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ABSTRACT 

The biology of three large cyprinid fishes, Barbus holubi , 

B. kimberleyensis and Labeo capensis , was studied in a large turbid 

man- made lake on the Orange River , South Africa . The influence of 

environmental fluctuations on population dynamics was examined in 

relation to biological adaptations . On this basis inferences were 

made about the effect exploitation would have on the populations, and 

management alternatives were considered . 

Lake le Roux is situat ed in a semi- arid area , downstream from 

another large reservoi r, Lake Verwoer'd . Tn the pristine river, 

flooding is seasonal, and floodwaters carry a heavy silt load . Lake 

Verwoer d acts as a silt- t r ap and changes in tur bidity in Lake l e Roux 

(Secchi disc readings range f r om 15 to 160 cm) are i nfluenced by 

hydr ological management and are not necessar ily seasonal . Wat er 

t'emperatures in the regulated river connecting t he two lakes depend 

on the pattern of water release and fluctuations in IDke levels depend 

on management practices . 

Reproduction was studied by examination of gonads and from the 

distribution of newly hatched juveniles . Age and growth was interpreted 

from the reading of scales and otoliths . Relative year class strength, 

dispersal and mortality were monitored using catch data from a regular, 

standardized gillnetting survey . 

The Barbus species spawn ,in the regulated river in spring or 

summer . Spawning is coordinated for a large part of the population 

and B. holubi spa,m four to six weeks earlier than~. kimberleyensis . 

::he juveniles are 'initially found along the shoreline , but later move 

~:lto the pelagic zone and disperse throughout the lake . Year class 

strength is dependent on time of spawning and a late spawning results 

in a poor year class . ~or this reason, year class strength of 

_ . kimberleyensis is generally poor , but there is a greater variation 

en year class strength of ~. holubi , which is the dominant large Barbus . 

The t>JO Barbus species exploit the pelagic zone, visually predating 

on zooplanJdon . When turbidity increases large scale mortalities occur , 

especially in ~. holubi . Mortalities more than compensate for the 

reduction in car r y ing capacity, and the size of t he r educed population 

may be inversely related to initial abundance . Growth rate is similarly 



affected by turbidity and density, and size at sexual maturity in 

B. holubi is reduced when growing conditions deteriorate . 

Labeo capensis do not form a homogenous population in Lake le 

Roux. Spawning occurs throughout the lake, but is erratic, probably 

depending on local rainfall. At each locality, more than one spawn­

ing may occur during spring and summer because of temporal variation 

in gonadal development. Juvenile survival appears to be mainly 

dependent on water level fluctuations, and strong year classes were 

formed w!len the lake was filling during the first tHO years. Subse ­

ouent year classes were weak. 

Subadult and adult ~. capensis are herbivorous and depend on 

autochthonous production for food . They are relatively sedentary, but 

when turbidity increases fish smaller than 200 mm disperse, probably 

in response to food shortages. Mortality rates may be accelerated but 

mortalities are not as high as in B. holubi. The growth rate of 

~. capensis is variable and depends on turbidity and population density. 

Size at sexual maturity remained relatively constant during the study 

period . 

B. holubi has a relatively fixed reproduction cycle in Lake le 

Roux and exploitation is likely to dampen fluctuations in population 

density . Population growth and stability could be further promoted 

through hydrological management . B. kimberleyensis does not represent 

an exploitable population in Lake le Roux, although the large size 

obtained by this species (>3 kg) may be an attraction to anglers . 

~. capensis does not appear to have the potentilJ.l to withstand sus­

tained exploitation because of its erratic and generally poor repro­

ductive success . However, the species is long-lived and can sustain 

relatively high densities ;mder harsh conditions because of its rela­

tively low mortality rateR. 

It Has concluded that harvesting of B. holubi must be flexible 

to promote maximum benefits to commercial and recreational fisheries, 

but ~ . capensis which is not an angling species, should chiefly be 

exploited when catches of B. holubi are poor, but left to recover in 

between. An alternative management strategy would be to commercially 

exploit the fish populations of several reservoirs . A monitoring pro­

gramme could be established to decide when each reservoir is to be 

exploited to see to the interests of commercial and recreational 

fishing alike. 
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The P. K. le Roux Dam 

The height of the wall is 107 m, the 
highest of any dam in South Africa . 
The width is 765 m. The lake formed 
by the dam is 138 km2 in area ang has 
a storage capacity of 3 185 x 10 ~ . 



THE BIOLOGY AND MANAGEMENT CONSIDERATIONS 

OF ABUNDANT LARGE CYFRINIDS 

IN LAKE LE ROUX, ORANGE RIVER, SOUTH AFRICA 

I. INTRODUCTION 

"Gi ve me a fish and I eat fo r a day 
Teach me to fish and I eat for a lifetime" 

The present study arose from Jackson's (1977) recommendation that 

a commercial fishery be established on Lake Ie Roux to be managed by 

the local Griqua popUlation , thus stimulating an economically depressed 

r egion. He realized that not only should a fishery be established, but 

that such a fishery had 'to be given management guidelines , derived 

through comprehensive research . 

The Orange River Development Project (OROP) has a long history. 

I t is the largest of i ts kind in South Africa and includes the erection 

of several dams for flood control, power generation, diversion of water 

for irrigation, domestic and industrial water supply and extensive inter­

basin transfer of water through a tunnel (Stallebras, 1963). Fish pro­

duction and exploitation has in the past not been considered in water 

development schemes in South Africa (Jackson, 1976). However as the 

OROP was becoming a reality, attention was focussed on the potential 

value of fisheries for recreation Cdu Plessis & Ie Roux, 1965) and com­

merce (Hamman, 1974b; Jackson, 1976) . 

The increased awareness of the potential value of freshwater fish 

has led to a multidisciplinary research project on the second man-made 

lake created on the Orange River, Lake Ie Roux. The project involves 

several agencies and research workers in the fields of physical and 

chemical limnology, primary production, zooplankton, fish feeding eco­

logy, fish biology and gear suitability and effectiveness. The study 

r eported on here forms a part of this r esearch project and focusses on 

the biology of the major fish popUlations . 

A. OBJECT OF STUDY 

The overall objective of the present study is to examine the 
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biology and life history strategy of the abundant large cyprinids of 

Lake le Roux and to formulate management guidelines based on this 

research. It is not intended to recommend a specific policy but rather 

to make policy makers aware of the consequences of different manage­

ment strategies on population growth and structure. More specifically, 

the objectives of this study are : 

i. To describe the biology and life history strategy of 

Barbus holubi, ~. kimberleyensis and Labeo capensis , 

three important cyprinid fishes in the lake. 

ii . To determine how a fluctating lake environment affects 

these populations. 

iii. To discuss the effect which varying intensities and 

modes of exploitation may have on the pr oduction and 

population structure of the fish species . 

iv . To discuss the influence hydrological management has 

on the life history of the fish populations . 

B. ORIGIN OF AND NEED FOR THE STUDY 

1 . Importance of impoundments and their fisheries. 

In 1978 the surface area of all the world ' s reservoirs was esti­

mated to be about 600 000 km', and reservoirs constituted a prominent 

feature in the aquatic ecosystems of every continent (Bhukaswan , 1980). 

Although fisheries are rarely considered when a new reservoir is created, 

Lowe- McConnell (1973) concluded in a review article that the benefits 

derived from the use of this resource are often considerable. 

The exploitation of fish populations in impoundments varies and is 

chiefly in the f orm of recreational angling in the more affluent soc­

ieties, but in the form of subsistence or commercial fisheries in other 

parts of the world. Thus in North America management of reservoir 

fisheries is chiefly directed towards sport fi shing (Jenkins, 1970), 

although commercial exploitation may also occur and is indeed often 

recommended to improve or maintain good angling (Thompson , 1955; 

Parsons , 1958). Angling is the most popular outdoor recreation in 

U. S. A. and numerous small impoundments and several large (> 500 acres) 

reservoirs are specifically made for recreational fishing (Stroud, 1966) . 
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In other parts of the world , emphasis is on commercial exploitation 

and this is the case in Russia (Butorin , 1980), which in 1978 had ' 

122 000 km' of impounded waters (Bhukaswan, 1980) . In Asia, commercial 

exploitation is similarly of greater importance than recreational uses 

(Bhukaswan, 1980) . In Africa, commercial exploitation of the Great 

Lakes has played important roles in the economy of some countries and 

the several large reservoirs in this continent are also subject to 

commercial fishing. South Africa is an exception in that commercial 

exploitation of freshwater fish is negligible, but SUbsistence use of 

freshwater fishes is important in some regions such as Maputaland 

(Bruton & Kok, 1980). 

Originally, South African drainage systems were characterized by 

seasonally flowing rivers, and natural lakes are relatively rare . It 

is not surprising therefore that large number of darns have been erected 

to ensure permanent water supplies. In 1978 , South Africa had five 

reservoirs exceeding 100 km', 15 between 10 and 100 krn', 15 between 5 

and 10 km' and innumerable smaller ones (Davies , 1979). 

Unlike most other parts of the world, little use is made of the 

fish popUlations in t hese reservoirs. Recreational angling is important 

locally , near large populations centres (e.g., Cadieux, 1980) , and 

waters stocked with trout are much sought after but limited due to hydro­

climatic reasons (Harrison et al., 1963) . Commercial exploitation is 

negligible and this may in part be attributed to superabundance of cheap, 

high quality sea fish and a good distribution system (Bross, 1981). 

South African waters are dominated by cyprinids which are not valued 

highly as eating fish due to their bony flesh. However, cyprinids are 

valued eating fish in other parts of the world. 

2. Importance of cyprinids in man- ma,de lakes 

In North America, cyprinids are represented mainly by small spe­

cies (minnows) and these are often important in reservoir fish manage­

ment. They often provide the food for predatory angling fish (Jenkins , 

1970), but more often their high population densities cause problems. 

Controlling their numbers is attempted using poison (e.g. King, 1953 ; 

Hooper & Crance, 1960), draining (Finnell, 1954) Or partial drawdown 

during their breeding season (Shields, 1958). An ingenious way is to 
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introduce threadfin shad which multiply rapidly during the summer, effec­

tively competing with other small fish species, and whose numbers in 

turn are controlled by their low tolerance to cold wat er, causing winter­

kills (Parsons, 1958; Jenkins, 1970). 

I n Europe and Asia, cyprinids dominate in the commercial catches 

from floodplain rivers (Welcomme, 1979), and they frequently become an 

important part of the fish fauna in reservoirs. .In Russia, they are 

considere~ to be a desirable component of a fishery and the filling up 

of reservoirs is often done stepwise to establish several strong year 

classes by inundating new land during the breeding season (Il 'ina & 
Gordeev, 1981) . In India , c'yprinids form the major component of reser­

voir fisheries and reservoirs are normally stocked with 'maj or carps' 

(Jhingran, 1975: Sreenivasan , 1976). 

