI
data buffer

D

,/ I I

outgoing
network MIDI

data buff

enablel

I
I

I

I

I
I

I I
I I

I I enable

Figure 4.12 Part of the model of interfaces for the MIDINet system

i,
['
:'

I
'I,
'I
i,i
il
I
I
I

,j
!j
;i
l
i

I
I

Ir.nl'ler.nentation

control logic within a task. Only one of a task's ~odules may be active at a time, which

precludes concurrency [Ward, 1985c, p79]. A struct~re chart shows the modules that comprise

the task and it describes their relationships. A module is modeled as a named box with the

name of the module placed in the box. A call is an activation of a module. The shared data

~ between modules is modelled as a named box drawn below, and connecting, each module

that shares this data. A couple represents an item of data passed between mocf~le~ when a call

is executed. It is modelled as an arrow with a circle at its end. An open circle denotes

processed

data and a filled circle denotes control information that controls the logic of the receiver. An

example of a structure chart for the manage devices task is given in Figure 4.13. The

complete structure charts can be found in appendix 2.

4.5.2 Software for the MIDINet System

The software required to run the MIDINet system was written in C. The tasks modelled in

the implementation model are written as processes under the PC-Xinu operating system.

This section describes how configuring devices and establishing connections were

implemented. The initialization procedure is also described. The steps that were followed in

processing MIDI data are discussed.

4.5.2.1 Configuring devices

To configure a device, the user has to select an appropriate option from the menu. The user

provides the MIDlnet ID, Port ID, the channel number and the symbolic name for the device

being configured. For a device to work both as a source and a destination, it needs to be

configured twice. More than one device can be connected to a single port. Hence, these

devices will bear the same MIDINet ID and Port ID, only channel numbers must differ. A

user should be careful not to have more than one device on the same port with the same

channel numbers, to maintain distinction between devices.

This configuration process can be performed on any MIDINet unit in the system. A device

being configured may be connected to any MIDINet unit. As the devices are being

configured, this configuration information is distributed to other MIDINet units in the system.

Each MIDINet unit maintains a similar list of devices.

55

~.

21 Process Midi
from Ethernet

source device

; I i
dest. devices

211 Determine
dest.

for a message

connection list

2 Process Midi
messages

212 Write Message
to a port buffer

221 Channel
Map

Figure 4.13 The Structure charts for the task Process Midi messages

22 Process Midi
from a Port

222 determine
destination

connection list

223 write a
message

toa Network

;\

1r.nJ71er.nentation

To delete a device from the system, a user selects an appropriate option from the menu. A

list of devices is then provided to the user. Again~ & message is sent to other MIDINet units

so that they can delete the same device from their lists. The system makes sure that a user

does not delete a device involved in a connection.

4.5.2.2 Connections

After devices have been configured, connections between these devices can be established.

The power of the system lies in the ability to connect any device to any other device. A

single source can be connected to several destinations and several sources can be connected

to a single destination.

To establish a connection, a user has to select from two separate lists, a source device and

a destination device list. Connections are stored in a table within the system. Similar to the

configuration process, connections can be established from any MIDINet unit in the system.

The connection information is also distributed to other MIDINet units on the system. Each

MIDINet unit in the system maintains its own connection list.

To break a connection, a user has to select a break option from the menu. A list of

connections is then provided. An appropriate message is transmitted to other MIDINet units

to update connection information.

4.5.2.3 MIDI

MIDI is read from four different ports and from the network. MIDI is read from the ports as

a stream of bytes. On the other hand, MIDI from the network is transmitted in the form of

MIDI messages. These MIDI messages vary in length.

MIDI from the ports is stored in a circular buffer and awaits processing. MIDI data received

from each port and MIDI received from the network are stored in separate buffers. The

processing that takes place at this stage is mainly to determine the destination of this

information. The destination could be any device connected to any MIDINet unit in the

system.

After MIDI data has been processed, it is stored in buffers awaiting to be transmitted, either

57

Chapter 4 Implementation

to a local port or sent over the network.

.:

4.5.2.4 MIDI processing

A program designed to process MIDI data in real time can be structured around the following

steps :-

1. Get a byte from a MIDI port

2. Parse the byte

3. Process the byte

4. Send the processed byte to the MIDI Out port

The first and the last steps are simple enough, each requiring a single input/output statement.

The second and third steps are more complex and are discussed below.

4.5.2.4.1 MIDI parsing

MIDI processing would be more simple if all messages were sent using the normal

transmission format, with each MIDI message sent in its entirety, starting with the status byte,

followed by all associated data bytes in their proper order. If this general rule was followed

by all devices, the MIDI data stream would be smooth and predictable, making it easy to

parse. However, There are exceptions to the general rule: Running status format transmissIon

and prioritized System Real-time messages.

Running status format is a time-saving method for transmitting long strings of Channel

messages having the same status bytes. In this case the status byte is redundant and is not

transmitted. Real-time messages can be inserted anywhere within a string of Running status

bytes.

System Real-time message have a priority over other types of MIDI messages. These

messages are used to synchronize devices in a MIDI system. The reason why they need to

be inserted anywhere within MIDI data stream is to maintain the most accurate

synchronization possible.

58

Chapter 4 Implementation

4.5.2.4.2 Guidelines for parsing the MIDI data st~eam

-:; -..

A MIDI program must be able to parse messages received in normal and Running Status

formats, with prioritized transmission of System Real-Time messages. The following

guidelines taken from [De Furia, 1989] can be followed in creating a parsing routine :-
r - ~

Every incoming byte should be identified as either a MIDI status byte or a

data byte.

Use a status buffer to keep the value of the last received Channel voice or

Channel Mode status byte, with the following exceptions:

The buffer should be cleared when System Common messages are received,

and at start-up.

The buffer should be left unaltered when System Real-time messages are

received.

The parsing routine should use the Status buffer to call appropriate message

processing procedures.

The program should ignore incoming data bytes when the status buffer v-aiue

is zero.

A counter should be used to keep track of the order of received bytes. It

should be cleared whenever a new status byte is received. It should be

incremented by one each time a subsequent data byte is received, and set to

1 when the final byte of the message is received. The counter should be left

unaltered when a System Real-time status byte is received.

Processing routines for each recognized message can use the counter value to

determine which byte of a message they are currently processing.

Refer to appendix 3 for a table of types of MIDI bytes. The MIDINet system follows these

59

Chapter 4 Implementation

guidelines to parse MIDI bytes received from the ports. The parsing routine forms MIDI

messages. Complete MIDI messages are processed: t9 determine their destinations, then either

sent over the network or out on a MIDI port.

4.5.2.4.3 MIDI Mapping

MIDI-Mapping refers to the reassignment of the value of a byte in a MIDI message. The

following are some ways to use mapping algorithms :-

- Reassign program numbers

- Reassign channel numbers

- Reassign note number to create transposition

- Scale velocity data to any curve

- Scale controller data to any curve

Channel reassign mapping has been used in the MIDINet system. Before a message is sent

out on a MIDI port, its channel number has to be mapped to the channel number seton the

destination device (the device connected to this particular out port, refer to section 4.5.2.4.4).

Other forms of mapping can be implemented easily by incorporating relevant procedures and

flags.

4.5.2.5 Routing MIDI

After a MIDI message has been read from an In port buffer, the status byte is used to

determine the channel number an instrument is transmitting on. The information relating to

the source device is now complete. The MIDInet ID, the Port ID and the channel number are

known.

The next step is to determine the destination(s) of this MIDI message. The source device is

compared with all the source devices within the established connections. The destination

devices, if any, are stored in a list, the destination device list.

After the destination device list is constructed, each device is processed separately to

determine if it is a local device, that is if its MIDINet ID matches the ID of the unit that is

doing the processing. If it is a local device, then the MIDI message is written to an Out port

60

Chapter 4 Implementation

buffer, waiting to be transmitted to an Out port. If i?e MIDInet IDs do not match, then the

message is packed into a packet to be transmitted Qver the network.

The MIDI message sent over the network is tagged with source device information. The

reason is to avoid transmitting the same message more than once. This can occur if the

connection is between a single source device and several destination r de;ices. These

destination devices may all be non-local. Transmitting the same message more than once will

use network bandwidth and make the system inefficient.

Before a message is sent to an Out port, channel mapping has to be effected. This is to

change the channel the MIDI message originally contained, to the channel number the

destination device is set on. The status byte of the first message is stored. Successive

messages are sent without the status byte, if it is the same as the stored status byte, in order

to achieve running status format with its speed advantages.

MIDI data from Ethernet is processed in a similar manner. Recall, each MIDI message is

tagged with source device information. All units that receive the message perform Similar

processing. They determine the destinations from the common connection table, and send the

message to the appropriate ports. There is a slight difference concerning the messages

received from the network. If the receiving unit determines that the destination device is not

local, then the message is discarded. This only applies to messages received from the network.

4.5.3 Initialization

Each MIDINet unit reads from the file midiid.txt to determine its identification number. If this

file does not exist, the system is halted with an appropriate message.

A MIDINet unit sends a request to all other units, if any, that are already operating, to be

loaded with the configuration data. This refers to the information related to already configured

devices and established connection data (described in section 3.4).

The main task of the initialization procedure is to start all the necessary processes for the

system to perform. There are three basic types of processes, reading, processing and writing

processes. This applies to all four ports and Ethernet. It is at initialization time that all buffers

are initialised.

61

Chapter 4 Implementation

4.6 MIDINet protocol

The MIDInet system was built based on layers. The idea came from the International

Standards Organization (ISO) model of Open System Interconnection (OSI) [Tanenbaum,

1988] [Halsall, 1988]. Although it was designed to provide a conceptual mo_d~l and not an

implementation guide, the ISO layering scheme has been the basis for several protocol

implementations. The OSI model has seven layers. The principles that were applied to arrive

at the seven layers are as follows :

1. A layer should be created where a different level of abstraction is required.

2. Each layer should perform a well defined task.

3. The task of each layer should be selected with the aim of defining

internationally standardized protocols.

4. The boundaries between the layers should be made in such a way that

information flowing between the layers is minimized.

4.6.1 MIDINet system Layer Model

The traditional 7 layer model defined by OSI was created mainly for wide area

communication through public and switched telephone networks. The MIDINet system is

based on a three layer system which has been optimized for high performance real-time

communication.

At the top there is the Application layer through which the user interacts with the system.

For example, the user is provided with a menu system. The options include configuring

devices and establishing connections.

It is in this layer where lists of devices and connections are maintained. Addition and deletion

of devices is effected. MIDI data is read, processed, and routed to various destinations. Errors

that occur when configuring devices or establishing connections are detected here.

In this layer, data is optimized for storage and manipulation. Data is typically stored in a

62

Chapter 4 Implementation

structured format. Any mapping of data from its pure format to human representational format

is performed here.

Any modifications that need to be effected on incoming MIDI data are done in this layer.

These modifications include filtering and mapping. Routing of MIDI is also performed here.

Below the application layer is the MIDINet layer. This layer performs the routing of the

messages originating in the application layer. A complete description of the MIDINet layer

with its associated protocol, is given in section 4.6.2.

The bottom layer is the transport layer. This layer describes the transport medium, Ethernet.

Ethernet is the technology employed within RHOCMN and was adopted for this project. This

layer specifies procedures used to transfer data from one unit to another. This is not to be

confused with the OSI transport layer.

An attempt was made to specify the MIDINet system layer model in terms of the OSI

reference model. The various protocol standards for LANs, which deal with the physical and

data link layer in the context of the OSI Reference model, are those defined in IEEE Standard

802 [Halsall, 1988]. The MIDINet system utilises one of the IEEE standards, IEEE 802.3

(CSMNCD), hence a relation between the two models can be made. Following design

directions for ArcoNet, a comparison between the two models was made [Allik, 1990]. The

directions specify the functions of each layer of the OSI Reference model for- -the

implementation of ArcoNet. The directions were followed because ArcoNet is proposed for

a MIDI related network similar to the MIDINet system.

Briefly, the ArcoNet proposal states that the low-level protocols implement error detection

and recovery. This should be performed in real-time. Different levels of transport service are

required, in order that, the data which needs to be communicated in real-time may not be

delayed. Polling and acknowledgement messages are also defined. The presentation level

protocols specify a common format for signalling events across the network. The application

level protocols specify the network management software. The software performs tasks such

as network configuration, testing, detection of station failures and synchronization of real-time

signals over the network.

In relation to the OSI Reference Model, the MIDINet system transport layer corresponds with the

63

Ir.nl'ler.nentat~n

physical and data link layers of the OSI Referenc~ Model. The MIDINet system utilises

Ethernet cable. It also utilises the IEEE 802.3 (CSM.AJCD) standard. The physical, Data link

and the network layers form what is known as the subnet [Tanenbaum 1988]. The network

layer is concerned with controlling the operation of the subnet. A key design issue is

determining how packets are routed from source to destination. However, in broadcast

networks (such as Ethernet), the routing is simple, so the network layer is often~thin or even

none",istent [Tanenbaum, 1988]. Hence, in the MIDINet system, the network layer does not

exist.