In Africa, cyprinids are chiefly riverine species but they may 

also often inhabit lakes. Lake-dwelling populations are (or were) 

often the mainstay of important fisheries when they concentrate in in­

flowing rivers during spectacular spawning migrations . EXamples of 

this include Bar bus altianalis and Labeo victorianus migrating from 

Lake Victoria (Whitehead, 1959), ~. mesops from Lake Malawi (Lowe, 1952), 

~. tropidolepis from Lake Tanganyika (Poll, 1953) and~. altivelis 

from Lake Mweru (Matagne, 1950) . The lake fisheries themselves are 

otherwise usually dominated by cichlids which are particularly well 

adapted to life in lakes, or as in the case in Lake Tanganyika, by 

clupeids and their non-cichlid predators (Fryer & Iles, 1972). 

Cyprinids, mostly Labeo, often play an important role initially 

in the fisheries of man-made lakes in Africa, but tend later to be 

replaced by cichlids . The former are primarily river-fish and are 

very fecund (especially the Labeo species). High mortalities normally 

occur when the rivers recede but in the new lake favourable conditions 

for their survival a r e created. Thus, in the years of filling the new 

lake tends to be dominated by cyprinids and/or other riverine species 

(e . g . mormyrids) . Subsequently species adapted to lake conditions, 

such as cichlids in inshore zones and clupeids in the pelagic zone 

(often associated with predators) become dominant, with cyprinids being 

confined to the 'riverine' parts of the lake. EXamples of this are 

given bel ow . 

The Middle Zambezi River prior to the formation of Lake Kariba 
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was dominated by cyprinids. Labeo species dominated in the catches 

(up to 60%) , but predators were also important (Jackson , 1961) . In 

Lake Kariba , the Labeo species were soon replaced by cichlids in the 

inshore fishery, except in the two uppermost basins (Begg, 1974). 
1980 their impor tance had declined further still (Marshall et al . , 

and although they still were the most abundant family in the two upper­

most basins, their relative abundance there had declined over 50%. 

Considering that those two basins only represent about 10% of the total 

surface area of Lake Kariba, cyprinids are now of minor importance in 

the inshore fishery . A clupeid - (Limnothrissa ",i6don) was introduced 

from Lake Tanganyika in 1967 - 1968 and by 1980 it supported an 8 000 

tons/year fishery (Marshall et al., 1982) . Associated with the increase 

in the sardine population was an increase in the tigerfish (Hydrocynus 

vittatus) population which is important in commercial and recreational 

fisher~es (Marshall ~ al . , 1982). In a pre- impoundment survey of Lake 

Cabora Bassa, Jackson & Rogers (1976) f ound that tigerfish were dominant, 

but that during the filling phase Labeo species dominated in the lake , 

and showed rapid individual growth . Unfortunately no subsequent studies 

on the fish fauna of this lake have been published. 

Similar changes in Lake Kamburu, Kenya (Dadzie, 1980) and Nyumba 

ya MUngu , Tanzania (Bailey et al., 1978) have occurred with cichlids 

becoming dominant and cyprinids declining in importance, but maintai~ing 

a presence in riverine parts of the lakes . In Lake Volta, West Africa , 

mormyrids and cyprinids declined although the cyprinids maintained a 

presence in the riverine region, while cichlids and clupeids with 

associated predators became dominant (Evans & Vanderpuye, 1973) . I n 

Lake Kainji, Nigeria, there has similarly been a reduction in riverine 

species and cichlids now form a ma jor component of the commercial catch 

(Blake, 1977). 
While cyprinids do not appear to be important in the fisheries of 

man-made lakes in Africa, except perhaps for the first few years, the 

situation in South Africa is likely to be different . This is due t o 

the increased proportion of species of this family with increasing 

latitude (Table 1) . This is explained by their r elatively high tolerance 

of lower temperatures sO although there is a decline in the absolute 

number of all species with latitude , the percentage of cyprinids in­

creases (Bowmaker et al ., 1978) . 
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Table 1. The composition of primary freshwater fish faunas 
(excluding exotics) of watersheds in southern Africa, 
arranged in order of increasing latitude (from Bowmaker 
~ al., 1978). 

Fish Family 

[J} 

'" [J} 

8 OM '" H '" '" 8 . 
0 '" oj H '" P< 
'H OM '" 0 oj P< 
OM 0 OM 'H '" til 
H 0 <:: OM OM [J} 

l? oj OM H rl H oj H H '" ..c1 '" Drainage H oj 
~ rl 0 ..c1 ...., 

;@ ..c1 OM OM ...., 0 
u U til U 0 E-< 

Zaire R. Nos. 75 73 52 112 32 64 408 
% 18 18 13 28 8 16 

Lake Malawi and Nos. 6 2 15 22 201 5 251 
Watershed % 2 1 6 9 80 2 

Zambian Zaire Nos. 12 16 34 25 15 15 117 
% 10 13 29 21 13 13 

Upper Zambezi/Kafue/ Nos. 5 8 32 18 25 12 100 
Okavango/Cunene R. % 5 8 32 18 25 12 

Middle and Lower Nos. 5 8 22 12 11 9 67 
Zambezi R. % 8 12 33 18 16 13 

East Coastal (1) Nos. 6 7 24 14 7 11 69 
Buzi/Pungwe/Save R. % 9 10 35 20 10 16 

Limpopo R. Nos. 1 2 25 8 5 6 47 
% 2 4 53 17 11 13 

East Coastal (2) Nos . 2 4 21 14 6 10 57 
(Inkomati/pongolo) % 4 7 37 25 11 18 

East Coastal (3) Nos. 0 0 16 2 4 3 25 : 
(Mkuzi to Mtamvuna R. ) % 0 0 64 8 16 12 

Orange/Vaal Nos. 0 0 11 2 2 0 15 
% 0 0 73 13 13 0 

South Coastal Nos. 0 0 16 1 0 4 21 
% 0 0 76 5 0 19 
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The fish fauna of South African reservoirs is generally dominated 

by cyprinids. This is true for most reservoirs on the Orange-Vaal River 

system, such as Lake Verwoerd (Hamman , 1981), Lake le ,Roux (this study), 

Barberspan (Goldner, 1967) and Lake Boskop (Koch, 1975) . A cichlid, 

Or eochromis mossambicus, was introduced into Lake Hardap (a reservoir 

on a tributary of the Orange River in South West Afr ica (Namibia»where 

it is now well established (Bloemhof, 1974). In other impoundments 

where conditions are warmer, cichlids may dominate as in Lake Doorndraai 

(Batchelor, 1974), Lake Loskop (Goldner, 1969) and Lake Luphephu-Nwanedi 

(Hecht, 1980). In Lake Strijdom on the Pongolo River, a catfish, 

EUtropius depressirostris , made up 50% of gillnet catches but was not 

encountered in a pre-impoundment survey , whereas Labeo species have 

declined from 70% to 30% and surprisingly cichlids have also declined 

slightly in the catches (Kok et al., 1978) . 

3. Importance of cyPr inids in South Africa. 

Unlike other African reservoirs, fishing intensity is light in 

South African impoundments. It may well be that the relative importance 

of different species would change if they were to be exploited . It is 

therefore important to study their biology and life history, since these 

are the determinants of how a species will react to exploitation. De­

pending on the extent of exploitation and environmental conditions such 

changes may not be necessarily reversible. 

Although some work has been done on the biology of the study 

animals (reviewed in the next chapter) , long-term biological studies 

have not previously been performed . In view of the highly variable 

environment, long- term studies are called for if our understanding 

of adaptation of a fish to its environment is to improve. 

The large Barbus and Labeo species are important components of 

most South African river systems and lakes . It is thus hoped that 

information gained in this study may have an application in the wider 

context of southern African fisheries management. 

c. STUDY AREA 

Most large African rivers experience seasonal changes, often 
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of considerable magnitude in such physical parameters as flow, turbidity 

and temperatures. The life histories of riverine fish are adapted to 

take advantage of these conditions (Welcomme , 1979; Daget & Durand, 1981). 

It thuspecomes important to establish the characteristics of the r ivers 

from which present fish faunas of man-made lakes have originated and how 

living conditions have changed. It is in this context that biological 

stUdies of fish faunas in reservoirs and their tailwaters must be seen. 

In this section the Orange River and the way in which conditions in the 

river entering .Lake le Roux have changed are described and finally 

character~stics of the lake are discussed. 

The Orange River is the largest South African river, 2 200 km 

long and draining a 650 000 km2 catchment (Edwards, 1974). The variable 

flow in the river and relative scarcity of water led to the Orange River 

Development Project. This scheme, designed for large scale irrigation, 

flood control and power generation, included the building of three dams 

and diversion tunnels. In 1970 the H.F. Verwoerd Dam was closed forming 

a lake of 355 km2 (5 950 x 106 m2
) and in October 1976 the P.K. le Roux 

Dam was closed 120 km downstream (Fig . 1) . Lake le Roux is 138 km2 

in area, with a storage capacity of 3 185 x 10
6 ~ (Kriel, 1972; Davies, 

1979) . There is about a 35 km stretch of river connecting the two lakes. 

A third large dam downstream from the P.K. le Roux Dam is in the planning 

stage. 

The Orange River originates in the Drakensberg mountains of Lesotho 

and drains westwards to the south Atlantic Ocean . Along its cuurse it 

runs through increasingly arid country (Keulder, 1979) . Flow is seasonal 

(Fig. 2) , and highly variable within as well as between seasons. There 

are instances when the river has not flowed for several months. Annual 

variation in flow downstream of the present P.K. le Roux Dam from 1948 -

1970 (before river regulation) ranged from 17 to 267% of the mean (Kriel, 

1972). 

Daily variations in flow are even greater and flash f loods, lasting 

f or a few days occur. It is likely that the magnitude of such flash 

f loods has increased considerably since the early 1800's due to erosion 

in the catchment (Jacot- Guillarmod , 1970). Flow in the tailwaters of 

Lake Verwoerd shows no seasonal trends, but has an assured mi nimum flow 

for riparian right owners downstream. Flow fluctuates in pulses lasting 

from a few minutes to several hours depending mainly on demand for 
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Figure 2 . Average monthly flow in the Orange River (1922 - 1970). 
(From Kriel, 1972). 
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electrical power. 

Water temperatures vary seasonally, but the creation of Lake 

Verwoerd has reduced seasonal differences in the river (Pitchford & 
Visser, 1975). Mean maximum summer temperatures in the river below 

Lake Verwoerd before it enters Lake le Roux have been reduced by up 

to 7°C (Fig. 3). 

The Orange River carries an average 0,6 vol % sediment load 

(Kriel, 1972), which depends on rate of flow (Keulder, 1979). This 

high load is largely attributable to unstable riverbeds. The upper 

catchment however has a stable riverbed, where increases in sediment 

load are unexpectedly high (Keulder, 1979), lending further support 

to Jacot-Guillarmod's (1970,1971) observations of serious erosion 

in the upper catchment. Approximately 90% of the sediment is deposited 

in Lake Verwoerd (Kriel, 1972), leaving the river below relatively 

clear. However, siltload is variable ' and Secchi disc readings in Lake 

le Roux have varied from 10 to 160 cm at different times (Chapter IV). 

Lake le Roux is relatively deep and narrow and has steep shorelines 

and limited littoral areas. The uppermost 20 km of the lake are in a 

narrow gorge (Fig. 4). Here the lake retains a riverine character in 

that currents are marked during times of water release from Verwoerd 

Dam and there is no thermal stratification. The average depth of the 

lake is 23. m, average breadth 1,74 km and the shoreline is 404 km long 

(Allanson, 1981). The lake is monomictic developing a thermal strati­

fication in early summer which does not appear to be ,directly influenced 

by the inflow from Lake Verwoerd (Allanson, 1981). 

Lake le Roux is situated in a semi-arid to arid area with average 

annual rainfall of less than 400 mm. Rainfall is highly unpredictable 

as to amount and timing (Dyer, 1981 ; Gorgens & Hughes, 1982). Rain falls 

mainly during the summer months (December to March), and then largely as 

isolated thunderstorms, but usually becomes more general in February to 

March. The catchment between the two dams has an average annual run-

off of about 110 x 106 ~ (Kriel, 1972). In contrast the catchment of 

Lake Verwoerd contributes 95% (7 180 x 106 ~) to the average annual 

runoff of the Orange River , excluding the Vaal River (Kriel, 1972). 

The tributaries of Lake le Roux have undependable summer flow and only 

two (the Seekoei and Berg Rivers) have enough permanent water to harbour 
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B 

Figure 4 . A. The uppermost basin in Lake Ie Reux looking towards 
the narrow riverine section. The shoreline is steep 
and rocky, and the water is heavily silt laden . 
A gang of floating gillnets can be seen along the 
left shore . 

B. An aerial photograph of the largest basin in Lake 
Ie Raux, 15 km from the dam wall . Steep and rocky 
shorelines are common thoughout the lake. 

< , i 



14 

resident fish populations. 

D. FISH POPULATIONS OF LAKE LE ROUX 

The fish species now inhabiting Lake Ie Roux all originate 

from the river fauna prior to impoundment, and are dominated by 

cyprinids. To date ten species of fish have been collected from 

the lake (Table 2) . The changes in relative abundance of these 

prior to and after impoundment have been discussed by Gaigher ~ al . 

(1981) . Although sampling procedures on the CPA gillnetting surveys 

were not standardized until April 1978, the following general pattern 

has emerged: 

i. Labeo capensis has consistently been important in gillnet 

catches, both before and after impoundment . 

ii. Barbus holubi was well represented in the river catches 

and expanded rapidly in the new lake. This population 

crashed in 1978, but subsequently recovered. 

iii . ~. kimberleyensis is relatively better represented in 

the lake as compared to the river . While not abundant, 

it is the third most important species in the gillnet catches. 

These trends were examined further in the present study. Other 

species were only of minor importance in the gillnet catches, rarely 

contributing more than 10% of the catches and usually much less . 

Gillnet catches do not, however, necessarily reflect this relative 

abundance. 

A minnow, Barbus anoplus, which reaches an adult size in the 

lake of about 70 mm, is abundant along the shores of the lake. Its 

life history has been studied in detail by Cambray (1982). He found 

that that this species rarely co-exists with juveniles of the larger 

cyprinids, but quickly colonizes newly created (or vacant) habitats, 

which is typical of an 'r' strategist. 

A catfish, Clarias gariepinus, grows to a large size and may be 

the most marketable of the species in the lake . Although catches in 

the gillnets are poor this may be related to thei r ability to detect 

the nets with their long, sensitive barbels (Bruton, 1978) . Occasional 

good catches are taken on longlines baited with fish . Growth rate and 



Table 2 . Fish species of Lake le RGux. Common names from Jackson (1975). 

Order Cypriniformes 

Family ' Cyprinidae 

Order Siluriformes 

Family Bagridae 

Family Clariidae 

Order Perciformes 

Family Cichlidae 

Order Salmoniformes 

Family Salmonidae 

Scientific name 

Barbus anoplus Gilchrist & Thompson, 1917 

Barbus holubi Steindachner, 1894 

Barbus kimberleyensis Gilchrist & Thompson, 1913 

Cyprinus carpio Linnaeus, 1758 

Labeo capensis (Smith, 1841) 

Labeo umbratus (Smith, 1841) 

Gephyroglanis sclateri Boulenger, 1901 

Clarias gariepinus (Burchell! 1822) 

Tilapia sparrmanii Smith, 1840 

Salmo trutta Linnaeus , 1758 

Common name 

Chubby head barb 

Smallmouth yellowfish 

Largemouth yellowfish 

Carp 

Orange River labeo 

Moggel 

Rock-catfish 

Sharp too th catfish 

Banded tilapia 

Brown trout 
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relative condition of this species in the lake compares favourably with 

that from other water bodies (Quick, 1982) . 

Carp (Cyprinus -carpio) were relatively abundant (10- 15%) in the 
a.. 

gillnet catches in summer 1978 to 1979 (Gaigher et al ., 1980), but 
-- J\ 

their numbers have subsequently steadily decreased . Occasionally , a 

large number of juveniles were caught in small beach seines, but they 

never appeared in the gillnet catches . 

Of other species, ~. umbratus normally makes up two to five 

percent of the total catches , but its distributipn in the lake appears 

to be patchy. Gephyroglanis sclateri is rarely caught and its complete 

disappearance from Lake Verwoerd (Hamman, 1981) indicates that it is 

poorly equipped for life in lentic waters. Tilapia sparrmanii occurs 

around the shores of the whole ~ake, but not in large numbers . This 

species is territorial and this may limit their population growth 

(Jackson, pers . comm . ). Their scarcity however indicates that other 

factors may be limiting their abundance. T. sparrmanii is a nest 

builder and water level fluctuations may adversely affect their 

reproduction. Relatively low water temperatures in winter may also 

cause mortalities. Only two brown trout have been caught since the 
"'-

lake filled (Gaigher ~ al. , 1980) and none in the last three years . 

E. DESIGN OF THIS STUDY 

In this study , an empirical approach has been adopted. This 

approach seemed reasonable in view of the cooperative nature of this 

programme and recent views reflect that this may be a trend . Rigler 

(1982) advocated this (p . 129): 

" .••.. 1 believe that the gulf between fisheries biology 
and limnology is unnecessarily wide. With a proper appreciation 
of the significance of empiricism in environmental science we 
will not only narrow this gap, but al so accelerate the development 
of new predictive theories that are so essential to any society 
that intends to base its environmental decisions on predictions 
of science rather than on whim" . 

The data were collected in the field, from an environment over which 

the researchers coul d exercise no control . The response of the fish 
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populations to a variable biotic and abiotic environment was carefully 

monitored . The key questions address the response of fish populations 

of riverine origin to a variable environment with special emphasis on 

the effect which exploitation might have upon them . 

Results often relate to two or more facets of the investigation. 

To facilitate the reading of this thesis, the main questions and avenues 

of r ese,arch·.have been summarized in a schematic diagram (Fig. 5). The 

major areas of research are de~cribed in more detail below. 

i . Distributional patter ns. The lake is large and the mobility 

of a fish species is important when decisions are made on 

exploitation . If local populations (or "stocks" ) are formed, 

then exploitation may lead to overfishing in one area of the 

lake while other areas may be unproductive due to high 

population density. IdeI\tification of a "unit stock" is a 

central concept in fish resource management (Cushing, 1981), 

and it has been suggested that even species of floodplain 

rivers which seasonally undertake long migrations may be 

made up of subpopulations (Welcomme, 1979). To determine 

the extent of mixing of fish between different areas of the 

lake , patterns of growth and recruitment were studied by 

locality . 

ii. Reproduction . The size of recruited cohorts is determined 

largely by reproductive success . It is therefore important 

to examine which factors may affect the reproquction and 

juvenile survival of each species. Time and locality of 

spawning were inferred from the occurrence of recently 

hatched juveniles in the marginal areas of the lake. The 

ultimate success of reproduction was measured as recruitment 

into a fleet of gillnets. This was then related to conditions 

during corresponding spawning seasons. 

iii . Growth and mortality. The combined effect of growth and 

mortality determine the opt imal age at which fish should 

be exploited , all other fa ctors (e .g . ease of capture, 

distribution and value of the fish) being equal. Growth 
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was determined usi ng length- frequency distribution , ageing 

from otoliths and scales, and backcalculation to length at 

check formation based on scale measurements. Growth curves 

were constructed for different seasons using the von Bertalanffy 

growth equation to relate char acteristic s of growth to those 

of the envi r onment . Mortality was inferred from catch per 

unit effort (CPUE) of year classes with time, as determined 

from the catches of a fleet of gillnets . 

! 

MANAGEMENT OF FISH POPULATIONS 
IN A VARIABLE ENVIRONMENT 

~ 
How uniform is the popUlation? 

What determines the size and age 
of recruited cohorts? 

What would be the effect of exploitation 
on yield and popUlation structure? 

How do environmental variables 
influence popUlation parameters? 

~ l BIOLOGY AND LIFE HISTORY l 
l 

DISTRIBUTION REPRODUCTION GROWTH MORTALITY-

/ "" / Distribution Distribution Time and size at / "" ~ / 
Relative 

of adults of juveniles sexual maturity 

"" Length / / 
frequencies 

condition 

CPUE 

Ripeness 
Backcalculation A' 

of length -- ge1ng-

I----E--Gillnet selectivity -------- -+-------' 

Sampling programme ----------~ 

Figure 5. Inter- relat ionship between the objectives, research areas, 
analysis and sampling in this thesis . 
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II. BIOLOGY OF THE STUDY ANIMALS 

The biology of Barbus and Labeo species in Africa is reasonably 

well document ed , but consists largely of separate and short-ter m 

studies . Cypr inids are essent i ally riverine f i sh and because of the 

variable nature of their habitat, long-term s tudies are essential . 

A comparison of the biology of the study animals with that of related 

species should indicate the applicability of the results of the present 

study to other systems . The genus Barbus is exceptionally large and 

accommodates a wiele var iety of fish found in Europe , Asia and Africa . 

For this reason it is necessary to first identify groups within the 

genus which are made up of close relatives . 

A. DISTRIBUTION AND TAXONOMY 

Barbus hol ubi, ~. kimberleyensis and Labeo capensis are all 

originally indigenous to the Orange-Vaal River systems (Barnard, 1943). 

B. holubi can occur at higher altitudes than the other species (Jubb , 1970). 

A valued angling fish , ~. holubi has been bred artificially since 1949 

(Groenewald , 1951) and subsequently introduced into several r iver s in 

the Cape Province and to Zimbabwe (Jubb, 1968). L. capensis and 

B. holubi are known to have dispersed to the Great Fish River system 

through an 82 km tunnel constructed for irrigation purposes in 1975 

(Cambray & Jubb , 1977) . 

It is probable that most of the cyprinid fauna of the Or ange River 

r esulted from invasions from the north (Farquharson, 1962 ; Lowe- McConnell 

1975; Bowmaker ~ al., 1978) . The African Barbus are generally divided 

into two major gr oups based on scale characteristics (Banister, 1973): 

large forms (adults ,;;> 150 mm SL) with parallel- striated scales, and 

general ly smal ler forms with radiate- striated scales . The lar ge African 

Barbus with parallel-striated scales occur predominantly in east , central 

and southern Africa . Their taxonomy has been reviewed by Groenewald 

(1958) and Banister (1973) . The large Barbus of South Africa, including 

three species with radiately- striated scales are given in Table 3 . 

Synonyms of these species are given by Jubb (1963) . 