The application layer of the MIDINet system corresponds with the application layers of the

OSI Reference model. There is no correspondence between the MIDINet layer and the other

upper layers of the OSI reference model. We followed the guidelines proposed for the

implementation of ArcoNet in relation to what should be the function of each layer [Allik,

1990] and the function of each layer as specified in the OSI Reference model. It was difficult

to create distinct layers corresponding to the upper layers of the OSI Reference model. It was

decided that there are no well defined tasks of the MIDINet layer that could be assigned to

different OSI layers.

The OSI model has been a basis for several network systems. However, there are systems that

do not conform to the OSI model. Lack of functions in the MIDINet system that correspond

to the upper layers of the OSI reference model does not make the MIDINet system an

unstructured system. An example of such a system is the Transport Control Protocol/Intemet

Protocol (TCP/IP). TCP/IP is not part of OSI, and only corresponds approximately to layer

3 and 4 of the OSI model [Judge, 1988]. The TCP/IP protocol software is organized into four

conceptual layers that build on a fifth layer of hardware [Comer, 1988a].

4.6.2 MIDINet messages

The MIDINet messages are encapsulated in an Ethernet packet. Below is the format of an

Ethernet packet and the sizes of its parts in bytes.

II
Preamble Source Destination Type Data

8 6 6 2 46 - 1500 4

64

Chapter 4 Implementation

A MIDINet packet format has two parts: the code and the data parts. The data could be

information related to device configuration, conpections and MIDI. The format is shown

below and the size of each part in bytes. The data part can be as large as the minimum length

allowed by an Ethernet packet as shown above. The aim is to maintaim minimum size packets

within the system to minimize transmission delays.

II
Code

3

/* device codes */

#define ADDCODES
#define ADDCODED
#define DELCODES
#define DELCODED

/* midi code */

"CDA"
"CDB"
"CDC"
"CDD"

#define MIDI CODE "MMM"

/* connections codes */

#define ESTCODE
#define BRECODE

"CLE"
"CLB"

/* initialising codes */

#define WHO "WHO"
#define LOAD "LOA"
#define NOTIFY "III"

Data

0-1497

Figure 4.14 Codes used in the MIDINet layer to distinguish between messages

II

Figure 4.14 shows a list of codes used to identify messages. The codes go into the code part

of the MIDINet packet. Only three types of packets exist, packets containing MIDI, packets

containing device/connection data, and packets containing control and initilization messages.

If there are any other packets received that do not bear any of the defined codes, they are

ignored.

The first letter of the code is used to distinguish between device/connection data, MIDI data

65

Chapter 4 Implementation

and initialization data. The second letter of the message helps distinguish between device and

connections data. Figure 4.15 shows the layout oJ ~ackets.

Packet

I
I I I

MIDI data Config. data Initial. data

I
I I

Device Connection

I I
I I I I

Add Delete Establish Break

Figure 4.15 MIDINet protocol packet layout

These codes are described below:

C

DA

DR

LE
LB

MMM

WHO-

III

LOA -

Configuration

Device to be Added to the list

Device to be Removed from the list

Link to be Established

Link to be Broken

MIDI carrying message/packet

The message sent by a MIDINet unit which has just started up to know

which other units are already running.

Message sent by the already running unit to the requesting unit

The message sent to request configuration information if a unit has just

started up.

In the data part of the MIDINet packet, there could be three types of data, device, connection,

66

Chapter 4 Implementation

and MIDI data. Device data consists of a MIDINet ID (1 byte), Port ID (1 byte), Channel

number (1 byte) and Symbolic name (10 bytes) .. ~~nnection data consists of source device

data similar to device data, a separator (1 byte) and destination device data, also similar to

device data. MIDI data consists of source device data and a standard MIDI message. In the

case of long system exclusive messages, the messages are broken down into several smaller

messages that would each fit in a packet (40 bytes).
r - ~

Any messages sent to a MIDINet unit from a non-MIDINet unit should conform to the

specifications above. OthelWise the messages will be discarded. However, a non-MIDINet

system should not send initializing messages which ask to be loaded with configuration data

unless it has been setup to store and maintain configuration information.

In conclusion, a MIDINet system can be extended in several ways, more especially in the area

of MIDI processing. Functions such as MIDI filtering and further MIDI mapping can be

implemented. These extensions have been broadly discussed in chapter 7.

For any system to interconnect with the MIDINet system, it must implement the MIDINet

protocol. The MIDINet system can run smoothly with any system that utilises Ethernet as its

transport medium. However, the non-deterministic nature of Ethernet must be borne in mind.

At relatively low traffic the system would perform well. This problem of performance will

be dealt with in the next chapter.

67

Chapter 5 Performance evaluation

Performance Evaluation

5.1 Introduction

Performance evaluation is an essential activity in computer system design. Any system being

designed must satisfy certain preassigned performance requirements. Designers use evaluation

procedures to construct models of systems which meet these specifications. This enables the

designer to visualize a system that is not yet built. The models used are typically

mathematical equations, relationships, or observations known about the system.

Performance is a key factor in the design and use of computer systems. The goal of the

designer is always to achieve the highest performance at a given cost. The designers should

be able to state the performance requirements of their systems. They should be able to

compare different alternatives to find the one that best meets their requirements.

The purpose of this chapter is to describe the process conducted to evaluate the performance

of the MIDINet system.

5.2 Problem statement

Like any other system, the MIDINet system has constraints and limitations. If two notes are

played more than 8 msec apart, they can be individually distiguished [IMA, 1989b]. Hence,

the MIDINet system should cause minimal delays between MIDI messages. This point is

further addressed by Loy [Loy, 1985] and Moore [Moore, 1988]. They both state that in some

musical situations, small delays (few milliseconds) between events are important. These

delays between successive events can be readily distinguished. The amount of delay between

notes becomes an important determinant of the identity of the sound produced. For example,

MIDI can be transmitted at one command per 1 millisecond (3 bytes per command). If several

keys (say ten) are played simultaneously on a keyboard, it would take at least 10 msec to

transmit this information as the information is transmitted serially. To the receiver it does not

appear as if the keys were played simultaneously. Any further delays imposed on this data

by any processing device would cause the sound produced to be different from what was

68

Chapter 5 Performance evaluation

originally intended.

In the MIDINet system, complete messages are processed rather than single bytes. It takes

up to 1 millisecond to accumulated each successive message. Within this time the system

should have processed the previous message and be ready to transmit it, in order to maintain
~- -

this rate. Processing time of MIDI messages should be targeted at this value.

5.2.1 Goals

The first step in any performance evaluation exercise is to state the goals of the study and

define what constitutes the system by delineating the system boundaries. Each model must

be developed with a particular goal in mind. The metrics, workloads, and methodology, all

depend upon the goals. Setting goals is not a trivial exercise. Since most performance

problems are vague when first presented, understanding the problem sufficiently to write a

set of goals is difficult. Once the problem is clear and the goals have been written down,

finding the solution is often easier.

In the MIDINet system, the main issue of concern is for a MIDI message to experience as

little as possible delay within the system to minimize transmission delays. The process

includes reading the MIDI message from a port, parsing the message, determining its

destination and either writing it to an out port or transmitting onto the network.

The parameters to be used in the performance evaluation are:

number of stations: 8-10 workstations.

number of ports: 4 In and 4 Out ports.

message rate: 1000 messages per second. (average length of a message is 3 bytes).

network capacity: 10 Mbits per second.

After listing the parameters, the next step is to outline a few assumptions. In the worst case,

all the 4 In ports of a MIDINet are receiving data. Suppose moreover that this MIDI data has

to take the longest route; that is, the data is destined to a device connected to another

69

Chapter 5 Performance evaluation

MIDINet unit different from the one receiving data. If the data has to be transmitted over the

network, how long is the data going to be delayeg?)f the data has to be buffered, what size

buffers ought to be employed?

5.2.2 Services and outcomes

Every_ system provides a set of services. It helps to create a list of services and possible

outcomes as they are useful in selecting the right metrics and workloads. The MIDINet

system offers the following services:

route MIDI messages from one port to another.

configure devices and establish connections.

list devices and connections.

delete devices and break connections.

Configuring devices and establishing connections may be overlooked, since these activities

do not occur regularly. The main concern is MIDI data received from the In ports.

5.2.3 Selecting metrics

Selecting metrics constitutes part of the problem of performance analysis. What is the

criterion to follow in order to measure performance? In general, the metrics are related to the

speed, accuracy, and availability of services. Networks are normally measured by their

throughput and reliability; how fast does the system send packets? What is the probability that

a packet will get lost or corrupted? All these questions apply to the MIDINet system. When

transmitting MIDI data over the network, what sort of delay is imposed by the network?

5.3 Selecting Techniques and Metrics

Three techniques for performance evaluation exist - analytical modelling, simulation, and

measurement. Measurement is used mainly if a similar system already exists. When building

a new system, simulation and analytic modelling are the best techniques to evaluate

70

Chapter 5 Performance evaluation

performance.

Analytic models provide a quick and relatively easy means to assess the limitations of a

system. This is true if the analysis is limited to elements that can be described by analytical

means. In this case of the MIDINet system, analytic models are ideal to determine factors

such as how large the buffers should be. What is the probability that the buffer is empty?

MIDt data is read from the ports and then buffered. Separate buffers are maintained for

different ports. It is important to determine the size limits these buffers should adhere to.

Simulation provides us with the means to model a system on any level of detail. Simulation

may be used in a variety of instances because of its flexibility. Since the MIDINet system

involves networking, throughput and delay are of great importance. Simulation is ideal to

answer throughput and delay questions.

Sometimes it helps to use two or more techniques simultaneously, as one technique may be

used to validate the results produced from the other.'Analytical modelling and simulation were

used for this project.

5.4 Analytic Modelling

Analytical implementations of models rely on the ability of the modeller to describe a model

in mathematical terms. For example, if a system can be defined as a collection of queues with

service and wait times, queuing analysis can be applied.

5.4.1 Queuing analysis

Queuing theory is a branch of probability theory which involves the mathematical study of

queues. The formation of queues is a common phenomenon that occurs whenever requests for

a service facility exceed the current capacity of the facility.

The prime motivation for performing queuing analysis is to assess local system behaviour

under a variety of assumptions, initial conditions, and operational scenarios. The general

process of analytical modelling involves mapping the behaviour of a complex system onto a

relatively simple system, solving the simpler system for the measures of interest, and

extrapolating the results back to the complex system. The different components of system

71

Chapter 5 Performance evaluation

behaviour are represented as processes that have calculable statistics. The assumption is that

the system to be studied can be adequately represented by a queuing system .
. : ".

The MIDINet system can be represented by a queuing system. MIDI data is received from

the In ports. This MIDI data has to be queued in the buffers and await service.

5.4.2 Basic structure of a queuing system

The basic behaviour assumed by most queuing systems can be modelled as a server with a

sequence of customers. If the arriving customer finds the server busy, it joins the queue

associated with that server and waits. In such systems, customers arrive at some rate, queue

for the service on a first-come-first-served basis, receive service, and exit the system. This

kind of model, with jobs entering and leaving the system, is called an "open" model [Fortier,

1990]. On the other hand, in a "closed" model, the number of jobs remains constant; jobs that

have been serviced join the queue. The MIDINet system is an example of an "open" model.

MIDI messages are regarded as customers and the MIDINet units are servers. MIDI messages

are initially queued, later processed, and finally routed to various destinations.

5.4.3 Rules for all queues

Some key variables used in the analysis of single queues and inter-relationships are now

introduced [Jain, 1991] (Note-E denotes an expected value).

interarrival time, that is, the time between two successive arrivals.

mean arrival rate = l/Eb;}: the arrival rate of MIDI messages.

s service time per job: in the MIDINet system, this is the service time per MIDI

message.

mean service rate per server, = l/E[s}: mean service rate per MIDINet unit.

n number of jobs (MIDI messages) in the system. This is also called queue

length. This includes jobs currently receiving service and those waiting in the

queue.

72

Chapter 5 Performance evaluation

number of jobs waiting to receive service. This is always less than n, since it

does not include the jobs currently receiving service: in the MIDINet system -
.~ .

the number of MIDI messages in the buffers waiting to be processed.

number of jobs receiving service. There can only be one MIDI message being

processed at a particular point in time.

r response time or the time in the system. This includes both the time waiting

for service and the time receiving service. In the MIDINet system this is the

time it takes a MIDI message from when it is read until it is transmitted to an

Out port.

The simplest and most useful model of arrival pattern is the completely random arrival

process, usually called the Poisson arrival process [Jain, 1991]. The service rate parameter is

defined in a way similar to the arrival rate. This rate is also an average rate that defines how

many customers are processed per unit time when the server is busy. The service demands

of the customers are identically distributed with a common distribution, the service

distribution. In more complicated cases, the customers may be classified into several different

types, each with its own distribution of service demand. In the MIDINet system, all MIDI

messages go through similar processing, which makes the analysis simple.

In a queuing system, the number of jobs can grow continuously and becomes infinite. In this

case the system is said to be unstable. For the system to become stable, the mean arrival rate

should be less than the mean service rate.

5.4.4 Kendall Notation

A queue is specified by its arrival process, service mechanism, and queue discipline., hence

a notation was developed to succinctly define a queue. The notation is called the Kendall

notation [Claiborne, 1990]. It is expressed as

A/B/C/K/m/z

where:

73

Chapter 5 Performance evaluation

A Arrival process

B SelVice process

C Number of selVers. The simplest case is a single selVer. A MIDINet unit is

regarded as a selVer and only a single selVer exists.

K Maximum capacity. This is the number of customers allowed to wait in a

queue for selVice. The simplest case is when K = 00. The MIDINet system

assumes finite buffers.

m Population of customers. The simplest case is when m = 00. If m is finite, the

arrival rate may decrease when a large percentage of customers join the queue.

As in the case of K, when m = 00 , it is generally omitted from the notation.

In the MIDINet system, the arrival rate of MIDI messages is not dependent on

the number of messages already in the system. The number of MIDI messages

received varies randomly.

Z SelVice discipline. The principal selVice disciplines are FIFO and FILO. If z

is omitted, FIFO is assumed. MIDI messages are selViced using the FIFO

method.

5.4.5 The MlMI1 System

The MlMI1 queuing system is characterized by a Poisson arrival process and exponential

selVice time distributions, with one selVer, and a FIFO queue ordering discipline. There are

no buffer size limitations in this system. Despite its simplicity, the MlMI1 queue provides an

accurate representation of most of the processes associated with data communications. In

addition to the general rules for all queues, the M/M/1 system has the rules shown in Box

1 [Jain, 1991].

In the MIDINet system, in the worst case, MIDI bytes can arrive at the rate of 3000

bytes/sec. On average, this results in 1000 messages/sec. Therefore, the rate of four ports will

be 4000 messages/sec. Although MIDI messages received from different ports are stored

74

Chapter 5

1. Parameters:
A = arrival rate in Jobs per unit time _<_

J.I. = service rate 1 n jobs per unit time

2. TrqfJic intensity: p = AI J.I.

3. Stability condition: TrQjJic intensity p must be less than 1.00

4. --Probability of zero jobs in the system:po=l-p

5. Probability of n jobs in the system: Pn =(1-p)p", n=O,l, ... ,t»

6. Mean number of jobs in the system; E[n]=p/(1-p)

7. Variance of number oj jobs in the system: Var[n]=p/(1-p)2

I. Probability oj k Jobs in the queue

Pen =k)= [1-p2, k=O]
IJ (1_p)pk+l, k>O

9. Mean number of jobs in the queue: E[n,)=pz/(l-p)

10. Variance of number of jobs in the queue:

Var[n,)=p2(1 +p _p2)/(1_p)2

11. Mean response time: E[r]=(l/J.l.)/(l-p)

Box 1 Specific rules for MlMI1 queue

Performance evaluation

separately, the system can be mapped to a simple system. The assumption is made that the

MIDI messages are queued in one buffer since they are serviced by a single processor.

The time it takes a MIDI message to be transmitted from the source to its destination must

be targeted at 1 ms or less. It was explained in the previous sections that it takes roughly 1

ms to accumulate a MIDI message from a port. So, for the system to read successive

messages without losing any, it must take 1 ms to process a message so as to read the next

message. Thus, the time it takes a message to be read, parsed, transmitted over the network,

and to arrive at its destination must be 1 ms at most. The question is, how long should a

message reside within a MIDINet unit before it is transmitted over the network or written to

an Out port?

75

Chapter 5 Performance evaluation

Network

Queue
I n ports

11111-) ports

I

Figure 5.1 MIDINet system queuing model

In the MIDINet system, it is assumed MIDI messages arrive according to a Poisson

distribution. MIDI messages are received from four ports. Figure 5.1 shows the queuing

model for the MIDINet system. For the sake of the analysis it is assumed that these messages

are merged to queue for a single processor. Merging of n Poisson streams with mean ra_t~ Ai

results in a Poisson stream with mean rate A [Jain, 1991]. Using M/Ml1,

Arrival rate A = 4000 messages/sec

Service rate # = ?

Stability condition: p < 1 i.e

A/# < 1

4000/# < 1

> 4000

The service rate must be higher than 4000 messages/sec. However, if it takes the system the

maximum amount of time to process a message, that is 1 ms then :-

76

Chapter 5 Performance evaluation

SelVice rate fl = 1/0.001 = 1000 messages/sec

.~ .
therefore A/fl = 4000/1000 = 4 > 1; hence, the system becomes unstable. Under this

condition, the buffer will overflow and the messages will be lost.

Synthesizer

... ...
l--....;...-I~:·

MIDINet unIt

Figure 5.2 The model for investigating the delay between MIDI messages

An experiment was conducted in which MIDI messages were fed to a sequencer from a

synthesizer. The model is shown in figure 5.2. Using a MIDI thru box, MIDI messages were

sent directly to the sequencer, whilst the same messages were transmitted via a MIDINet unit

to the sequencer. The MIDI messages emanating from the MIDINet unit and those sent

directly were recorded on separate tracks on the sequencer. The notes on one track were

transposed to change their pitch and the tracks were subsequently merged so as to be

compared. The difference between the times at which similar messages were recorded on the

sequencer were recorded. The maximum delay was found to be 2.7ms.

It has already been stated that it takes lms to accumulate a MIDI message. It also takes lms

to transmit it, hence, the system takes O.7ms to process a message. This value was verified

by carrying out an experiment where MIDI messages were read from a port and the time it

77

Chapter 5 Performance evaluation

takes to execute processing instructions was recorded. The time was found to be in the region

of 0.7ms.

Using the MlMI1 technique again :

Arrival rate A = 4000 messages/sec

_ Service rate p, = 1/0.0007 = 1428 messages/sec

Stability condition: p < 1 i.e

A/p, < 1

but 4000/1428 '4: 1

under these conditions the system becomes unstable.

However, in a music setup, MIDI messages do not arrive continuously. 4000 messages/sec

is the worst case for a MIDI setup. An experiment was conducted in the Rhodes Computer

Music Network (RHOCMN), to determine the frequency of messages produced by a

sequencer playing a song with several tracks. With the help of a MIDI THRU box, these

messages were fed to all four ports. The worst case recorded, was 125 messages/sec.

Using the MlMI1 technique again:

Arrival rate A = 125 messages/sec

Service rate p, = 1/0.0007 = 1428 messages/sec

Stability condition: p < 1 i.e

A/p, < 1

and 125/1428 = 0.09 < 1

hence the system is stable.

The probability of zero messages in the system:

Po = 1 - P = 1 - 0.09 = 0.91

The probability of zero messages in the system is not 1, hence, it is reasonable to assume that

78

Chapter 5

there will be a few messages waiting for service.

The mean number of messages in the system:

E[n] = p/(l - p)

= 0.09/0.91

= 0.1

Performance evaluation

The mean time which messages spend in the system is equivalent to the response time of the

system:

E[r] = (l/fl)/(l - p)

= 0.0007/0.91

= 0.77 milliseconds

This response time is below the target, lms. The analysis carried out above depicts a stable

system. It points to a system with reasonable size buffers. However, the sizes of the buffers

are a major concern in the MIDINet system where memory is a vital asset. In the next

section, this point is addressed in more detail.

5.4.6 The M/Mll/K System

The realistic variation on the basic MlMIl system is a system with a finite queue size. In this

system, once the queue is full, new arrivals are lost. In addition to the general rules of all

queues, the M/Mll/K system has the rules shown in Box 2 [Jain, 1991].

In the MIDINet system, another major concern is the length of message buffers. The

investigation can be conducted by the use of MlMIl/K technique.

Arrival rate A = 125 messages/sec

Service rate fl = 1/0.0007 = 1428 messages/sec

K = assume maximum buffer size of 10.

There is no particular reason why K is assumed to be 10; this is for investigation purposes.

Traffic intensity p = 0.09

79

Chapter 5

The probability of zero messages in the system:

Po = (1 - p)/(l _ pK+l)

= 0.91/(1 - 0.0911
)

= 0.91/0.9999

.... 0.91

Performance evaluation

The probability of buffer overflow = P n (where n = more than 10 messages in the system)

Pn = ((1 - p)/(l _ pK+l))plO

= (0.91/0.999) * 3.5 * 10-11

= 3.17 X 10-11

.... 31 messages per .100 billion messages.

To minimize the number of messages lost or to reduce the probability of losing messages, the

size of the buffer has to be increased. Taking into consideration that messages from different

ports are stored in different buffers, and it is assumed that each buffer can store a maximum

of 10 messages, then, for statistical purposes, a buffer with 40 spaces can be assumed.

The probability of buffer overflow = P (n = more than 40 message in the system)

Pn = ((1 - p)/(l _ pK+l))p40

= (0.91/0.999) * 1.48 * 10-42

= 1.3 X 10-42

The probability is extremely low, in which case few, if any, messages would get lost.

Lastly, the mean number of jobs in the system:

E[n] = p/(l - p) - ((K + l)pK+l)/(l _ pK+l)

= 0.09/0.91 - 5.5 * 10-42/0.9999

= 0.098

From the above analysis it is clear that the system will rarely overflow.

80

Chapter 5

1. Parameters:

A. = arrival rate in jobs per unit ti1M
).I. = service rate t n jobs per unit fi1M
K = buffer size

2. Trqffic intensity: p=A.J).I.

3. _The system is always stable; p<oo

4. Probability of :.ero Jobs in the system

I-p
p~l ,

Po =
I_pK+l

1
K+l'

p=l

5. Probability oj n jobs in the system:

P = /I

I-p II

l_pK+l P ,

1
K+l'

o

O~n~K

p=l

n>K

6. Mean number oj Jobs in the system:

p (K+l)pK+l
E[n] =-- -'-----'-=--

I-p l_pK+l

7. Mean number of jobs in the queue:

P l+KpK
E[nql=--p--=-­

I-p 1_pK+l

Box 2 Specific rules for MJMJl/K queue

Performance evaluation

At this stage, a consideration is made whether the MIDINet system can be extended to have

more than two Ins and two Outs? If an additional card is implemented in a MIDINet unit,

how would this affect its performance?

81

Chapter 5 Performance evaluation

On average each port generates 31 message/sec (125/4). An additional card adds two Ins;

therefore the arrival rate becomes 186 message/sec (31x6 for six ports). The service rate of
.: -..

1428 messages/sec is assumed.

Using the MlMI1 technique:

Arrival rate A = 186 messages/sec

Service rate Jl = 1/0.0007 = 1428 messages/sec

Stability condition: p < 1 i.e

MJl < 1

and 186/1428 = 0.13 < 1

hence the system is stable.

The response time of the system is then :

E[r] = (l/Jl)/(l - p)

= 0.0007/0.87

= 0.8 milliseconds (previously 0.77ms)

r - -

An additional card will impose further delays in processing of data. However, the response

time is still within the time limit of 1ms.

Taking the buffer length into consideration, the M/Ml1/K technique is applied. Assuming a

maximum of 10 messages in a buffer (K = 10) then the probability of zero messages in the

system:

Po = (1 - p)/(l _ pK+l)

= 0.87/(1 - 0.8711
)

= 0.87/0.9999

,.., 0.87

The probability of zero message in the system is reduced from 0.91 that was obtained

previously (section 5.4.5). More messages will be queued for service. The question is will the

buffers ever overflow?

82

Chapter 5 Performance evaluation

The probability of buffer overflow = Pn (n = more than 10 messages in the system)

Pn = ((1 - p)/(l _ pK+l))plO

= (0.87/0.999) * 1.3*10-9 ' .

= 1.2 * 10-9

"'" 12 messages per billion messages.

Increasing the buffer size to 40, the probability of buffer overflow = P n (K = more than 40

messages in the system)

Pn = ((1 - p)/(l _ pK+l))p40

= (0.87/0.999) * 3.6 * 10-36

= 3.1 * 10-36

extremely few messages

The analysis shows that it is still safe to have an additional MUART card installed into a

MIDINet system. This will make the MIDINet system an even more powerful system.

5.5 Simulation

Simulations take a model or description of a system and, based on this, perform experiments

which enable the analyst to determine the behaviour of a system. Simulation provides a means

to visualize a system that is not yet built, to analyze a system to determine critical elements,

and to act as design assessor in order to evaluate proposals. It also can forecast possible issues

in future developments or additions to a system [Fortier, 1989].

However, in an attempt to simulate, there are hidden problems [Schoemaker, 1978]. An

erroneous model might be designed by the analyst. A false model can mean unintentionally

false projection of the object system onto the target system being simulated. The model can

refer to a wrong implementation, which leads to false results, hence an invalid interpretation

of results. Another problem can be the use of inappropriate tools. Selecting an appropriate

language is probably the most important step in the process of developing a simulation model.