The South African large Barbus are predominantly small scaled 

species. These show a gap in their distribution, occurring in the 
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Table 3. Large Barbus of South Africa (adults » 150 mm) 

Species Scale character istics 

~. holubi 

B. kimberleyensis small scales with parallel ~ 

B. capensis striae ~ 

B. natalensis 
~ 

B. polzlepis 
~ 

B. mareguensis 
~ 

large scales with parallel striae 

B. serra 
~ 

B. andrewi scales with radiate striae 
~ 

B. mattozi 
~ 

Limpopo River (~. polzlepis) and then again only in Lake Malawi (Jubb 

& Farquharson , 1965) (Fig . 6). 

The large Barbus show a high degree of phenotypi c var iability 

and Banister (1973) has suggested that small scales may be an adap­

tation to lacustrine environments. However , the South African species 

are all riverine . It is doubtful that size of scales is a good phylo­

genetic indicator (Skelton, pers . comm) . Eggs of B. holubi have been 

fe r tilized by sperm from ~ • . kimberleyensis and~. polylepis with over 

99% success (Mulder, 1971). A cr oss between female ~. holubi and a 

male~. marequensis yielded similar results (Hecht, pers. comm , ). This 

is indicative of the close relationship among the South African large 

Barbus . In this study the biology of the two Barbus species will be 

compared firstly to other South African large Barbus and secondly to 

east and central African species. 

The taxonomy of the Labeo has been much less studied than that 

of the Barbus and classificatory work is scanty . Reid (1978) has 

revised this genus, but his work is in thesis form and is not gene­

rally available . Unlike the large Barbus, this genus is well 
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The Orange River basin in r elation to other major river 
basins on the African continent . The Great Lakes 
(Victoria (V), Tanganyika (T) and Malawi(M)) are shown 
on the map . (Figure reproduced from Lowe-McConnell, 1975). 
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distributed throughout the continent (Banister, 1973). Its world dis­

tribution is limited to Africa and Asia. The Labeo appear to form a 

fairly homogenous group. In this study the biology of ~. capensis will 

be compared separately to that of African and Asian species . 

B. BREEDING 

The large Barbus and Labeo are primarily riverine fish, and while 

they may occupy lakes at some stage of their life history, spawning 

generally takes place in rivers or their floodplains during flood. 

Large Barbus, as a rule, deposit their eggs in gravel beds in 

flowing water following a spawning migration . Shortt-Smith (in Jubb, 

1967) reported that~. holubi migrated upstream in first floods and 

spawned in gravel beds. 

summer (Mulder, 1973a). 

In the Vaal River they spawned in spring to 

Louw (1970) observed a spawning in February 

of large fish in a gravelly area in a small slowly flowing tributary 

to a reservoir in the Gouritz River system where they had been introduced 

17 years earlier. No evidence was found which indicates that this 

population has reproduced successfully since their introduction . In 

captivity, ~. holubi bred in a pond with strongly circulating water, 

making a nest ±5 cm deep in gravel beds (Groenewald, 1951). Here 

breeding behaviour Was first observed when water temperatures exceeded 

18°c . However, spawning was not always successful under these circum­

stances since many eggs died due to poor oxygenation of the gravel beds 

(Ie Roux, 1968). Groenewald (1957) described what he considered could 

be the nests of B. holubi in gravel banks in two impoundments on the 

Vaal River. However, this species is regarded as ideal for stocking 

small farm reservoirs , since it will not breed successfully in standing 

water , and so will not overpopulate small habitats (Ie Roux, 1968; 

Straub & Combrinck , 1973a). In captivity a fish may spawn more than 

once in a season, but in the wild one spawning per season is probably 

the rule (Mulder, 1973a) . 

The spawning of ~. kimberleyensis has never been observed, but 

their breeding habits are probably similar to those of other large 

Barbus. Their juveniles (up to a size of 80 mm)cannot easily be 

separated from those of B. holubi. After examining the ripeness of 

the gonads of these two species , Mulder (1973a) concluded that 
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B. kimberleyensis spawn later in the year than~. holubi. His obser­

vation is further supported by growth rates of these two species in 

the Vaal River, where~. holubi reaches a greater length by the end 

of their first and second growing season than~. kimberleyensis 

(Mulder , 1973a) . Similar results were obtained in Lake Ie Roux 

(this study). Gaigher (1976) reported that B. cf. kimberleyensis , 

now confirmed to be B. kimberleyensis (Butler, pers . comm . ) spawned 

in standing water probably in the gravelly shores of Lake Hardap Dn 

the Fish River, Orange River system in SDuth West Africa/Namibia . 

It was inferred frDm the results that spawning had taken place twice , 

the first time in late summer and the secDnd time in early spring • 

. HDwever there is a pDssible alternative interpretatiDn Df Gaigher's 

data, i.e. that there is only Dne spawning which occurs in late summer, 

cDinciding with the flDDding Df the dammed river. 

Other lar ge Barbus Df SDuth Africa cDnform to the pattern outlined 

abDve. Barbus capensis ascend rivers and spawn in clear gravel beds 

in relatively shallow water (Hey , in Br eder & Rosen, 1966). B. natalensis 

migrate upstream to spawn and are unable to breed in still water (Crass, 

1964) . They are known to spawn in clean well-circulated gravel in fast ­

flowing water when the water temperature exceeds 19°C (Wright & Coke , 

1975a) . ~. mar equensis make nests in gravelly areas of the river (Crass, 

in Whitehead, 1959) and are known to have a spawning migration at times 

Df heavy flood (Donnelly, 1980) . Of the South African large Barbus 

with radiate striae Dn their scales, ~. mattDzi (DDnnelly , 1980) and 

~. endrewi (Harrison , 1952) alsD migrate up river to spawn , the latter 

doing SD over gravel and rocks . 

The large Barbus of Lake Malawi (Lowe, 1952; Banister & Clarke, 1980) , 

Lake Tanganyika (Poll, 1953 ; Banister, 1973) , Lake VictDria (Whitehead, 

1959) and Lake Mweru (de Bont & Maes, 1956) all migrate up major affluent 

rivers in flDDd tD spawn. Large Barbus Df West Africa also migrate up 

rivers seasDnally (Daget & Durand , 1981) . In Asia similar examples may 

be found. AI-Hamed (1972) studying the reprDductiDn Df three Barbus 

species in the Euphrates- Tigris system, fDund that the smallest Df the 

three species (males maturing at 250 mm) spawns in lakes, whereas the 

two larger species (males maturing at 410 to 500 mm) migrate up rivers 

in f l ood and spawn on beds of fine gravel. Similarl y in India the tor 

mahseers (Tor species) spawn in r i vers on gravel substrates after a 
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migration (Jhingran, 1975 ; Chaturvedi, 1976). Tor species have previously 

been classified in the genus Barbus (Jhingran, 1975). 

In contrast to the large Barbus, Labeo generally leave the main 

river channel and spawn in newly inundated areas. They are renowned 

for their longitudinal spawning migrations (Jubb , 1967), but these have 

never been reported for~. capensis. They do , however, have a lateral 

migration, spawning among inundated vegetation in times of flood (Mulder, 
b 

1973bj Gaigher et al. , 1980). Individual females apparently shed all 
-- A " 

their eggs at once (Gaighe; et aI., 1980) but the spawning season may 
-- I' 

begin in early spring and continue throughout the summer (Goldner, 1967 ; 
6 

Mulder, 1973bj Baird, 1976 ; Gaigher ~ al., 1980). Similar spawning 

behaviour has been observed for L. lunatus in the- Upper Zambezi River 

(Bell-Cross, 1976). Other species of the genus Labeo have also been 

reported to leave the main channel and spawn on the flooded banks and 

floodplains e.g. ~. congoro in the Zambezi River (Jackson, 1961a) . 

L. cylindricus in the Incomati system (Gaigher, 1969) and~. rosae 

in the Pongolo River (Kok, 1980). The latter also has an extended 

breeding season although each female only spawns once in a season 

(Kok, 1980), in the Pongolo River. ~. cylindricus in Lake Malawi may 

spawn on rocky substrates in the lake (Jackson ~ al. , 1963) and this 

is the only Labeo in Africa which has been reported to do so. 

L. umbratus migrates upstream and spawns on a floodplain (Jackson 

& Coetzee, 1982) as well as over gravelly and rocky substrates where 

weirs hinder their upstream migration (Gaigher ~ al., 1975; Mitchell, 

1982) . Bowmaker (1973) similarly reports that four species of Labeo 

migrated up a tributary of Lake Kariba to spawn, although no inundated 

vegetation was available. Jubb (1967) states that L. umbratus are 

prolific breeders in impoundments, but this is not supported by reports 

in the literature. ~. umbratus will migrate long distances during times 

of flood. This has been observed in the heavy floods in summer 1980/1981 

in the Gouritz River system (Hamman & Thorne, 1982). Skelton (in press) 

has observed that this species is a major component of the fish fauna in 

secondary tributaries to the Orange River which may occasionally dry up. 

This is in sharp contrast to observations in the main channel of the 

Orange River, where ~. umbratus appear to be scarce (Skelton & Cambray, 

1981) . The occurrence of this species in seemingly isolated farm 

reservoirs also indicates that they may undertake long migrations. 
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Here, lack of interspecific competition and predators gives rise to dense 

populations . This may result in individual growth being highly variable 

(Nikolskii, 1969) , which without careful study may give the impression 

that many year classes are present. These populations dese r ve further 

attention though, especially if they are to be exploited. 

Spectacular spawning runs up flooded rivers have been observed for 

L. victorianus from Lake Victoria (Fryer & Whitehead, 1959), L. mesops 

from Lake Malawi (Lowe, 1952) and~. altivelis from Lake Mweru (Matagne, 

1950) . All resulted i n spawning on the floodplain among inundated 

vegetation . In West Africa, Labeo species"are similarly reported to 

undertake spawning migrations up flooded rivers (Daget & Durand , 1981) 

and the spawning of ~. coubii was observed on the flooded bank of a 

river in Gambia (Svensson , in Jackson & Coetzee , 1982). In India, 

Labeo species are invariably reported to spawn during the monsoon on 

newly flooded ground although vegetation may be absent (Sinha ~ al ., 

1974 ; Jhingran, 1975; Khan & Jhingran, 1975) . 

C. FECUNDITY AND SIZE AT SEXUAL MATURITY 

Fecundity is generally related to the size of the female, usually 

adequately described by a power function (Bagenal & Braum, 1978), but 

there is a large individual variation. Relative fecundity, i . e . fecun­

dity in relation to size, varies from species to species and may also 

vary among populations of the same species, and this may be related to 

size at sexctal maturity. In this section, variations in fecundity in 

the large Barbus and Labeo are examined . Males generally mature at a 

smaller size than the females. Hamman (1981) has summarized what is 

known of size at sexual maturity (Table 4). 