Using a general purpose language can mean laborious progress of the modelling process,

while the use of a special purpose language enables a better view of the modelling

environment.

83

Chapter 5 Performance evaluation

5.5.1 NETWORK 11.5

It has been pointed out that one of the dangers of simulation is the selection of wrong tools.

An incorrect decision during this step may lead to long development times, incomplete

studies, and failures. For the purpose of this work, NETWORK U.s was employed [CACI,

1992]. One of the major reasons for making this choice was its widespreaa -use within the

Computer Science Department at Rhodes University.

NETWORK U.s is a design tool which takes a user-specified computer system description

and provides measures of hardware utilization, software execution, and conflicts. It is intended

for the user who designs or specifies computer systems and local area networks. It is used

both to evaluate the ability of a proposed system configuration to meet the required workload,

and to evaluate competing designs [Mosala, 1992]. NETWORK u.s is designed to model a

wide variety of computer architectures, from a single processor to a complex system of

processors and storage devices connected in a network. It is extremely flexible, allowing the

portions of a computer system of special interest to be modelled on a detailed level, while the

rest of the system is modelled on a coarser level.

5.5.2 Performance

Local Area Network simulation provides us with a means to model a local area network to

any level of detail we deem necessary. In networks, the characteristics of delay -and

throughput are studied. The throughput of a LAN refers to the amount of information it can

carry per unit time. Throughput is measured as a function of the total load offered to the

network. Delay refers to the time that a station having a message to send must wait before

it is allowed to access the medium. In measuring performance, it is also usual to evaluate

delay as a function of the total traffic load being offered to the network by the attached

stations.

In the MIDINet system, MIDI messages are transmitted over the network. It is important to

investigate the delay the network imposes on these messages.

5.5.2.1 Response time

In a real-time system, it is always important to monitor the response time. It has already been

84

Chapter 5 Performance evaluation

stated that there is a lms upper limit on the processing time of MIDI messages. It is

necessary to analyze the response time under dif~e~ent conditions.

The response time is the length of time it takes to process an input message and send it out.

lt consists of many parts (queuing, service time) and is thus difficult to determine before the

real system exists. Rough estimates can be determined using mathematical anaiysis, but the

system can be better studied using a simulation model. lt is possible to determine the length

of time it takes for a MIDI message to be transmitted from its source over the network to its

destination.

Figure 5.3 Response time as a function of number of stations

A simulation model was built where two stations are communicating over the network and

other stations are generating traffic on the network. Up to 15 stations were used in the

simulation model. Minimun size packets allowed by Ethernet were utilised. The main idea

behind the model was to investigate the non-deterministic nature of Ethernet. The service time

at the communicating stations was set to a very low value, since only the queng and

trasmission times were being inverstigated (on the report in appendix 5, it is the value of

MESSAGE DELIVER TIME). After a station was added, the response time between the two

85

Chapter 5 Performance evaluation

communication stations was recorded. Figure 5.3 shows a response time as a function of

number of stations. The response time increases wifh the number of stations. This is due to
.,: .

traffic from the other stations. In this experiment, the two communicating stations model two

MIDINet units sending each other MIDI data.

MIDI_Ie

......•..... :.;,- CIIIIn1

SalVII'

Figure 5.4 Setup for investigating the response time on the network

5.5.2.2 Packet size

Packet size is one of the factors affecting performance on the network. Increasing the size of

the packets leads to longer propagation delays. On the other hand, shorter packets impose

overheads, since each packet carries a fixed-length header (under Ethernet). Longer packets

reduce overhead and allow higher throughput at the cost of increased delays [Kuo, 1981]

In the MIDINet system, short packets are inevitable. The longest message is a system

exclusive message. This message has to be broken down to form several messages that could

be packed in a shortest standard Ethernet packet. Using the smallest packets, throughput is

low, but with the advantage of reduced delays. The MIDINet system as a real-time application

uses shorter packets to achieve low delays.

86

Chapter 5 Performance evaluation

Figure 5.5 Response time as a function of number of stations (Stations sending data
continuously)

5.6 Operational analysis

Operational analysis is concerned with extracting information from a working system that is

used to develop projections about the system's future operations. The method of operational

analysis can be used to derive meaningful information that can be used together with

analytical modelling and simulation techniques. It deals with the measurement and evaluation

of an actual system in operation. Several experiments were conducted to determine the

behaviour of the MIDINet system.

An experiment was set up as shown in figure 5.4. The aim of the experiment was to further

investigate the non-deterministic nature of Ethernet. A MIDINet unit sends a byte via an

Ethernet to another MIDINet unit. The receiving unit returned the same byte back via a MIDI

cable to complete a cycle. The time difference between receipt and transmission was

measured. There are other computers on the network continuously sending arbitrary packets

on the network to create traffic. The experiment is repeated for different numbers of

computers on the network, that is, a varied load.

87

Chapter 5 Performance evaluation

Figure 5.6 Response time as a function of number of station (Station sending data
randomly)

The results of the experiment are shown in figure 5.5. The figure shows two graphs, one for

maximum delay reached and the other shows the average of 10000 readings. The maximum

delay increases exponentially with the number of computers on the network. From the graph

it is clear that the response time goes beyond the 8ms limit.

However, having computers sending packets continuously does not model the real situation.

In order to more realistically model the real world situation, the experiment was modified, so

that computers send arbitrary numbers of packets (1-10) at random intelVals (1-500ms). Figure

5.6 shows the results obtained in the experiment. From the graph, it is clear that the delays

are fairly low, that is, they are within the limit of 8ms.

In conclusion, the mathematical analysis showed a stable system that could have reasonable

buffer sizes. An additional MIDI card in a unit will cause a slight decline in the performance

of the whole system. Simulation and operational analysis showed that the non-deterministic

nature of Ethernet can introduce problems in the system. The results confirmed that Ethernet

performs well under a light to medium load. However, as more devices are added to the

88

Chapter 5 Performance evaluation

network, response time increases. The next chapter discusses measures taken to overcome

Ethernet's transmission problems. .: .

89

Chapter 6 Protocols

Protocols

.: -..

6.1 Introduction

The previous chapter demonstrated the performance of an Ethernet network. Ethernet

networks are well known for their non-deterministic nature. This usually makes them

inappropriate for real-time communication applications. Ethernet networks operate efficiently

under light to medium traffic. As more workstations attempt to access the network, network

throughput declines [Kuo, 1981].

We have seen that response time increases as more workstations try to access the network.

This is caused by packet collisions. When two packets collide, the CSMA/CD algorithm

requires that both backoff and attempt the transmission later. More traffic creates more

collisions. This is a drawback in a real-time application. This chapter explores other protocols

that were considered for the MIDINet system.

6.2 Alternative protocols

Other protocols were taken into consideration in the quest to avoid Ethernet problems. Token

Bus was the first one to be considered. It is deterministic and has the ability to prioritize fhe

transmission of packets [Halsall, 1988]. Several queues are maintained for different priority

levels. Data to be routed is checked for priority and gets queued in an appropriate queue. This

priority scheme is suitable for the MidINet system. MIDI data can be assigned the highest

priority. Any other data, such as device and connection data will have lower priority.

Token Ring, another alternative, offers high throughput and efficiency at high load. Like

Token Bus, it permits prioritization. As has been pointed out, the priority scheme suits the

MIDINet system. The major drawback of Token Ring is the presence of a centralized monitor

function which introduces a critical component. A monitor detects and corrects errors in the

system [Hutchison, 1988]. If the monitor does not perform properly, then the network

becomes unstable.

90

Chapter 6 Protocols

High speed media like fiber optics were considered. FDDI (Fiber Distributed Data Interface)

is a high performance fiber optic Token Ring. It ~an be used in the same way as any LANs
-, -

mentioned (Token Ring, Token Bus and Ethernet), but with a greater bandwidth [Tanenbaum,

1988]. However, fiber optic and the associated FDDI interface cards are expensive.

Ethernet has the advantage of being widely used. This implies that a system -built on top of

it can..interface easily with other systems. RHOCMN already uses Ethernet transmission. To

find a solution to Ethernet transmission problems is preferable to changing the whole system.

The above considerations inspired the design of a protocol that would run on top of Ethernet,

Netlink. The motivation behind Netlink is to have a protocol above Ethernet, that combines

the good features of Ethernet and token passing protocols (their deterministic nature). It

should therefore perform well in real-time applications.

6.3 Description of Netlink protocol

According to the ISO OSI standard: "the (N)-protocol is the set of semantic rules determining

the information exchange among the (N)-entities in such a way that (N)-functions should be

fulfilled" [Tarnay, 1991]. Where N is an arbitrary number. The (N)-protocol means a set on

N rules of communication between two entities. The (N)-function is a set of function that can

be carried out between two entities.

The syntactic rules determine the format of messages exchanged between communicating

entities; the semantic rules specify the procedures, and the correct and proper sequence of

instructions exchanged between communicating entities. The semantic rules also comprise a

way of specifying the timing and the time specific characteristics.

The messages exchanged between entities either contain data fields, control information, or

both data and control information. The procedures include the functions such as data transfer,

addressing, error handling and flow control. The time specifications determine the time-out

limits of waiting. Therefore, a protocol is defined by formats, procedures and time behaviour.

The protocol must recover from errors. Typical errors that could occur are: a packet is lost,

an entity dies or the sequence of packets is mixed up. These errors may arise from erroneous

packet formats or timing. The Netlink protocol described below takes these errors into

91

Chapter 6 Protocols

account. The Netlink protocol is closely related to the Token Bus protocol. It is derived from

the concepts described by Tanenbaum [Tanenbau~, 1988] .
. , .

Physically, the Netlink is a linear or tree-shaped cable onto which stations are attached as

shown in Figure 6.1. Logically, the stations are organized into a ring, with each station

LogiC8lri~

Ord8r:O,1,9,5,9

Figure 6.1 A netlink protocol physical connections and logical ring

knowing the address of the "previous" and "next" stations. Stations are assigned unique

numbers. When the ring is initialized, the lowest numbered station (Controller) may send the

first packet. Then, it passes permission to its immediate neighbour by sending the neighbour

a special control packet called a token. The token propagates around the logical ring, with

only the token holder being permitted to transmit packets. Since only one station at a time

holds the token, collisions do not occur.

The physical order in which the stations are connected to the cable is not important. Since

the cable is inherently a broadcast medium, each station receives each packet. A station

should only transmit a single data packet when it receives a token. Since the packets are all

92

Chapter 6 Protocols

broadcast packets, the token can be passed encapsulated in a data packet. This reduces the

overhead of having to transmit a separate packet.ltpken) after transmitting data. If a station

has no data to transmit, then it passes the token to its logical neighbour.

6.4 Communication in Netlink

The state transition diagram of the Netlink protocol is shown in figure 6.2. When the ring is

initialized, stations are inserted in order of station number, from lowest to highest. Token

passing is also done from lowest to highest. If a station has no data to transmit, then it passes

the token immediately upon receiving it.

Netlink defines two priority classes for traffic, 0 and 1, with 0 being the lowest and 1 the

highest. Each station maintains two packet queues for each priority level. When a token

arrives at a station, the station drains the higher priority queue first. This priority scheme can

be used to implement real-time traffic such as MIDI messages.

6.5 Ring Maintenance in Netlink

From time to time some stations will want to join the ring, others will want to leave the ring.

Each station maintains the information about the current ring internally. Each station is aware

of every other station in the ring.

A station can fall into one of three categories; Non Active, Active Not Transmitting and

Active & Transmitting. Non active stations are those not participating at all. Active Not

Transmitting comprise stations in the ring, but which have no data to transmit for a while.

Active & Transmitting stations have data to transmit and are currently in the ring.

Every time it gets the token, the controller solicits bids from stations currently in the Active

Not Transmitting category that wish to enter the Active & Transmitting category, by

sending the SOLICIT _SUCCESSOR _ANT packet shown in Figure 6.3. This packet is sent to

a specific station. The stations are polled in numeric order. A single station is polled on each

tum. A polled station responds by sending a SET _ SUC /PREDE _ CESSOR packet if it wants

to join the ring.

Periodically, the Controller solicits bids from stations currently in the Non Active category

93

~
l
~
i

1
1·
I ,

I
i

\ ,

1
!

~" .'

w

~
no

activity

2 Initial
(Client)

'" no
activity

activity
present

'¥
r

3 Wait Solicit l 4 Wait for I
a token --.l

~ . f I accepted

received
confirmed

~

"Who follows ?'

token

5 Confirm
reciept

time
expires

8 Repair
a break

w

~

Figure 6.2 State transition diagram for Netlink protocol

pass
token

t

set
category

w
9 Wait in

background

Accepted

1~~- ' -~-.:-'-==:-. --~

1 Initial
(controller)

create token

~ w
6 Running

~

r

time expiresl
~idders accepted

7 Wait for
bids

I

invite
bidders

'¥

J

Chapter 6 Protocols

that wish to enter Active & Transmitting category by sending the

SOLICIT_SUCCESSOR_NT packet. This packet is sent to a specific station. The stations are
.: r

polled in numeric order.