It is evident that size at sexual maturity is variable . As a 

consequence minimum observed length at maturity may be a poor measure 

of what the population as a whole is doing . Judging by the size of 

females from which eggs were taken , the population of Barbus in Lake 

Hardap (Gaigher , 1976) was maturing at a markedly smaller size than 

the other Barbus populations . The same applies for the Labeo populations 

in the Caledon River (Baird , 1976) and the Tyume River (Gaigher et al., 

1975)· Egg counts from these species have been done by several authors 

and the relationships are given in Fig . 7 . The following main conclusions 



Table 4. Minimum length (em) at sexual maturity in ~. holubi, B. kimberlelensis, L. caEensis and 
L. umbratus. (Adapted from Hamman, 1981) 

Locality B. ho.!l.ubi ~. kimberle~ensis L. caEensis L. umbratus Sour.ce 

Male Female Male Female Male Female Male Female 

Lake Verwoerd 21 31 40 44 22 29 24 32 Hamman, 1981 

Vaal River 28 34 35 46 26 31 22 30 Mulder, 1971 

Vaal River 20 24 22 24 33 33 Groenewald, 1957 

Barberspan 20 25 26 32 32 34 Gtlldner, 
N 

1967 ~ 

Lake Bardap 17 25 Gaigher, 1976 

Caledon River 16 20 Baird, 1976 

Tyume River 14 20 Gaigher et a1., 1975 
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can be reached: 

i. The two Barbus species have approximately the same relative 

fecundity although size at maturity is different (Gaigher, 

1976; Hamman, 1981 ). 

ii. Relative f ecundity of the two Labeo species appears to be 

related to size at sexual maturity . The populations 

maturing at a small size are relatively more fecund than 

those maturing at a large size . Hamman's (198~) relationship 

is in good agreement with results obtained by Groenewald 

(1957) , Goldner (1967) and Mulder (1973b). 

iii. There is a much greater relative increase in fecundity with 

size in the Labeo species than in the Barbus. For every 

10 cm increment in length of Barbus, fecundity is increased 

two to three times as compared to a five to six times 

increase for the Labeo (Fig. 7). 

No further information appears to be available on fecundity of 

different populations of the same species . However, the general 

difference in fecundity between Labeo and Barbus, as well as the 

relative increase in fecundity with length is supported by observations 

of other members of these genera. Examples are given below . 

In Iraq, the fecundity of three Barbus species (Al- Hamed, 1972) 

closely resembles that of those under study. The same is true for -the 

large Tor species of India (Jhingran, 1975; Chaturvedi, 1976) . The 

relatively high fecundity and rapid increase with length of Labeo has 

been observed in L. rosae (Kok, 1980) , !. mesops (Anon., 1964), 

L. altivelis (Matagne, 1950) and!. victorianus (Cadwalladr, 1965b) . 

In India, the same holds t rue for L. rohita (Khan & Jhingran, 1975) 

and!. gonius (Siddiqui et al., 1976) . 

D. INCUBATION AND EARLY LIFE HISTORY 

Incubation time depends on temperature, but there appear to be 

marked differences between Labeo and the large Barbus species in this 

regard as well as in the early larval behaviour. 

The fertilized eggs of B. holubi incubate for three to eight days 

at 18° - 21,5°C, but the larvae do not become motile until four to six 

days after hatching (le Roux, 1968; Mulder & Franke, 1973). 
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~. kimberleyensis has been bred artificially . The incubatio.n perio.d 

was two. to. three days and the larvae became mo.tile in three to. fo.ur 

days at 23° - 25°C (van der Merwe, 1981). ~. natalensis eggs hatched 

in six to. eight days in the relatively co.ld water o.f a tro.ut hatchery 

and the larvae burro.wed into. the gravel (Wright & Co.ke, 1975b). 

Similar o.bservatio.ns were made en B. andrewi (Harriso.n, 1952). 

When o.bserving spawning ef ~. capensis, Mulder (1971) co.llected 

eggs which hatched after 30 ho.urs at 22°C. The larvae were abo.ut 

4 mm in length and mo.ved repeatedly up and do.wn the water co.lumn by 

swimming upward then remaining still and sinking do.wnwards. The­

relatively shert incubatio.n perio.d and swimming behavio.ur o.f the 

larvae has been o.bserved several times in Africa e.g. fer ~. meso.ps 

in Lake Malawi (Ano.n., 1965), ~. victo.rianus in Lake Victo.ria (Fryer & 

Whitehead, 1959) and~. umbratus in the Tyume (Gaigher et al . , 1975) 

and Mo.dder (Mitchell, 1982) rivers in So.uth Africa. In India, 

L. ro.hita exhibits the same characteristics (Khan & Jhingran , 1975). 

The fertilized eggs are relatively buo.yant since upen- fertilizatio.n 

they swell to. ~ver do.uble the diameter o.f an unfertilized egg (Fryer & 

Whitehead, 1959; Ano.n., 1965) .- In India there is a large trade in 

co.llecting spawn (fertilized eggs and larvae) o.f the 'majer carps ' . 

(including Labeo. species) as these drift do.wnstream after spawning 

(Jhingran , 1975). 

E. FEEDING 

B. ho.lubi can best be described as an o.ppo.rtunistic o.mnivo.re. 

Enslin (1966) studied the feeding o.f this species in Barberspan, a 

lake in the Vaal River system, and fo.und that the smallest individuals 

(up to. 120 mm FL) fed en zo.o.plankto.n . As they grew larger , m~re benthic 

invertebrat es and plant material were eaten (vascular plants, fila­

mento.us algae and detritus). The switch fro.m o.ne type o.f feed to. ano.ther 

o.ccurred at different sizes at different times. Gro.enewald (1957) 

fo.und that B. ho.lubi in the Vaal River is carnivo.ro.us to. a length o.f 

200 mm and thereafter , depending en the availability o.f animal pro.tein, 

increasingly included yegetable matter in its diet. These o.bservatio.ns 

are further suppo.rted by an analysis o.f gut l ength to. fish l ength ratio.. 

This ratio. shews an increase in the larger fish, indicating that ability 
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to accommodate plant material is acquired as the fish grows larger 

(Kruger & Mulder , 1973) . 

In Lake Ie Roux, ~. holubi initially remains close to the shore 

but a t 50 - 70 mm FL they enter the pelagic zone and feed mainly on 

zooplankton (Tomasson, 1981) . Eccles (1980) has shown that B. holubi 

feeds on zooplankton during daytime, visually selecting its prey. At 

night some benthic food is eaten . Tbe progression of carnivorous 

habits at a small size leading into an omnivorous-herbivorous diet as 

the fish grows larger was also observed (Eccles, 1980) . Since B. holubi 

hunt their prey visually in the pelagic zone , turbidity has a profound 

effect on thei r feeding habits . B. holubi switch from a zooplankton 

dominated diet to a benthos- dominated diet, and the size at which this 

change takes place appears to be governed largely by turbidity . Tbis 

has important consequences for the population as shown by T6masson 

(1981) and explained by Eccles (1980, p . 6): 

"Tbe fact that larger fish feed to a greater extent on benthic 
organisms and algae may not reflect an innate preference for 
these items but, r ather, the difficulty of detecting sufficient 
planktonic food in turbid water. In water where the range of 
vision is limited by tur bidity, the volume effectively searched 
by a fish will bear a linear r elationship to its swimming speed, 
which varies with the square root of the length, while food re­
quirements will vary with the cube of the length. In such 
situations the fish may r each a size at which plankton feeding 
can no longer supply their r equirements and are forced to exploit 
benthic resources." 

~. kimberleyensis in the Vaal River are carnivorous throughout 

their lif e cycle with an increasing tendency towards piscivory 

(Mulder, 1971) . In Lake Ie Roux, ~. kimberleyensis initially has a 

similar diet to ~. holubi, but when~. holubi tur ns to omnivory , 

B. kimberleyensis becomes piscivorous. 

In general, the diet of the two Barbus , especially ~. holubi, 

can be said to be characteristic of the large Barbus . Large Barbus 

are typically facultative feeders and while they may have a pref erential 

diet, under normal circumstances they may r eadily adapt to a different 

diet (Matthes, 1963) . Sometimes these adapt ations include morphological 

changes in the format ion of so-called "rubber lips" . This is frequently 

fQund in ~. holubi and is thought to be an adaptation to feeding amongst 

rocks in riffles (Groenewald, 1957) . Rubber lips disappear within a 
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year in a lentic environment (Gr oenewald, 1958) . They are common in 

many species of large Barbus in South Africa (Jubb , 1963) as well as 

in ~st and Central Africa (Banister, 1973) . 

Unlike the large Barbus, Labeo are highly specialized feeders . 

Matthes (1963) recogni zed two main groups in this genus: 

i . Those living on the bottom in muddy rivers and quiet back­

waters . These have a small head and compressed body . They 

fe ed on t he carpet of algae and debris on the bottom, and 

have a long intestine , although i ts r elative length is shorter 

than that for the second group . 

ii . A group with a more cylindr ifor m body . These are common in 

rapids and eat algae off the rocks . The intestine is long 

and undifferentiated. Intestine length t o standard length 

ratio is high (150 - 200) and increases with the size of the 

fish . 

Of t he two Labeo species in Lake Ie Roux, ~. umbratus belongs 

to the first group and L. capensis to the second. L. capensis is 

very common in riffle areas of the Orange River (Skelton & Cambray, 

1981) whereas~. umbratus prefers quiet waters (Mulder , 1973b). 

The relatively high abundance of ~. capensis in Lake Ie Roux may be 

due to its high initial abundance in the river and the long rocky 

shor eline of the lake . ~. umbratus is scarce i n the lake , reflecting 

low initial abundance and relatively limited areas of muddy shallows 

favoured by this species . 

A study of the feeding of L. capensis and L. umbratus in 

Barberspan (Enslin , 1966; Schoonbee, 1969) shows that they are both 

bottom fe eders with a predominantly herbivorous diet, but the resolution 

of thei r data allows no further inferences to be made . 

It is well known that the gut length to fish length ratio is a 

good indicator of diet . Revi ewing this subject Bond (1979) f ound that 

the higher the intake of plant matter and indigestible material, the 

higher the ratio. The ratio of gut length to fish length of the fish 

i n Lake Ie Raux further confirms their diet as outl i ned above (Table 5) . 

Feeding during early life history may be more crucial than subse­

quent feeding patterns in determining the relative success of a speci es . 

Detailed work on L. calbashu in India shows an early dependence on 

animal protein which gradually disappears . The ratio of gut length 
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to fork length changes from 0,5 - 1 ,0 in the fry (carnivorous, sight 

feeders), to 1,1 - 2 , 0 in fingerlings (omnivorous, sight and taste feeders) 

and 2 , 1 - 13,0 in adults (herbivorous, taste feeders; Sinha, 1976) . 

Apart from the increase in relative gut length with size, there is also 

a relative increase of the absorptive surfaces of t he gut (Sinha , 1976) . 

Similar find i ngs have been made with other ' major carps ' in India (Kamal , 

1967; Khan & Jhingran, 1975) . There is a need for the study of ecological 

requirements of South African Labeo during their early life history . 

Table 5 . Mean gut length to fork length ratio of the large Barbus 
and Labeo found in Lake Ie Roux (from Kruger & Mul der , 1973) . 

Species n ratio shortest fish correlation 
in sa Ie (nnn) coefficient (r) 

L. caEensis 27 14 ,90 103 0 , 954 

L. umbratus 22 10 ,00 70 0 , 980 

B. holubi 39 1 , 70 92 0,954 

B. kimberle;yensis 32 1,14 95 0,920 

During the egg and lar val stages fishes a r e most dependent on 

their immediate envi r onment and hence vulnerabl e to change (Bagenal & 
Eraum , 1978) . Their tolerance limits to variability in envi ronmental 

factors subsequently increase . 