On Ethernet, the time it takes a bit to travel the length of the cable is called 'slot time', "t. It

is a parameter used to characterize Ethernet collision handling. To accommodate the longest

path ~lowed by Ethernet (2.5 km), this time is set to 51.2 microsec [Tanenbaum, 1988]. The

controller waits for approximately 2"t+t for a bidder to respond (1=100 microsec). The time

t is added in order to cater for the processing that takes place on the bidder in order to

respond. When the time expires, the controller polls another station or passes the token. If

the polled station responds, then it is inserted into the ring, and assumes Active &

Transmitting status. The bidding station responds with the SET_SUC/PREDE_CESSOR

message.

I l'ackR code I x I Description I
00000001 solicit_successor _ant Allow stations to enter the ring from AH~ to A~

00000010 Solicit_successor_nt Allow stations to enter the ring from Ha to A~

00000011 Who_follows Recover from dead successor

00000100 Set_Category Allows station to leave AT to ANT

00001000 :roken Pass the token

00001100 Set_suc/prede_cessor Allow stations to join the ring

00001110 set_successor Allow stations to leave the ring

11111111 Data_with_token Send data with the token

~9u ... -e /OJ. ~ nelio".&DA won.zoo,. pac:.n.O.:tt.

When a station receives a token, if it has no data to send, it increments a counter. When the

counter reaches the threshold N, the station sends a SET_CATEGORY message. Its predecessor

and successor will respond appropriately by taking note of their new successor and

predecessor respectively. This station changes from the Active & Transmitting state· to the

Active Not Transmitting state.

Leaving the ring is simple. A station has to send a SET_SUC/PREDE_CESSOR packet to its

predecessor and successor telling them that from now on the successor and the predecessor,

respectively, have changed. Then, the station moves into the Non Active state. The successor

94

Chapter 6 Protocols

of the leaving station should treat this packet as a token. It would not be necessary to send

the token again.

At initialization, the controller is the only station running. The controller creates a token and

passes the token to itself. Periodically, it solicits bids from stations that want to join the ring.

The controller will always have the lowest id. The controller is used principally ~for detecting

and c,?rrecting errors in the system.

6.6 Error Handling in Netlink

It must be stated that, when the Netlink protocol was implemented, several assumptions were

made in relation to errors that could occur. The assumptions were made to make the

implementation simple. It was assumed that a station leaves the ring in a proper manner, that

is, it sends an appropriate message. It was also assumed that the token will never get lost.

However, the protocol can be improved by implementing error handling described below.

The protocol could take into account that stations may be halted due to power failure or

system errors. If a station tries to pass the token to a station that is down, then what happens?

After passing the token, a station listens to see if its successor either transmits a packet or a

token. If it does neither, then the token is passed a second time.

If that also fails, then the station transmits a WHO _FOLLOWS packet, specifying the ID· of

its successor. This packet is sent to the dead machine's successor as its ID is determined from

the internally maintained ring. This station responds by sending a SET_SUCCESSOR packet

to the station whose successor failed, naming itself as a successor. This is a form of

acknowledgement.

What if a station fails to pass a token and fails to locate its successor's successor? It sends

another WHO _FOLLOWS packet to the next station in the ring. Eventually, the ring is

established.

Another error occurs if the token holder goes down and takes the token with it. The controller

has a timer that is reset each time a token is transmitted. When the timer reaches the

threshold, the controller claims the token and processing continues. The dead station will be

discarded from the ring by the WHO _FOLLOWS mechanism.

95

Chapter 6 Protocols

6.7 Packet Format

.:: r

Netlink creates a further layer below the MIDINet layer but above Ethernet layer. Hence,

Netlink attaches its control information to the packet received from the upper layers. Below

is the format of an Ethernet packet and the size in bytes of its components.

Preamble Source Destination Type Data CRC

to) b b 2 4b - DUU 4

The Netlink data gets encapsulated in the data part of an Ethernet packet. The Netlink packet

format has three parts: the ~ predecessor, my ID, and successor. The different types of

Netlink packets are listed in Figure 6.2. Predecessor, my_ID, and successor are each one

byte long, and contain stations' identification numbers. Below is a format of a Netlink packet

Type Predecessor Successor Data

1 1 1 1

The MIDINet layer data gets encapsulated in the data part of a Netlink packet.

The Predecessor, My_ID and Successor are used to maintain the logical ring. As an exa~pJe,

a station knows that it is its turn to transmit if the packet type is token and the Successor

matches its ID and the My_ID matches its own Predecessor.

6.8 Internal control information

When a station receives a packet or a token from any other station, it updates its internally

maintained control information. Since a packet is broadcast, all the receiving stations do

update their lists. This information includes the category the sender is currently in. The

category is determined from the packet type. For instance, a data packet or a token means that

the transmitting station is in the Active state. Each station maintains a list of all stations in

the ring. As shown in section 6.7, a packet contains three IDs; the transmitting station, its

predecessor and successor, and this information is used to update the list. Before it transmits,

a station determines its successor and its predecessor from the list. Whenever a station

96

Chapter 6 Protocols

changes state or leaves the ring, the list is updated. Each station receives the appropriate

information.

6.9 Advantages and disadvantages

The power of Netlink, as it has already been indicated, lies in combining the good features

of Ethernet and Token passing protocols. Netlink is similar to the token bus protocol, but it

has added features that make it a better protocol for our purposes.

As explained above, there is a controller in the Netlink protocol. The controller is the station

that makes sure that the system recovers from errors, such as a token getting lost or a station

going down. This is similar to a token ring's centralized monitor function. If the controller

goes down, then it means the whole system cannot function. Unlike token ring, the controller

cannot be replaced by any station on the system. To introduce that, the system must be

restarted and reconfigured.

The functionality of a controller is assigned to the selVer in RHOCMN. This was decided for

two major reasons: Firstly, RHOCMN has a selVer which is already a critical component in

the network. Secondly, the selVer is not involved in the running of the MIDINet system.

Ethernet is inherently a broadcast medium; each station receives all the packets as long as the

Ethernet destination address is a broadcast address. Netlink uses broadcast packets only. Every

station gets every packet, whether it be control or data. Unlike many other protocols, Netlink

control messages can be transmitted with data. Before any control messages are transmitted,

the data buffer is checked to determine if it is empty. If data is present, it is packed with the

control message. Any receiving station is responsible for extracting this data from the control

message.

Passing a token to stations with no data to transmit wastes network bandwidth and imposes

unnecessary delays on stations with data. Netlink overcomes the problem by introducing

categories. There are three categories as has been mentioned: Non Active, Active Not

Transmitting and Active & Transmitting. Through this category scheme, the system ensures

that only stations with data to transmit are in the ring.

The major drawback behind the protocol is that the protocol implementation impinges on host

97

Chapter 6 Protocols

processor time. Under PC-Xinu, the process that runs the protocol must be of the highest

priority. No packets should be missed as this coul??estroy the protocol. Consequently, other

processes get less access to the processor. As a result, the performance of the MIDINet

system declines.

6.10 Performance Evaluation

When implementing the Netlink protocol, the aim was to overcome the non-deterministic

nature of Ethernet. In the previous chapter, we have seen the analysis carried out to evaluate

the performance of the MidINet system. Similar experiments were carried out to evaluate the

performance of the system with the Netlink protocol.

The hardware setup was similar to the one used in the previous experiments. Two MIDINet

units were used. At irregular intervals, one MIDINet unit transferred a MIDI message over

Ethernet to the second MIDINet unit. The second unit returned this message via a MIDI link.

The time difference between receipt and transmission was measured. More PCS were added

to the network to create traffic. In this experiment, MIDINet units were PCs employing the

Netlink protocol. Figure 6.3 shows the results of the experiment (see graph labelled

propagation delay).

The graph is roughly a horizontal line. The protocol controls access to the medium. At any

point in time, one station has access to the medium. There is no contention and hence, "no

collisions. A message is successfully transmitted over the network without any delays.

However, the experiment does not show the delay that is imposed by adding more stations

on the network. It shows that the non-deterministic nature of the medium is overcome.

Each station on the network gets a chance to transmit data; this means that the token is passed

from one station to the next. Every additional station on the network imposes a delay on the

whole system. If a station gets a chance to transmit data, then how long should it wait to get

another chance to transmit again ? Further experiments were conducted to determine the time

a token takes to complete a round trip through the stations. Figure 6.3 shows the results of

the experiment (see graph labelled token passing protocols). From the graph, it is clear that

adding a station to the network imposes a delay. The delay increases constantly; hence, the

number of stations that impose a tolerable delay can be determined.

98

Chapter 6 Protocols

Figure 6.3 Propagation delay under Netlink protocol and the effect of token passing

In conclusion, Netlink: combines the good features of Ethernet and token passing protocols.

It overcomes the non-deterministic nature of Ethernet. It has a priority scheme which ensures

that any data that needs to be communicated in real-time is assigned higher priority and the

data endures minimal delays. Having various categories ensures that only stations with data

to transmit are in the ring. The performance analysis showed that the time a token takes to

complete a circle around the stations increase constantly as stations are added to the network.

The category scheme minimise the number of stations that could be in a ring at any point in

time. Through this scheme, the system should perform well under any load. When load

decreases it means stations are running out of data to transmit, hence they are excluded from

the ring. Under heavy load, all stations get a fair chance to transmit data.

99

Chapter 7 Conclusion

Conclusion

.:; -.

7.1 MIDI problems addressed.

This jhesis has introduced a means of addressing the problems of MIDI transmission in

RHOCMN. A system was described, the MIDINet system, which is a networked system used

to interconnect workstations and several MIDINet units. A MIDINet unit forms an interface

between MIDI devices and a network. Any device connected to any MIDINet unit can

communicate with any other device. A MIDINet unit permits MIDI data to be locally

processed.

The MIDINet system has adequately solved problems related to MIDI transmission in

RHOCMN. The first problem was wiring. As has been indicated, in the main studio, a star

configuration is currently used for transmitting MIDI from the MIDI patch bay' to the

workstations and MIDI devices. This leads to a complex hardware configuration.

The MIDINet unit provides the functionality of the MIDI patch bay. Each device is

independently connected to a unit. The star configuration is dissolved, which leads to reduced

wiring complexity. Routing is performed via the network. The MIDINet system allows the

user to send an appropriate message to 'patch' devices together. With the MIDINet unit, a

MIDI message is routed to a specific device. Hence, devices can be easily shared amongst

the users. Sharing devices is the main goal behind RHOCMN.

Furthermore, MIDI cables are restricted to fifteen metres in length. This imposes constraints

on remote access to the studio. Workstations must be within 15 metres of the main studio.

Some manufacturers have provided RS422 or fibre optic links which extend the carrying

length of MIDI [Lone Wolf, 1989]. They are typically expensive solutions and do not solve

the configuration problem. The MIDINet system uses Ethernet for networking. Ethernet is

cheap and readily available. Ethernet LANs can extend to 2.5 km. The MIDINet system

permits users outside the studio to have access to MIDI devices in the main studio.

The other problem related to MIDI in RHOCMN is channelisation. As has been discussed,

100

Chapter 7 Conclusion

in RHOCMN, the server sends system exclusive messages to MIDI synthesizers to select the

channel numbers on which they should send and receive MIDI data. This means that

manufacturer specific information must be kept itt the system. When a new MIDI device is

installed in the studio, the server has to be loaded with the device's system exclusive message

type for changing channels. The MIDINet system solves the channelisation problem. Since

devices are identified uniquely within the MIDINet system, it is immaterial..whether there is

more than one device using the same channel number. Any MIDI message transmitted bears

the source device's identification. Hence, the message is routed to the destination only, not

broadcast as it is in the original system. Channel mapping occurs at the destination. The

server is not required to send system exclusive messages to select channel numbers.

The MIDINet IAN offers other advantages. It is a high-speed network capable of distributing

MIDI information in a complex system. It offers the advantages ofbidirectionality and greater

bandwidth. Although MIDI data is flowing with other information on the network, the 10

Mbps capacity of Ethernet is not saturated. A potential problem was the non-deterministic

nature of Ethernet. Empirical analysis showed that the non-deterministic nature of Ethernet

can introduce problems in the MIDINet system under extreme loads. The results confirmed

that Ethernet performs well under a light to medium load. However, as more devices are

added to the network, response time increases. This led to an implementation of the Netlink

protocol.

Netlink combines the good features of Ethernet and token passing protocols. It overcomes .the

non-deterministic nature of Ethernet. It has a priority scheme which ensures that any data that

needs to be communicated in real-time is assigned higher priority, and this data endures

minimum delays.

In a typical single user studio, the MIDINet system offers features such as MIDI merging and

mapping. Merging is achieved by creating a connection between more than one source device

and a single destination. An example of mapping is the mapping of the channel number on

the incoming MIDI message to the channel number set on the destination device.