F . AGE AND GROWTH 

Research into age and growth of the study animals has usually 

relied on the use of scales , but little has been done to validate 

the results . ~. holubi is an exception in that age has been accurately 

known in a few cases when reser voirs have been stocked and reproduction 

has not been successful . Age and growth studies on other species of 

large Barbus and Labeo in South Africa are scarce and have mainly been 

done by the same authors as have aged the species under study. They 

are l eft out of this discussion since their basic shortcomings are 

similar to those discussed here . 

Le Roux (1963) reports on an introduction of 50 fingerlings into 

a three ha pond . In 2 1/2 years these fish reached an average length 
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of 30 cm and three years later reached 40 cm . After 12 years when the 

pond was drying up 37 (74%) of the or iginal stock were captured , 

measuring on average 53 cm (49 - 59 cm; 1 , 8 - 3,6 kg) . In 1964 80 

f i ngerlings we r e released into Settlers r eservoir (~ 90 hal near 

Grahamstown . In March 1972 thr ee of these ~ were caught (age 8+) averaging 

51 cm and 2 kg (Skelton, 1972) . In May 1953 , 200 fingerlings were re­

leased into a reservoir (~ 95 hal on the Gouritz River system. In 

January 1959 (age 6+) , 13 of these were caught in a 15 x 3 m gill net , 

100 mm stretched mesh set overnight (Harrison, 1959) . These ranged 

from 50 - 56 cm in length and 2,1 to 3,1 kg. Eleven years later, Louw 

( 1970) caught 5 yellowfish there, 50 - 67 cm in length. With one ex-

ception (50 cm male, 1 ,7 kg) these fish were extremely deep bodied with 

a 57 cm fish weighing over 5 ,5 kg. It would appear that in eleven years 

little growth in length was achieved,whereas the weight had almost doubled. 

These growth rates may not be paralleled under normal circumstances but 

the following conclusions may be drawn : 

i. B. holubi appears to be long- lived and grows rapidly in length 

for a few years , but subsequent annual length increments are 

small but weight increments may be large . 

i i. Because scales grow in relation to body length it may be difficul t 

or even impossible to correctly age old members of a population , 

even if growth is seasonal and regular. 

Bearing this in mind , the liter ature on the growth of B. holubi and 

B. kimberleyensis will be examined . 

Straub & Combrinck (1973c) attempted to determine time of annulus 

(check) formation of B. holubi from Barberspan . In this study material 

collected from 1950 to 1965 (Straub & Combrinck, 1973b) was lumped by 

month . The total sample was 794, but no scales had been collected in 

December, January or June . From their results it appears that a check 

may be formed in the youngest fish (with one 'annulus') in spring 

(September), but results for fish with two or more checks on their 

scales are inconclusive . This may be due to their lumping of material , 

since conditions in the l ake appear to be highly variabl e (Goldner, 

1967). In no other growth studies of ~. holubi have attempts been made 

to verify the~ results and in no case have results been related to en­

vironmental conditions (i . e. the environment is treated as constant) . 

Hamman (1981) found that females of B. holubi grow faster than 
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the males for the first four years (when males were 20,3 cm and females 

22,3 cm) whereafter rate of growth was comparable for the sexes (Table 6). 

Tbis is an unusual pattern of growth and can probably be explained by 

small sample sizes but no statistical tests were reported. Tbe author 

found that 50 - 60% of his scal e samples were unreadable . This was 

particularly common with scales from the larger fish. The unreadable 

portion may not represent a random sample. Tbus the more material that 

is l eft out, the more likely it is that the results become biassed, for it 

is possible that slow growers could only be aged when they are still 

rel atively young, whereas only the faster growers could be aged of the 

larger fish. It is thus doubtful whether Hamman's growth estimates for 

the two large Barbus species reliably reflect the growth characteristics 

of these populations. Mulder (1971) found that the annulus may not be 

formed in the first year on the scales of Barbus species , but made no 

further attempts to validate his results . He gives no information on 

the number of scale samples rejected , but does say that scales £rom 

large fish were often regenerated. It is likely that the relatively 

small decrease in growth rates with size (Table 6) refl ect a similar 

bias to that in Hamman's (1981) study. Goldner (1967) determined size 

at age for~. holubi in Barberspan by examining length frequencies. 

The modes he identified were indistinct and alternative interpretations 

would be easy to find. Size at age did not agree with Straub & Combrinck 

(1973c) using scale samples, some of which were collected during Goldner's 

(1967) study. Koch (1975) studied the growth of ~. holubi in Lake Boskop, 

a small tributary on the Vaal River. The results of his study with those 

discussed above are given in Table 6. 
The growth of ~. capensis has been studied in the Vaal River 

(Mulder, 1973b), the Caledon River (Baird, 1976) and in four reservoirs, 

i.e. Barberspan (Goldner, 1967), Lakes Hardap (Bloemhof, 1974), Boskop 

(Koch , 1975) and Verwoerd (Hamman, 1974a, 1981). Scales were used in 

each of these studies and although an annulus was assumed to from during 

the cold months, this was never demonstrated. Time and frequency of 

check formation were never studied, nor could they have been, due to 

insufficient sampling. Gaigher (1977) did preliminary investigations, 

comparing the number of checks on vertebrae and scales. He found that 

checks on scal es were of varying clarity and obtained only 58,& agreemen t 

be t ween the two methods. Hamman (1981) found 10 - 15~ of his scale 
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samples of this species to be unreadable and this may have introduced 

some bias into his results. None of the other authors reported the 

percentage of unreadable scales. 

Goldner's (1967) results are contradictory. He converts a length­

frequency distribution of ~. capensis to a probability plot on which he 

identifies five points of inflexion, indicating that the length-frequency 

distribution is a composite of five normal curves (see Harding, 1949). 

He then uses the percentage representation of each mode to compute annual 

mortalities between year classes (assuming constant recruitment). 

However, he indi cates 9 (+) age groups (using an unspecified method) in 

the same length range. He fails to expl ain this discrepancy in the 

results and it is not clear what he is trying to show. 

Other results have been summarized in Table 7. If differences in 

size at first annulus formation (age 1) are taken into account, the 

growth rate for the different populations show· a remarkable similarity. 

These populations come from a variety of habitats and would be expected 

to show different rates of growth. In the present study, growth was 

found to vary considerably among seasons. In view of Gaigher's (1977) 

comments on the clarity of checks and the short duration and limited 

sampling done in these studies, the results must be regarded with 

reservation. 

The study animals were originally indigenous to the Orange-Vaal 

River System and the above investigations were mainly done in reservoirs 

on this system. Exceptions are Mulder's (1973a, 1973b) and Baird's 

( 1976 ) work on the Vaal and Caledon Rivers respectively. The system 

typically has highly variabl e streamflow, carrying heavily silt-laden 

waters at times of flood (indeed the Vaal River derives its name from 

its turbid waters). Because of high inter- and intra-seasonal variations 

in the aquatic environment, interpretation of checks on scales and 

otol iths are difficult. Assumptions about time and frequency of check 

formation may be invalid and need to be carefully evaluated. This 

is demonstrated in the present study (Chapter IV) and results from 

investigations other than long-term ones perhaps should be regarded 

with caution. 



Table 7 . Age and growth of .!:. caEensis based on backcal culat ions of l engths from sca le measurements . 

Fork length i n mm Source 

Sex Age 1 2 3 4 5 6 7 8 9 10 11 

Male 52 97 143 184 234 274 311 343 368 Caledon River (Baird , 1976 ) 
Femal e 52 97 144 185 238 280 320 353 381 

Male 69 107 146 180 210 250 Barber span (Koch , 1975) 
Female 71 107 154 193 232 293 331 345 

Male 75 115 155 205 236 277 317 \.N 

Lake Verwoerd (Hamman , 1981) --0 

Female 78 119 163 210 225 301 344 362 391 427 

Tota l 52 115 174 225 273 310 354 380 396 Lake Hardap (Bloemho f , 1974) 

Male 90 145 197 251 304 338 372 Vaal River (Mulder, 1973b) 
Female 87 139 195 249 302 363 377 398 
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III. METHODS 

To obtain samples of the fish populations, two distinct programmes 

were undertaken. Juveniles and small fish were collected along the 

shores of the lake using fine mesh beach seines and rotenone, whereas 

adults and subadults were primarily sampled with gillnets . Although 

there were numerous sampling localities, for the purposes of this 

thesis they have been grouped into eight stations (Fig . 8) . 
Extensive sampling was done quarterly by the Cape Provincial 

Administration (CPA) from April 1978 . In July 1979, I joined the CPA 

programmes and started a gillnetting and seining programme between the 

quarterly sampling . In this chapter the sampling programmes, the 

selectivity of the sampling gear and the way in which material 

collected was worked are described in detail. 

Environmental variables were monitored by other researchers in 

the co-operative programme . Their sampling concentrated around 

station 1, sampling less frequently the entire length of the lake. 

Data on Secchi disc transparencies, temperature , chlorophyll and 

zooplankton concentrations were either drawn from research reports 

by Allanson (1981) and Hart (1981) , supplied by these authors 

directly or personally gathered for the present study . Information 

on lake levels, flow regimes and rainfall were supplied by the 

Department of Environment Affairs, Pretoria . A summary of the 

environmental data is presented in Chapter IV. 

A. SAMPLING PROGRA.MMES 

1 . Adults 

CPA used a gang of seven floating multifilament nylon gillnets, 

set at 28 sites over a period of 14 days . Nets were set during the 

afternoon , usually between 15:00 - 17 :00 and taken up in the morning 

usually 07:00 - 09:00 . The nets were al\;ays set parallel to the 

shore . Nets of different twine thickness and colour were used from 

April 1980 (Table 8) . Each net was 100 m long . 

In April 1982 C.PA discontinued sampling at eleven sites and 

three new ones were added (Fig. 8) . In 1980 a new sampling programme 
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was started once or twice between the CPA surveys . For this programme, 

a gang of sinking light green monofi lament nylon gillnets were set 

parallel to the shore in shallow water (1 - 2 m) . These were of 20 , 

30 , 40, 50 , 65, 80 and 100 mm stretched mesh, each 30 m long and 

approximately 1, 2 m deep . The t hree smallest meshes were made of 

0 , 15 mm nylon and t he larger ones were of 0 ,20 mm di. ameter. During 

the latter hal f of 1979 occasional samples were also collected with a 

variety of gear . Sampling dates , stations and gear are summarised in 

Table 9 . 

Table 8 . Specification of gillnets used by CPA during quarterly 
surveys on Lake Ie Roux . 

Black nets Brown nets 
Mesh size April 1978-January 1980 April 198O-October 1982 

(mm stretched mesh) Depth Twine thickness Depth Twine thickness 
(m) (den. ) (m) (den . ) 

35 2,50 210/9 2 , 22 210/4 

45 2 , 49 " 2 , 20 " 
57 2 , 46 " 2 , 19 21 0/6 

73 2,46 " 2 , 22 " 

93 2 ,46 " 2 , 23 210/9 

118 2,46 " 2,17 " 
150 2 ,52 " 2 , 16 " 

Originally CPA workers measured the fish to the nearest cm (FL) 

and recorded sex and maturity using Nikolskii ' s 6 point scale 

(Nikolskii, 1963). From July 1979 the two Barbus species were 

measured to the nearest mm and weighed to the nearest gram . Triple 

beam, spring and electronic balances were used and these were checked 

for internal consistency . From January 1980, length to the nearest 

mm and mass to the nearest gram of all species caught were measured . 