The main advantage of the MIDINet system approach is that the problems of MIDI are

addressed using cheap and readily available technology and without redefining the MIDI

protocol.

101

Chapter 7 Conclusion

7.2 Possible extensions

The MIDINet system can be developed further to'niake it more powerful. Developments can

be made in the area of MIDI data processing, such that more MIDI mapping and filtering

functions are implemented. On the other hand, the hardware of the MIDINet system can be

improved or new technologies can be adopted in order to add new feature&- - ~

-
7.2.1 Hardware

In the previous chapters, it was indicated that the MIDINet system will still perform well with

an additional MUART card. With an additional MUART card, each unit will provide 6 Ins

and 6 Outs. More devices can be connected directly to the MIDINet units, rather than daisy

chained.

7.2.2 Software

There are several extensions that could be effected on the software that implements the

MIDINet system. The system can be improved with regard to the processing of MIDI data.

These functions include filtering and mapping.

7.2.2.1 MIDI Filtering

MIDI filters allow a parsing program to selectively ignore bytes in a given range of values.

Filters are typically used to enable/disable recognition of different types of messages or to

enable/disable recognition of messages on any given channel. In the MIDINet system, this

functionality can be effected within the parsing routines by use of flags. If a user requires the

system to filter a certain type of message, then a corresponding flag is set. The parser filters

this type of message according to the value of this flag. This capability is a possible extension

to the MIDINet system.

7.2.2.2 MIDI Mapping

MIDI Mapping refers to the reassignment of the value of a byte in a MIDI message. The

following are some ways of using mapping algorithms :-

102

Chapter 7 Conclusion

- Reassign program numbers

- Reassign channel numbers

- Reassign note number to create transposition

- Scale velocity data to any curve

- Scale controller data to any curve

Channel reassign mapping has been used in the MIDINet system. Other forms of-mapping can

be implemented easily by using procedures and flags that control the user's requirements.

7.3 Netlink protocol

The Netlink protocol as it has been implemented, is incomplete. Error handling has not been

effected, although it has been stated in the rules (appendix 4) and shown in the state transition

diagram.

When the Netlink protocol was implemented, several assumptions were made in relation to

errors that could occur. The assumptions were made to make the implementation simple. It

was assumed that a station leaves the ring in a proper manner, that is, it sends an appropriate

message. It was also assumed that the token would never get lost. However, the protocol can

be improved by taking into account the following errors. These improvements have been

indicated in chapter 6.

The MIDINet system utilises network technology and protocols to overcome thesl1ort­

comings and MIDI transmission problems in RHOCMN. Ethernet technology is employed

since RHOCMN is built on top of Ethernet. The MIDINet system forms part of the few

attempts that have been made so far to solve MIDI problems. These attempts include

MediaLink [Westfall, 1989], MIDIShare [Fober, 1994] and ZIPI [McMillen, 1994]. When it

was implemented, several proposals made for similar networks were taken into consideration.

These proposals include ArcoNet [Allik, 1990] and MIDI server [Buxton, 1987]

103

Chapter 7 Conclusion

References
.:; r

Aikin, J., "PLUG IN HERE, The ABC's of Techno-Music Literacy",
Keyboard, June 1988, p34-56.

Aikin, J, Milano D., "MIDI-Controlled Digital Mixer ""-,- Keyboard,
Aug~st 1987, p110-146

Alki K., "ArcoNet: A Proposal for a Standard Network for
Conununication and Control in Real-Time Performance", Proceedings
of the International Computer Music Conference 1986.

Allik, K., Dunna, S., Mulder, R., "ArcoNet: A proposal for a
Standard Network for Conununication and Control in Real-time
Performance", LEONARD, Vol. 23, No.1, 9p91-97), 1990

Brighton, N., "Putting a sparkle on Analog", Electronic Musician,
September 1993

Brighton, N., "The Patch Bay", Electronic Musician, May 1992, p88

Buxton W., "Masters and Slaves
Area Networks", Proceedings
Conference.

Versus Democracy: MIDI and Local
of the AES 5th International

CACI Products Company,
Pennysilvania 1990.

"NETWORK 11.5 Users'

Claiborne, D., Mathematical Preliminaries
Networking, John Wiley & Sons, Inc. USA 1990.

for

manual",

computer

[Comer, 1988a] Comer, D., Internetworking with TCP/IP, Printice­
Hall, Inc. Englewood Cliffs, NJ 1988.

[Comer, 1988b] Comer, D., Fossum, T., Operating System Design
Volume I The Xinu approach, Printice-Hall, Inc. Englewood Cliffs,
NJ 1988.

[Comer, 1989a] Comer, D., Internetworking With TCP/IP Volume II,
Printice-Hall, Inc. Englewood Cliffs, NJ 1988.

105

Chapter 7 Conclusion

Comer D., Operating System Design - Volume II: Internetworking
with Xinu, Printice-Hall, 1987.

De Furia., Scacciaferro J., The MIDI Programmer's Handbook, M&T
Publishing, Inc. Redwood City, California.

DeMarco T., Structured Analysis and System Specification

Dimuzio, T., "The Magic of the real-time MIDI control",
Electronic Musician, August 1990, p70

Fortier,J., Desrochers, G., Modeling and Analysis of Local Area
Networks, CRC Press, Inc. Florida 1990.

Foss R., Wilks, A., "A Network Approach to the Problem of Sharing
Music Studio Resources", ICMC Glasgow 1990 Proceedings.

FTP Software Inc., "PC/TCP Version 1.09 Packet Driver
Specification", FTP Software, Inc. Wakefield, MA 1989.

Halsall, F., Data Communications, Computer Networks and OSI,
Addison-Wesley Publishers Limited, 1988.

Holt, Ce, Microcomputers Organization - Hardware and Software,
Macmillan Publishing Company, Inc. New York 10022, USA 1985~.

Huber, D., "Riding the bus", El ectroni c Musi ci an, March 1991, p46

Hurtig, B., "The Future of Analog", Electronic Musician, May
1992, p38

Hutchison, D., Local Area Networks Architectures, Addison-Wesley,
Inc. 1988.

the IMA Bulletin, "MIDI Time Code, The Linking of MIDI and
SMPTE", Electronic Musician, the IMA Bulletin, July 1986

[IMA, 1989a] the IMA Bulletin, "The MidiTap from Lone Wolf", the
IMA Bulletin, June 1989.

[IMA, 1989b] the IMA Bulletin, "MIDI 1. 0 Detailed Specification,

106

Chapter 7 Conclusion

Document Ver 4.1" the lMA Bulletin, 1989

Kane, J., Osborne,A., An Introduction to microcomputers Vol 3.
Osborne & Associates, Inc. Berkeley, California 1975.

Keiser, G.E., Local Area Networks, Mcgraw-Hill, Inc. 1989.

Kuo~ F., Protocols & Techniques for data communication Networks,
Printice-Hall, Inc., Englewood Cliffs NJ, 1981.

Jain, Raj., The art of computer performance analysis, John Wiley
& Sons, Inc. USA 1991

Lone Wolf, MidiTap User Manual, Lone Wolf, Inc 1990.

Loy, G., "Musicians Make a Standard: The MIDI Phenomenon",
Computer Music Journal, Vol. 9, No~ 4, winter 1985.

"MIDI Machine Control Ratified", the IMA Bulletin 9(1), Summer
1992.

McMillen, K., Simon, D., Wessel, D., Wright, M., "A New Network
and Communications Protocol for Electronic Musical Devices",
Audio Hardware, Networking, ICMC Proceedings 1994.

Meyer, C., Hall, G., "An introduction to Hard Disk recording and
editing", Electronic Musician, October 1990.

Miller, M.A., INTERNETWORKING A guide to Network Communications
LAN to LAN; LAN to WAN, M&T Books, Inc., Redwood City, CA 94063,
1991.

Moore F., Elements of computer Music, Prentice Hall, Englewood
Cliffs, New Jersey.

Mosala, T., "Simulation of an Ethernet network using NETWORK
11.5" Rhodes University 1992 (unpublished)

Oppenheimer, L., "Intone MIDI Maestro Audio and MIDI patch bay",
Electrinic Musician, p94-97, March 1991.

107

Chapter 7 Conclusion

Rehmet G., "PC-Xinu Event Driven Windowing System", Rhodes
University, 1991 (unpublished).

Rona J., "MIDI The Ins, Outs & Thrus", Hal Leonard Books,
Wisconsin, 1987.

Schoemaker, S., Computer Networks and Simulation, Elsevfer North­
Holland Inc. New York 1978.

Shlear, S., Mellor, S., Object Oriented Systems Analysis :
modeling the world in data, Yourdon Press, Englewood Cliffs, New
Jersey, 1988.

Tanenbaum A., Computer Networks, Prentice-Hall, Inc. Englewood
Cliffs, New Jersey 1988.

Tarnay, K, Protocol Specification and Testing, Plenum Press, NY.
1991.

[Ward, 1985a] Ward, P., Mellor, S., Structured Development for
Real-Time Systems Vol 1, Yourdon Press, NY. 1985.

[Ward, 1985b] Ward, P., Mellor, S., Structured Development for
Real-Time Systems Vol 2, Yourdon Press, NY. 1985.

[Ward, 1985c] Ward, P., Mellor, S., Structured Development for
Real-Time Systems Vol 3, Yourdon Press, NY. 1985.

Watkins, R., A memory resident implementation of PC-XINU, Rhodes
University, 1990 (unpublished).

Westfall, L., "The Local Area Network: MIDI 1 S next step ? "

Electronic Musician, November 1989, p64-119

Wilkinson, S., "Sound all Around", Electronic Musician, October
1993, p1270

Wilkinson, S., "From the Top
Musician, August 1993, p73.

MIDI Basics, Part 1", Electronic

Wilkinson, S., "From the Top: MIDI Basics, Part 2", Electronic

108

Chapter 7 conclusion

Musician, September 1993, p70.

Wilkinson, S., IIFrom the Top -'M-lDI Implementation Charts II ,
Electronic Musician, March 1993, p69.

Wilks, A., liThe analysis of Computer Music Network and the
implementation of essential sUb-systems ll

, M.Sc. Thes-is, Rhodes
University, 1994.

Yourdon, E., Constantine, L., Structured Design, Printice-Hall,
Inc., Englewood Cliffs, N.J. 1979.

Ziffer, A., IIMultitrack Recording ll
, Eletronic Musician, January

1991, p44

109

Appendices

.;; -..

Appendix 1

Essential Modelling

110

Appendices

1.1 Enviromenta1 Model

1.1.1 Context Schema

111

______ . __ ---1--~::..:.:.~-._:;::.-~--'-~-;:;~- ._- -- -::0:--. "-'-'"-~'-~' --•. '=::,"-,-"-.;'--~

device config request.

Mld'N.I'd ~ P "'" device confio. table

User I Portld

'\ I User

device symbolic name device list

channel number

, ,0nn.,lIan ,"q~ source device list

source device list reg.
MIDI Net System destination device list

source device

dest. device list re
connection list

MIDINet 1 IYI',"",I III""'~~~HV..;;JI "VIII .. I IV ~1~"""111 ~ Unit

device infor. to the system

MIDI messaoes from a device connect. infor to the system

MIDI
Device 14: "

connect. infor request

device infor. request

~;" ~------ '" ~

1.1.2 Event List

User make a device configuration
User enters the MIDINet ID.
User enters the Port ID.
User enters device symbolic name.
User enters the channel number.
Use~ make delete devices request.
User enters device to be deleted.
User requests a device list.

ie"guest.

User make establish connection request.
User requests source devices' list.
User requests destination devices' list
User enters source device.
User enters destination device.
User requests connection table.
User make a 'break a connection' request.
User enters a connection to break
MIDI Messages enter the MIDINet from a port.
MIDI messages from an Ethernet.
Devices config. information from an Ethernet.
Delete device data from Ethernet.
Establish connection data from an Ethernet.
Break connection data from an Ethernet.
A unit make load device information request.
A unit make load connection information request.

113

Appendices

:."" "'.-

Appendices

1.2 Information Model

114

,----.f ..

IN port
t

'. j Source device

'" Midinet Id "'Midinelld
I fonnecled to connects

'" Port Id '" Port Id /'
II

. Channel #
,

• Port type
. Symbolic name

. device name (R)

,

I

MIDINet Port device

• Midinet Id • Midinet Id "'Midinet Id
I belongs to has

~ it ./ I . # of IN ports
II '" Port Id • Port Id ..

. # of OUT ports . Port type · Channel #

. device name (R) . symbolic name

· device type

,
,.

Destination device OUT port

, '" Midinet Id connected to • Midinet It!
connects

'" Port Id II /. i'-... '" Port Id II "'Channel # V
~

• Port type . Symbolic name
• device name (R)

~ l ., ',. :, t' f , M.,,", , * 'iN .' ," 1:1"") ';.tn'·

..

connected to

connected to

., J

Appendices

1.3 Behavioural Model

1.3.1 Response List

Event
Resp

Event :
Resp :

Event :
Resp · ·

Event :
Resp

Event
Resp

· ·

· ·

Event :
Resp · ·

Event
Resp :

Event :
Resp

Event :
Resp

User make a device configuration reguest.
The system prompts the user to enter the particulars
of a device.