Scales and otoliths were collected for analysis of age , growth 

and the computation of year class abundance . These methods of 

analysis will be described in later sections. Comparative age and 

growth material was obtained from the si s t er impoundment upst r c8m 

in December 1980 and 1981 when CPA did a routine gillnettin~ programme 
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Table 9 . Sampling dates , gear and stations for adults used in this 
study. 

Station 
Date Gear 1 2 3 4 5 6 7 8 

4-17/4 1978 Multi series x x x x x x x 
2- 15/7 Multi s eries x x x x x x x 
2- 15/10 Multi series x x x x x x x 
9-23/1 1979 Multi series x x x x x x x 

17-30/4 Multi series x x x x x x x 
5-19/7 Multi series x x x x x x x 

26-27/7 57 mm gil l net " Purs e seine x 
14-21/8 Purse seine, Beach seine x x 
11-26/9 Purse seine, 57 mm gillnet x x ' x 

Beach seine, Trawl 
13-26/10 Multi series x x x x x x x 
20- 23/11 Trawl, Purse seine x x x 

9- 22/1 1980 Multi series x x x x x x x 
29/2-3/3 Mono ser i~5 x x x x x 
27-30/3 Mono series x x x x x 
15- 28/4 Multi and Mono (Stn 8) series x x x x x x x x 
2~-24/5 Mono seri es x x x x 
20- 21/6 Mono series x x x x 
29/6 - 12/7 Multi series x x x x x x x x 
24-25/7 Mono se: r ies x x x x 
26-28/8 Mono series , x x x x 

2-3/10 65 , 80 &100 mm mono ' gillnets x x 
12- 25/10 Multi s eries x x x x x x x 
19-25/11 Mono series x x x x 
15- 17/12 Mono series x x x 
15- 29/1 1981 Multi series x x x x x x x 
24-25/2 Mono series x x 
26/3- 8/4 Multi series x x x x x x x 
17-20/5 Mono series x x x 

1- 20/7 Multi series x x x x x x x 
3- 5/9 Mono series x x 
7- 20/10 Mul ti .series x x x x x x x 

25-28/1 1 Mono series, Trawl x x x x 
9- 22/ 1 1982 Multi series x x x x x x x 
9- 12/3 Mono .series x x x x 

21/4- 1/5 Multi serie s x x x x x x x 
5-14/10 Multi s eries x x x x x x x 
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on Lake Verwoerd. 

Gonads from ripening fish were \;eighed and relative gonadal 

weight was calculated as a percentage of total weight (Ganado-somatic 

index, GSI). Changes in GSI were used to describe the reproductive 

cycle and the reproductive effort was taken to the reflected by the 

GSI. 

The number of modes in a size distribution of ova are often taken 

to represent the number of spawnings individual females are capable 

of within a season (Bagenal & Braum, 1978) . Female gonads were 

preserved in 4% formalin . A subsample of preserved ova were measured 

using the method described by Gaigher (1976) . The ova were put into 

a petri dish across which a straight line had been drawn . All ova 

touching the line were measured, using a micrometer . Ova diameters 

were always measured perpendicular to the line, since after the 

preservation, the ova were not always perfect spheres. 

The information gained from the weighing and measuring of gonads 

complemented information obtained from the capture of juveniles. 

2. Juveniles 

Since 1978, CPA has conducted a quarterly 3 day survey of the 

juvenile and small fish populations along the shores of the lake . 

Depending on lake levels, 30 - 40 sites \;ere sampled covering a variety 

of habitats. The main gear used was a seine net made out of 

monofilament shade cloth, with a stretched mesh size not exceeding 2 mm. 

The localities and gear used are described -in detail by Cambray (1982) . 

Cambray also sampled 

1979 to April 1981 . 

stations 1 and 2 for juveniles monthly from April 

From October 1979 the upper reaches (Stn . 6 - 8) 

of the lake were sampled at 4 - 6 weekly intervals. Other stations 

were sampled after rains or when evidence of recent spawning had been 

fou nd in the extensive surveys. It was suspected that rainfall might 

trigger spawning, especially in the Labeo which normally spawn on 

newly flooded river banks . 

The juveniles caught were preserved in 4% formalin . When catches 

were high , an effort was made to take a random subsample and release 

the rest. Normally however, high catches only occurred in warm 

00° - 35° C) shallow water and the juveniles died before they could 

hav e been released . 
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B. SELEX:!TIVITY OF FISHING GEAR 

Most gears used to capture fish are selective to some extent . 

Selection refers to any process which causes the composition of the 

catch of a given species to deviate from that of the population 

(Hamley, 1975; Pope ~ a1., 1975). Selectivity i s a quantitative 

measure of the deviation of relative representation in the catch, 

usually of a size class, from that of the population (Hamley, 1975) . 

In most studies of fish populations an estimate of the selectivity of 

the gear is necessary, especially when parameters such as length­

weight relationship, growth and mortality which usually requi re 

unbiassed sampling are estimated . 

Selectivity of a gear may depend on extrinsic factors (e.g . 

construction and method of operation) and intr insic factors 

(associated with the biology of the fish) or an interaction among 

these (Lagler , 1978) . It follows that successful sampling is thus 

highly dependent upon the operators' knowledge and experience, a 

point emphasized in connection with seines by Hendricks et al . , 

(1980). 

Several methods exist for estimating gillnet selectivity , which 

are reviewed and discussed fully by Hamley (1975), on which the 

following remarks are based . The most commonly used are so- called 

indirect methods, which rely on comparing the catch of some size 

class of- fish in nets of different mesh sizes . These methods all 

assume the r elative height (catchability of optimally sized fish 

for a - given mesh size) to be the same for all mesh sizes. Of the 

indirect methods, Holt's (1963) method is the most commonly used. 

This me thod assumes that the selectivity curves for any mesh follow a 

normal distribution . 

In this section, the selectivity of the CPA gillnets will be 

examined, followed by a short discussion on the selectivity of the 

beach seine used to sample juvenile fish . 

1. Gillnet selectivity 

It is generally accepted that gillnet catches can be used to 

indicate temporal and spatial changes in a population, but may not 
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accurately reflect the relative abundance of species (Powell et al., 

1971) . However , Jester (1973, 1977) has found that colour and mesh 

size as well as setting locality and season deployed may greatly 

influence the species composition of the catch . 

Selectivity estimates for the CPA gillnets have been calculated 

by Hamman (pers. comm.) and kindly made available for this study . 

The results are presented graphically in Fig . 9. Holt ' s method was 

used based on the entire CPA gillnet catch from April 1978 to January 

1982. In lumping all the data, the assumption is made that selectivity 

of the nets used before and since April 1980 (see Table 9) was the same . 

The validity of this assumption may be in doubt since stretchabil­

ity and flexibility of a twine are inversely related to its thickness 

(Hamley, 1975) . The optimum size of fish caught in a mesh of thinner 

twine may then be marginally larger than that of fish caught in a 

mesh made of a thicker twine. 

The two assumptions inherent in Holt's method i.e . the shape of 

the curve being normal and being of the same relative height for each 

mesh size , are frequently violated (Hamley, 1975) . 

Violations of the first assumption are most serious in fish which 

are likely to become tangled in the nets (by teeth, spines etc . ) as 

well as gilled and wedged . The resulting curve is likely to have more 

than one mode. This has been found for walleye (Hamley & Regier, 1973) 

and Clarias species (Gulland & Harding, 1961 ; Hamman, 1981). However , 

all the species studied have a fusiform body shape and were usually 

caugh~ by wedging and less commonly by gilling. 

(1980) compared fitted selectivity curves to the 
1\ 

Gaigher et al . , 

actual length 

frequency distribution of the catch of the CPA gillnets in Lake Ie 

Roux from April 1978 to July 1979 . Their results show a good agreement 

between the fitted and actual curves. Similarly, Hamman (1981) 

obtained good agreement between fitted normal curves and length 

frequency of the same species caught in Lake Verwoerd, in different 

size nets . Since the nets used were the same or similar, catching 

the same species under the same or similar conditions, this indicates 

that the first assumption is valid for the study animals . In 

consequence , the relatively smooth correction factor curves in Fig. 9 

show that the catch will accurately reflect the position of modes in 

the size distribution of the population . This is especially true for 
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~. holubi less than 30 cm FL and~. capensis below 40 cm, which includes 

over 90% of the catch of these species . 

The second assumption that selectivity curVes for individual 

nets all have the same height is often broken in that several 

studies have shown the amplitude of selectivity curves to increase 

with mesh size (Hamley , 1975). The validity of this assumption can 

be examined by comparing catches of gillnets with catches in gear of 

known selectivity or from a known (e.g. tagged) population . Neither 

method could be used in Lake Ie Roux . Large beach seines, often 

considered to be relatively unselective, were extremely difficult to 

use except in one small area (depending on lake levels) and no gear 

tried yielded enough l i ve fish to make a tagging programme a viable 

alternative. Hamman (1981) compared catches in Lake Verwoerd, made in 

the same series of gillnets as used in the present study, to the catch 

in a large beach seine (122 x 5,5 m). The centre portion "bag" of 

the seine was made of 10 mm stretched mesh. The nets and the seine 

were used in the same area within 24 hours. He found, after 

correcting for selectivity, that the beach seine caught a relatively 

greater number of small « 20 cm) ~. holubi and B. kimberl eyensis 

than did the gillnets when all the gillnets were made of twine of the 

same thickness . After April 1980 (when the nets were changed) relative 

frequency estimated by the two methods was similar , except that fish 

larger than 30 cm were only caught in the gillnets . The portion of 

the catch larger than 30 cm constituted only a smal l percentage of 

the catch though and the discrepancy may be related to the increased 

ability of the larger fish to evade the seine (Hamman, 1981) . Similar 

results were obtained for~. capensis . 

It is concluded that the selectivity of the gillnets used has 

changed during the course of the study due to differences in material 

used in the nets. Until April 1980 , smaller fish were underrepresented 

in the catches, but the use of a thinner twine i n t he smaller meshes 

from that date has increased the vulnerability of smaller fish to 

capture . The magnitude of change cannot be quantified from 

comparisons of catches by gillnets and seines for the following 

reasons : 
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i. The relative frequency of the seine catch is presented for fish 

down to 10 cm, whereas the nets do not capture fish smaller than 

12 - 13 cm. Thus the two curves are not directly comparable. 

ii. The sample size was too small, especially since a major portion 

of the fish caught in the seine were not vulnerable to capture 

in the gillnets . 

iii. The seine net may be subject to bias . 

Unfortunately , no comparative observations were made using the two 

gangs of nets at the same time. In addition, highly variable 

environmental conditions, especially turbidity (see the next section) 

may have affected the relative selectivity of the gillnets for any of 

the species. This is one of the main limitations of this study and 

calls for caution in interpreting some of the results. 