User enters the MIDINet ID.
System checks validity of the ID and respond with an
appropriaate message.

User enters the Port ID.
System checks validi ty of the ID and respond wi th
appropriate message.

User enters device symbolic name.
The system checks validity of the name i.e should be
unique and respond with an appropriate message.

User enters the channel number.
The channel number is verified and appropriate message
is issued. The system checks the combination of IDs
for validity. The device is included to the device's
list and is passed to other units.

User make a connection table request.
The system displays the device list and the connection
table.

User requests source devices' list.
The source devices' list is displayed. If the list is
empty, then a message is issued,

User requests destination devices' list.
The destination devices' list is displayed. If the
list is empty, then a message is issued.

User enters source device.
Source device is highligted or the message is issued
if already involved in a connection and the user is

117

Event :
Resp · ·

Event :
Resp

Event
Resp

Event

Resp

Event
Resp

· ·

· ·
:

· ·

Event :
Resp · ·

Event :
Rest

Appendices

warned that the connection will be broken if he
insisted.

User enters destination device.
Destination device is highlighted but the user is
warned if the device is involved in another connection

r - ~

and the connection is established i • e an entry is
created on the connection table old connections if any
are broken.

User enters a connection to break.
The connection is highlighted and the user is prompted
to break or abandon.

User make a 'break a connection' request.
The connection is broken.

User requests device list

The device list is displayed.

User enters
The device
particulars
broken.

device to delete.
is deleted from the tables and the

are deleted also and the connections are

MIDI Messages enter the MIDINet from a port.
The system identifies the message by the MIDINet ID,
port ID and the channel number it bears. The system
checks from the connection table if one of the
destinations is a local device. If its the case, it
does channel mapping and sent the message to the
device, else attaches the particulars of device and
send the message as a packet over the network.

Receives MIDI messages from an Ethernet.
Checks from the connection table for the
destination (s) • Get the actual number of the
destination device and send the message through the
appropriate port if the destination is not one of the

118

Event
Resp

Event
Resp

Event
Resp

Event
Resp

Event
Resp

Event
Resp

· · · ·
· · · ·
· ·

· · · ·
· · · ·

local device then it ignores it.

Devices configuration data from an Ethernet.
Updates the device list.

Delete device data from an Ethernet.
Device is deleted from the device list.

Appendices

Establish connection data from an Ethernet.
Connection table is updated : - connection is
established.

Break connection data from an Ethernet.
Connection table is updated :- connection broken.

A unit make load device information request.
The unit send all the information related configured
devices.

A unit make load connection
The unit sends all the
established connection i. e
table.

119

information request.
information related to
the whole of connection

Appendices

1.3.2 Transformaton shema

120

~~ .--.-

o Midinets list o Ports list

P1
device config. request ~

-------MiCJil\I"et fd '" devices list >-
"

POrlT~ »¥
------"D--e-v~ic-e-;S,..y-m--bro-;lic name

\ device infor. to Ethernet ~

Channel Number Manage Devices/Connections
"Ready message"

delete device reg. lII!>f
List devices reg.

-----device to de-'ele li!I*
create connection reg.

source device
destination device

break connection reg.

source devices list reg.
destination devices list req.

D source devices o connections

source device list >-
destination devices lis,t)1r>

J "Invalid device" message ~

connection infor. to Ethernet

o destination
devices)

j

-_ .. - .. _ _._ .. _-, .. ~~":~I: 'O(.. -,,~_~-'i!'I._.~. __ ~t_ ... ~
~- -.--'.~-~"!'-.-

:io;--;

D MidiNet Units D Poris

Manage devices
\ device list >-

delete device infor. to Ethern

..
D connections

D source devices D destination devices

source device list re P12

source device

destination device list r,
Manage Connections "Invalid device" messa

destination device destination device list

break connection re'
connection list

est. conn. infor to Ethern
\

reak conn. infor. to Ethern

D source devices D destination devices

I .,
iNW!t6dl'i" "ti" II. b<i,. ~......w.", -u.~_~··~< ~'-~-..... <

_., \.

device config. req.

Midinet Id

Portld

device symbolic nam

channel number

D

Manage device
configuration

"Invalid name" messaae

l device config. infor. to Ethern >-

source devices . D destination devices

delete device req.

device list re~.

device to be deleted

D source devices

manage device
deletion

"device deleted" messaae

device list

delete device infor. to Ether.

o destination devices

..... " _ ~~--..~ 'tt" ••) 'J- ,." m' t
" ... m'~L"·iYi¥T"b?·Wtlff#"l'if"'f''',};r''ii6t"'.iwWiW¥f'tii.

-------- _._-----------

Midinet Id

symbolic name

device config. re

l.

Accept device
Midinet Id

configure
device

"Invalid name>-

symbolic name

: ;.~~' .'-! "".;;-;.~,~,. :;.,,...~:.:_'';~-r';'>o""-"'!. ... :;;'7-;·':::'~f.';::;_·.'i:I.; :''''':;-,-.,.....,. --. -. -:c-::;:;;;1~.:n"~}~'~--"1-~-. .~._, .. ;.,.n~ ,.,., ,.:.-, ..• ·~--".,; ••,.;"·r'.,.:;-.,..

Send data
to other
Midinets

o

"Invalid Id" messaae

device confia. data to Ethernet

device list

o destination devices

~tt'~?Ff"dW' "·,\e< <"~""2"··n!·'*ri ·"·'i·-h· ,t. ""ri""",,' ·~~w.."'-'_""""""'l_'" • , ___ --.J.~ __ .~ .. ._...........:..t"...t.......J ...

• .)1

'-

delete device req.

P1121

accept device
deletion req.

device list req.

list devices

o devices

device

device list

o devices

P1122

delete device
"device deleted" message ~

"invalid device" messaae

delete device infor. to Ethern

~ , J i;;:;t~~Wf _. waf"", ... w",,,1i_ " ... '·_'''6''''....,· .. '_.... '''''"""-''4"''""",,, 'b""W" , ";"/"",_""""",","""",,,, la'" ""'''''''''''!<i!ii'S'SWWti1Wif9''*1if':J

-

establis. connection req.

source devices list req.

destination device list req.

source device

destination device

o source devices

o connections

P121

Manage connection
establishing

\ source devices list >-
destination devices list >-

/ establish conn. infor. to Ether >

o connections

o destination devices

break connection re~.

connection list re".

connection to break

P122

Manage connection
breaking

,
connection list

break conn. infor. to Ethern

"connection broken" messa

.WltSW1C1iiirtalifetr'fflMrb'P!h'lfii>l!!SQr!1tJRI'i\t;t,MIa!'.tHR?iHitr..,NillID1;;''11I!i!ti!XW..,ltI14ftW,*).'l!.1>Ctqitrl ">Y' ti'Mt1'· In a' h Wt'XSY? r \\:&N"""'"''t5W'MJts):,j:m'1k NSf' .. "wltd'N' 'h1itr=nk***b?k:1m" 7cPYlilt#!il'iin(jjVWtiMMQfinI'btI'Q1''''Y 'tlikWii1ii!F¥¢':i4¥lSFfW":!'ti1iH'''\,;!ljh'5S H' <tit"' t'''".,&NWiw",ih'ibD'8. A""~ ':Doitl!.' •• .Ijrlr"~;...r.<:.I"",,,,,,, ... ,,,,,,,,,~~~I_~~_~~.h-

o connections

establish connection reu.
o destination devices

list connection re
connection list ~

list destination device r destination device lis>

o source devices ;.

source device

list source device source device list ~
stablish conn. data to Et!

destination devi

\.
. ""'"·'''''-''h!",.{.J~f>

·~r~b, .

break connection re ' ~'Wl II'V~~ClMQ >-

connection

list connection rey, connection list ~

o connections

i ,- ---,----------------

o connections

"connection broken" messag>
"Invalid connection" messa'

break conn. infor. to Ethern

~iliewom!iftI .. li&" .. """-".;il .. b .. " ... ',," '''' " ., '"'''' " , .to,," t' 1 ''',,' ' io 1<"0< '",' .. "' .. "" .. '",'" " .. " •• ", ' '"' ""-,,, "",, ... _ .. Wd '" ": '·".·_·" 1 II h ,,' (' ,ot C' ""H'H!¥?FNI!%oFM"""'b"yw'WtJii...Ji

Midi message from a device

Midi message from Ethernet

D source devices

o Connections

P2

Process MIDI
Messages

Midi message to a device

midi message to Ethernet

D destination devices

\, , '''M'W . "" • "OM' ". T' ,. ,oj oM' ., .. 'W' ,,,, <"' 'M 11'&" I'" ! •• ," •• , W yr'·"I.+%"miSiiW",:¥" ir"ti"ENf'WfS's:'¥!!ffJ! ~~~.,., 'dHd"'·~JV"fi!"'S"i";I.11!b5'¢HW'+'l'jm t hA 1bWzi:!",f

MIDI message from Ethern

D source devices

" "~M'"

~-·--·~I·

D connections

P21

Process MIDI
Messages from

Ether

D destination
--------~d~Q~'¥!Kic~Q.5______

MIDI message from a port

D source devices

~- "-_. - . --_. ---_. -i' '.' c- ~·-~~.=::c",-=-';cc.'"O,=oc.,,:"=~c-~

D connections

P22

Process MIDI
Messages from

a por

MIDI messa

D destination devices

o connections

load config. data reg. "'-./ P3

load connection infor. reg. ~ \ device config. data to ethemet
\

Process Config. data
device config. data '- I from Ethem ..
delete device data

connection data to Ethernet
establish connection data

break connection data

o source devices' o destination devices

"

'-H !I" it ·-3 -V"'frtZPiMnf!

device config. data

deleted device data

break conn. data

o source devices

'\

o connections

P31

Process dev./conn.
data from

Eth

o destination devices

load device. config data req.

load connection data re

o

b,-.-- , "",,--_ .. "_

_ .. --".-.-".~.~ ... - .. ~-~ •. --<-", . ~

o connections

P32

Load dev./conn. data

/ connection data to Ethern ,

source devices o destination devices

J

Appendices

1.3.3 Data Dictionary

Device Config. request = * selecting from the menu the option to
configure a device *

MIDINet ID = 1 {digit} 10
* A byte long number which uniquely identifies a MIDINet unit *

Port ID = 1 {digit} 4
* A byte long number which uniquely identifies a port on a
MIDINet unit *

Port Type = {char - I/O}
* Indicate whether a port is an In or Out port *

Devices' Symbolic name = 4 {character} 10
* ten character long string that uniquely identifies a device
within a MIDINet unit i.e identical symbolic names can exist but
on different MIDINet units *

Channel Number = 0 {channel level} 16
* channel number that is set for a device on which MIDI messages
are to be transmitted or received *

Device = MIDINet ID + Port ID + Symbolic name + Channel #

Source Device = Device

Destination Device = Device

Establish Connection request = * selecting on the menu the option
to maintain devices *

Source device list request = * selecting on the sub menu the
option to display the source devices' list *

Source Device list = * a list of all devices (source devices)
connected to In ports on every MIDINet unit within the system *

Destination Devices List request = * selecting on the sUb-menu

133

Appendices

the option to display the destination devices' list *

Destination Device List = * a list- of all devices connected to
Out ports on every MIDINet unit within the system *

User enters a source device = * A click on one of the source
devices on the list * r· -

User enters a destination device = * A click on one of
destination devices on the list *

Establish a connection request = * confirmation command to create
a connection *

Connection = Source Device + Destination Device.
* an established route for message between two devices *

Connection table = * A list of a created connections, showing the
source and the destination device together with MIDINets and
Ports IDs to which they are connected *

Break connection request = * selecting from the sUb-menu the
option to break a connection *

MIDI message = * a standard three byte long MIDI Message *

MIDI message to an out port = MIDI message
* a standard MIDI message sent out to a port *

MIDI message to Ethernet = Source device + MIDI message
* altered standard MIDI message :- packed with the source device
into a packet *

Device config. data = MIDINet ID + Port ID + Symbolic name +
device config code
* a configuration information for a particular device. Device
config code (DA - Device to Add) *

Delete device data = MIDINet ID + Port ID + Symbolic name +
Delete code
* the particulars of a devices to be deleted from the system :-

134

Appendices

Delete code (DR - Device to Remove) *

Establish connection data = Source·device + Destination device
+ establish connection code
* connection information and the code (LE - Link (connection to
be Established) *

Break connection data = Source device + Destination device +
breaK connection code.
* connection information and the code (LB - Link (connection) to
Break). *

Load device information request = * an instruction for a unit
with the lowest identification number to send device
configuration data *

Load connection information request = * an instruction for a unit
with the lowest identification number to send connection data i.e
the connection table information *

135

Appendices

.:, -

Appendix 2

Implementation Modelling

136

Appendices

.:; -~

2.1 Modelling the interfaces

137

I

o Incoming
MIDI data

buffer

.\
interrup\

~
/' P

I interrupt \)
\ handler

" / ,-
trigger I

r

,

.:

'- ,MIDI data available

, --~// P '\
I Control MIDI \

) processing }

/' \ I
/' , /'

enable /' -"--I
/' /,' T

/' /' /'/' I 1
___ j.; /' I 1

proceS~cYMlDI data availablj 1

Process MIDI /'. / J

o outgoing port MIDI
data buffer

D outgoing
network MIDI

data buff

enable /

/
/

I

I
I

I

/

I I
/ I

I enable

I
I
J

I
I
I
I

I

D

I

\
interrupt \

~ ./ p-"
I packet)
\ driver

" / -1-

incoming
network MIDI

data buff

" " ~IDI data available

" " ~--,
/ p "

I
Control MIDI \
processing

",..;")
", ./ ",,,,,,, 'r-

", MIDI data processed J

outgoing MIDI
data buffer

I
I

J
I
I

J

J
J

/

J enable

\
\
\ interrupt

j; ,
/' P \

I packet \
I driver }

\ / , ./

-\

\
\

D config data
buffer

'Config. data available , , ./-,
~/ p '\

I Control Config. \
\ data processing }

\ /
....... ./
/--

/
/

i enable
/

, I

., ...

Appendices

2.2 stucture Charts

.: --

141

--------<-<~~~t~~ L:" -'-:=-"'. __ ·,_"'Y:·.,L""':'-:'-I-'-:-':::'=7~~ ~ U-'"' .~f'l" "'-"'~7=<'''''''''.

11 Manage devices

device

devices

device list

device

+

.name

flag

MJd PJd

l 1 i II

validate Validate -~ .. v~ MidiNetld Portld
I

I,.
I I I"~,.
' . ..I~

'C"d Qt,' "11'- 't' .. ," "rh" .,. """'1T'n"hVStC*,,?"i*#&""'i/''''8%'W 'inrIlMcit1iY '~''f. fffi<" tfb h
"., '. "~""'~~"I~""~>~i.i.:l~~.&(:' .' j 1/ ',,*, Me- ",%) r ±'¢H',,"21tl',,?zbn

iili" -

- --~ -,., .. --.--.-~.-'---~- ..

search for,
connection

----__ 1 } ___ ...,---~~ ... r- ',~~,_, F.?"""""1oi:: ,_ i S,"-"='5'!'Effi4¥P _ ,k#;Q._ ', :. e&tt.'-

dest. device

connection

~

Update
connections

table

connection

conection Ust

add
co",nection

1

Manage
connections

i
source device

select
source device

source device list

Write connection
to net. buffer

dest. device

connections

connection list

,select
destination

device

destination device list

,\

~ i. ; J
Wr4W'?WfflW".' ',,""'""""fijjlw,..""'""b,·,,"' '''''''''' ,_ ' .', ., . "" ' ·'w·' ·'_"·n,,,. f" J" """"'«""0"" "A,'U, """,,,' ",," ""7,,' .,' .. ". ,. ' """·,I-"'*'''Ij'\l.oi'''';'6o-?'*'.;'N'::'r''t'.:!''':::.!.2!2~;::..:::.

::.~'~:~' . ':'. "'-~~...l.~~~--'- -

- ------~----~---------,

21 Process Midi
from Ethernet

source device

1 I f
dest. devices

211 Determine
dest.

for a message

connection list

2 Process Midi
messages

212 Write Message
to a port buffer

,

221 Channel
Map

22 Process Midi
from a Port

222 determine
destination

connection list

midi message

;

223 write a
message

to a Network

I : '
i J

iWi##iitt'i'iHff$4"1U?fWt"h:iiVij~'{PKlb"bP" "C »-:ttttt=; *'" rd' Ii 'H"tiP :) 'k' ~# an!'"'? '.t J?i;' I:,' 'f6::w"·ijx'*W"R1a\t')r't*tWb§»<'-W"."'~6"t,;"·;¥,,,r·!WI.r':"fart''frm
~: ... ~'" I ' '1~"'T,,",.~ ... ~\..ttl~,~~, f' _ " ' .. T"""'-,

,..

~l!'IIIlr'

-~-~-"---~--'---'-" -~

mangeconfig
device

Process device
data

device list

manage
deletion

Process config
data from Etherne

Process
device/connection

data

conn. data

J
Process

conection data

:onn. data

+

manage
Establish

connection list

\

manage
Breaking

Load
device/connection data

Load device
data

device list

, Load
cpnnection

data

connection list

I
I";"

,.·~,;l::,;:r;~~:~_"'?(;n1:.-1,"~;::i."l';t:'li..~~~~h

Appendices

Appendix 3

MIDI Messages

I I I o - 127 I MIDI Data r - - I Data 00 - 7F

80 - 8F 128 - 143 Note Off

90 - 9F 144 - 159 Note On

Channel AO - AF 160 - 175 Poly Key Pressure

status BO - BF 176 - 191 Control Change

Bytes CO - CF 192 - 207 Program Change

DO - DF 208 - 223 Channel Pressure

EO - EF 224 - 239 Pitch Wheel Change

FO 240 System Exclusive

Fl 241 MTC Quater Frame

System F2 242 Song position
Pointer

Common F3 243 Song Select

status F4 244 Undefined

Bytes F5 245 Undefined

F6 246 Tune Request

F7 247 End of Exclusive

F8 248 MIDI Clock

F9 249 Undefined

System FA 250 start

Real Time FB 251 Continue

status FC 252 stop

Bytes FD 253 Undefined

FE 254 Active Sensing

FF 255 System Reset

146

Appendices

Appendix 4

Netlink Protocol

147

Appendices

4.1 Data flow diagram

148

~'o,-.-• ..

t
confirmedi

r
~

"Who follows ?"

I

It;,...;,,

~

4 Wait for
a token

no
activity

1,""",ved t
token

5 Confirm
reciept

time
expires

8 Repair
a break

~

~
1

-I

,..:.:....---=--~-=----

2 Initial
(Client)

" no
activity

activity
present

't
I 3 Wait Solicit

accepted

I

pass
token

x

set
category

w
9 Wait in

background

Accepted

1 Initial
(controller)

create token

~
6 Running

~

[

time expires/
~idders accepted

7 Wait for
bids

1

invite
bidders

~

_,, __ .~_ •••• 1,,_ __. ___ • . ,.- c& we", , .,1 ,,,,,,,.","" ""c+B,"""W""".WWW'IfC"(W$i5'/'t,J

4.2 Algorithm/Rules

SOLICIT

Controller (* running state *)

if ANT category not empty then

invite a bIDder in ANT category

time = Slot time
wait for 'time'

If 'time' expires then
try next station

else

Appendices

set successor (* there is a bidder *)
else

pass token (* Waiting for token state *)

If NA category not empty
invite a bidder in NA category (as above)

Station waiting to join (* solicit wait state *)

wait for invitation

if solicit invitation then
send request to join
set predecessor
set successor

else
wait

(* from the invitation *)

(* wait for token state *)

(* wait solicits state *)

station successor (* wait for token state *)

150

receive join ring packet
set predecessor

Station predecessor

receive join ring packet
set predecessor

Leave ring

Token holder (* running state *)

send set suc/prede-cessor message
pass token
exit

Token holder's successor (* wait for token state *)

receive suc/prede-cessor message
set predecessor

Token holder's predecessor (* wait for token state *)

receive suc/prede-cessor message
set successor

Change Category

Token Holder

if No data and count reached N and ring > 2 then
send set category

else
pass token

151

Appendices

Token holder's successor

receive set category
set predecessor
update internal current ring

Token Holder's predecessor

receive set category
set successor
update intenal current ring

Other stations

update internal current ring

Ring Initialization

Controller (* initilise state *)

create token
successor = predecessor = myid (* single *)

Dead Successor

Token holder

pass token
wait for slot time

if nothing from successor then
pass token again
wait for slot time

If nothing again and sid-mid # 2 then

152

Appendices

Appendices

repeat
send 'who follows' (* Repair break state *)
wait for slot t.ime (*Confirm receipt state*)

if nothing then

else
try next station

set successor
pass token

until reached successor or successful bidding

Token holder's successor (* wait for token state *)

receives 'who follows' message
send 'set successor' message
set predecessor

Any station

update internal link

No token

Controller
(* wait for token state or wait for solicit state *)

start 'last time heard of token' clock
if expires and no token and lowest ID

start ring initializing (* initialise state *)

153

Glossary

GLOSSARY

.~ .

Bandwidth: The information capacity of a communications line,
this is measured in Hertz (Hz) and is the difference between the
lowest and the highest frequency which can be carried on the
line.

Channel: An information pathway over which MIDI data is
transmitted or received.

Channel number: The lower four bits of each MIDI status byte
which indicate the MIDI channel number for the data bytes that
follow.

CSMA/CD: Carrier Sense multiple access with collision detection,
the well known local network medium access protocol which
originated with Ethernet.

Daisy chain: MIDI devices connected in series.

DIN - Deutche Industrie-Norm: A standard type of electrical
connector, developed in Germany.

Effects: Devices that change the characteristics of an augio
signal passed through them.

Fiber optic: An increasingly popular type of communications
medium in which light travelling within very fine fibres carries
information: offer very high bandwidth, and is immune to
electromagnetic noise.

FTP: File transfer protocol, a generic name for file transfer.

IEEE: The International Electrotechnical Commission, responsible
for standardization in the area of electrical engineering.

IP: The Internet protocol developed for the US Arpenet.

LLC: Logical link control, a sublayer of the IEEE/ISO LAN

154

Glossary

reference model.

MAC: Medium access control, also a sublayer of the LAN reference
model. Together with the higher LLC, corresponds to the OSI data
link layer.

Mixer: Sound mixer.

MTC~ MIDI Time Code:
devices.

A means of synchronizing events between

Patch bay: unit for connecting sound devices.

Packet: A block of information.

pitch shift: Split signal producing thickening of a sound or a
harmony.

Preamble: Precedes the operational part of a packet and is used
for receiver synchronization.

Quantize: The rounding off of rhythmic values to a particular
value, usually used to "correct" rhythmic errors.

Reverb: An effects device used to simulate the ambience of a
room.

Sample: The digital recording of a sound. Sampling instruments
have the ability to record, store, manipulate, and then play back
sounds.

SMPTE - Society of Motion Picture and Television Engineers: This
technical union created the standard synchronization code for
film and video.

System Common Messages: The group of MIDI messages used
primarily to enhance the functions of other commands.

System Exclusive Messages: MIDI codes for sending data for a
specific instrument.

155

System Real Time Messages:
devices.

Glossary

MIDI messages that synchronize

TCP: Transmission control protocol, the host-to-host protocol
which all Internet hosts use to communicate.

Track: Band running along a tape (or area of compu~er memory)
which can be recorded independently of other tracks.

Velocity: In MIDI, the speed with which a key, drum pad, or
string is hit or released.

Volume: The MIDI code used to adjust the overall output level
of an instrument.

UNIX: A well known computer operating system which was developed
at AT&T Bell Laboratories in the USA.

156

ArcoNet 16
Audio generators 5
Audio mixer 6, 7
Audio modifiers 5
Audio patch bays 7
Audio recorders 5
Behavioral model 45
Channel number 24
Channelisation 28
Connection 24
Context schema 46
Context switching 33
Controller 5
Couple 55
CSMA/cD 90
Daisy chained 12
Device drivers 34
Effects units 6
Environmental model 45
Essential model 45
Ethernet 94
Ethernet At 40
External events 46
FDDI 91
Fibre optic 15
FIFO 74
FILO. 74
Filtering 26
Heap 34
Identifier 48
Implementation model 45
INS8250 29
INS8250 Addressable locations 30
Interrupt controller 30
ISO 62
Line Control register 31
Medialink 16
Memory management 33
Merging 11
Message passing 33
MIDI 9

157

Glossary

MIDI Mapping 60
MIDI messages 26
MIDI parsing 58
MIDI patch bay 27
MIDI patch bays 11

10 MIDI Time Code
MIDINet Id 24
MIDINet unit 15, 19
MidiShare 17
MidiTap 16
Modem Control register 31
Modem Status register 31
MUART 29
Multi-channel receivers 22
Multi-channel transmitters 22
Multi-part device 23
Netlink 91
Packet drivers 41
PC-Xinu 20
Port Id 24
Priority 33
Queue length 72
Queuing 71
Referential attributes 48
Reverb 6
RHOCMN 12
Running status 58
Samplers 5
Scheduling 33
Semaphores 33
Sequencer 10
Single channel transmitters 22
Single-channel receivers 22
SMPTE 12
Status byte 60
Symbolic name 24
Synchronization 10
Synthesizers 5
TCP/IP 64
Throughput 84
Token Bus 90

158

Glossary

Token Ring 41, 91
Token. 92
Transformation schema 48
Transposition
ZIPI 16

10, 26

Glossary

159