2 . Selectivity of the beach seine 

A small beach seine was used to sample the marginal shallow areas 

only. Catches in an open- water trawl often included large numbers of 

B. holubi from 6 cm, indicating that a pelagic mode of living is 

assumed about that size, if conditions are suitable. Only occasional 

f ish were caught in the trawl in the riverine section (Stn. 8), 

where zooplankton were found to be scarce in the water column 

(Chapte r IV , A) . 

It was found that handling of the seine net had a direct 

influence on the size composition of juvenile Barbus, while the habitat 

sampled could greatly influence the size composition of the Labeo 

caught. If juvenile ]. holubi (or]. kimberleyensis) were caught , 

and the seine operation was successful, all size groups would be 

represented in the catch. If there were snags or escape routes , 

large juveniles escaped. Major problems were the abundance of snags 

(rocks and roots) which could not be seen because of the high 

turbidity of the water . Fluctuating water levels meant that the 

·habitat sampled changed from time to time at each .locality. 

Juveniles of ~. capensis were more readily caught than those 

of Barbus species, but the size distribution of the sample could be 

totally different from two adjacent hauls (Fig . 10l suggesting that 

they may swim in schools in which individuals are of similar size. 
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Figure 10 . Length frequency distribution of juvenile ~. capensis 
caught in a flooded river channel,. station 8, 27/4 
1980 . The -two hauls were each about 10 metres and 
had vir tually the same starting point, but were taken 
to different parts of the shore . The two samples were 
collected within ten minutes . The substrate was covered 
with · mud , but in the upper haul it was over vegetation . 
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Alternatively, different size groups may have distinct preferences in 

their microhabitats . 

During each sampling period an attempt was made to obtain samples 

of the whole size range of juveniles present, but this was difficult 

at some localities , depending on lake level . Results were analysed 

according to locality and no attempt was made to cal culate CPUE since 

it was felt that this could not be adequately standardized. Similar 

conclusions were drawn by Hendricks ~ al. (1980) about the use of 

small seines in streams. 

C. PREPARATION AND INTERPRETATION OF SCALES 

Scales have been used for ageing and the backcalculation to 

length at check formation since the turn of the century (Ricker, 1977). 

It has been shown that scales form at different times on different 

parts of the body (Clutter & Whitesel, 1956). 

Scales are frequently lost and these are replaced by new scales 

which are unsuitable for ageing. These replacement scales (regener­

ated scales) are found in different proportions on various parts of 

the body . Consequently, there are some areas on the fish body which 

are more sui table for collecti ng scales than others . This has led 

some authors to advocate the use of a single scale from a fixed 

locality of the body or "key" scale (e . g . Hile, 1970; Bagenal & Tesch, 

1978). However, the use of the single scale may adversely affect the 

study in that it may be a regenerated scale . Some scales may also form 

checks which are not annuli. Such checks may be 

a neighbouring scale (La Lanne & Safsten, 1969) . 

caused by the loss of 

Scarnecchia (1979) 

found that the collection of a "scrape" sample, i. e. the collection of 

several scales from a well defined area of the body gave the same 

results as obtained from a "key" scale. 

In this study 5 - 10 scales were collected from the first two 

rows above the lateral line , just anterior to the dorsal fin. 

Studying scales on Barbus holubi, Straub & Combrinck (1973a) found 

scales from this area to be most suitable for ageing. The scales 

were scraped off using a scalpel and placed in a paper envelope 

(Fig. 11) . From the sample three good scales were selected . These 

were soaked in a KOH solution and then brushed off in clean water. 
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After wiping them off on a paper towel, the scales were returned to 

the envelope and pressed to prevent warping as they dried. The scales 

were read in a microfiche reader at 24x magnification. 

Criteria for deter mining checks or annuli on scales are given by 

several authors (e . g. Chugunova , 1963; De Bont, 1967 ; Bagenal & Tesch , 

1978) . There are, however, no absolute criteria. which can be 

applied . Scale reading is by nature ambiguous, but this ambiguity 

can be reduced to acceptable levels if certain procedural rules are 

followed: 

i. The researcher must examine a large number of scales and compare 

the results to other information such as marks on otoliths and 

length frequency distribution . From this one decides what 

constitutes a check . 

ii . Scales must be sampled on a regular basis from fish of all sizes 

for at least one year, or if the environment is unstable, for 

several years . Time and frequency of check formation can be 

determined and this may differ between size groups, species etc . , 

as life history characteristics in conjunction with environmental 

conditions determine patterns of growth in fish. 

This is contrary to the belief that "objective" methods are the most 

accurate way to interpret scales . In these the reader does not know 

the time or locality of sampling (size of the fish is easily infer red 

from the size of the scale although some authors ignore this). 

The main characteristics of checks were: 

i. In small fish the widening of circuli followed a band of 

relatively closely spaced circuli . The first annuli or two are 

often hard to identify. The thickening of the centre portion in 

large scales obscured these checks which are often indistinct. 

In some cases the first annulus is not registered on the scale . 

This is commonly found when young- of- the-year fish are small 

when entering their first winter (Brown & Bailey, 1952 ; 

Nord eng , 1961; Regier, 1962), and has previously been observed 

in B. holubi from the Vaal River (Mulder, 1971) . 

ii . In larger scales, checks generally become more distinct due to 

lateral resorbtion of scales in winter which then caused 

"cutting over" laterally as growth was resumed. 

iii. Often a dark band on t he posterior unsculptured part of th e 
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scale would be associated with a check . This was especially true 

for~. capensis . 

A sample of scales is shown in Figs.12 and 13 . 

D. PREPARATION AND INTERPRErATION OF OTOLITHS 

Otoliths have been used to age fish since 1899 and next to scales 

are the structures most commonly used to determine the age of fish 

(Ricker, 1977). 

Otoliths are considered by many to be more reliable for age 

determinations than scales (Jonsson , 1976 ; Hecht, 1979) . Otoliths 

do not resorb during periods of starvation or spawning (Simkiss, 1974) 

and this is understandable in terms of their function as balance 

organs . Otoliths are less likely to register "false checks" than are 

scales (Hecht, 1979) and it s eems that random (within season) changes 

in the environment are less likely to affect otoliths (protected 

structures) than scales (protection structures) . Williams & Bedford 

(1974) give detailed accounts of the collecting, preparation and 

interpretation of otoliths. 

There are three pairs of otoliths in teleost fish, and different 

pairs are used for ageing in different orders . In the Cypriniformes, 

the lapillus pair is best suited for ageing (Hecht, 1979) . Otoliths 

were collected by making a cut across the head between the opercular 

and preopercular bones (or just posterior to that in large fish). 

They were then removed, using fine forceps, from the posterior 

section of the fish, ventro-Iaterally around the brain . In larger 

fish the brain was removed using the rounded handle of the forceps, 

prior to collecting the otoliths. After removing remnants of the 

membr aneous otolith sac (capsula auditiva) the otoliths were stored 

in an envelope . The otoliths were placed in a black glass dish 

submerged in methyl salicylate BP, and observed in reflected light 

through a microscope at 30 - 40x magnification. 

Otoliths from the two Barbus species were generally clear, 

showing narrow hyaline (dark) , and broader but more variable opaque 

zones (White) (Fig. 12) . These usually agreed well with the patterns 

of checks seen on the scales . In older fish, the clarity of rings 

WaS often indistinct towards the centre of the otoliths. This was 
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Ot olith and scale from aarbus holubi , 248 mm , caught 
a t Station} 30/3/1981 . The fish is in its fourth 
growing season (3+) . The annuli are clear in the 
otolith, but the f irst one is missing from the scale . 

~, . j 
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Otolith and scale f r om Labeo capensis , caught a t 
Stat ion 2 29/3 1981 . The fish is in its fifth 
growing season (4+) . Annuli are distinct on the 
scale, but the otolith is indistinct after the 
ttird annulus. 

., 
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remedied by sanding the otoliths lightly on a fine wetstone. On sanding, 

some of the outer checks could be eliminated so one of the otoliths was 

always kept intact . 

Otoliths from L. capens i s generally showed the same pattern of 

alternating opaque and hyaline zones, but some (:- 15%) were indistinct 

and of little use (Fig . 13) . Grinding the otolith did not help . 

E. BACKCALCULATION OF LENGTHS 

If a relationship between the size of a structure used for 

ageing and the length of the fish is established, then the length of 

a fish at the time of previous check formation may be calculated . 

The major advantage of this is the data it generates. Backcalculation 

of length from scales was first done by Lea (1910) . Rile (1970) has 

reviewed the methods used and concludes that body- scale relationships 
from the same species may differ betwee n populations and even between 

years in the same populations. More recently, Carlander (1982 ) has 

suggested that such variation may be due to variation in measurements 

and insufficient sampling and that body-scale relationships are 

constant within a species . Certainly differences i n the relationship 

may be found when the actual relationship is not linear and all size 

groups are not represented . 

In this study scales were measured from the focus along the 

anterior median radius. This was done since scales often resorbed 

laterally and thus would have affected backcalculation of lengths 

if lateral measurements had been made . Scales commonly resorb 

laterally (Regier, 1962 ; Buchholz & Carlander , 1963) and excessive 

scale resorbtion in anadromous salmonids during spawning gives rise 

to spawning checks (Bagenal & Tesch , 1978). Comparisons of body­

scale relationships in ~. holubi from different seasons are given 

in Table 10 . This comparison was done at a time of dramatic 

environmental changes which greatly reduced the population. However, 

no differences between the relationships are revealed. 

In this study, a random selection of 10 body-scale measurements 

per cm-group were made from the entire collection . Scales form when 

the juveniles reach 25 - 30 mm in all three species . It was found 

that they all had curvilinear relationships which could be adequately 
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described by a power formula , y=axb (Table 11 ; Figs . 14 and 15). I t 

appears that after t he scale is formed it grows at a slow rat e relative 

to the fish initially but its growth rate gradually increases until 

the body-scale relationship approaches a straight line . Vork (in 

Chugunova, 1963) showed that body- scale relationships are curvilinear . 

This is because the body form of a fish changes during its lifetime . 

Such changes may be associated with growth stanzas. which occur 

commonly in the early life of a fish (Ricker, 1975) . It is likely 

that this is the r eason for the curvature in the body- scale 

relationship which is so pronounced in the lower size ranges of the 

cyprinids under study . The relationships for the three species are 

given in Table 11. 

Table 10 . 

Time 

Jan 1981 

July 1981 

Oct 1981 

Table 11 . 

Linear relationships between anterior median scale 
radius (x 24) mm and fo rk length" (mm) of ~. holubi 
i n lake Ie Raux . 

Relationship r' n p 

FL = 0 ,44 SR - 29 0,95 168 < 0,00001 

FL = 0 , 45 SR - 33 0 , 94 109 < 0 ,00001 

FL = 0,46 SR - 33 0 , 94 218 < 0,00001 

lE Length range 120 - 430 mm . 

Relationship between fork length (mm) and anteri or median 
scale r adius (mm x 24) for some cyprinids in lake I e Raux 

Species Relationship r' n p 

B. kimberle:z:ensis FL = 0,044 SR 0,97 421 < 0,00001 

B. holubi FL = 0 ,038 SR 0 , 98 421 <0 , 00001 

L. capensis FL = 0 , 041 SR 0 , 97 411 <0 , 00001 
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From the body-scale relationships, lengths are backcalculated 

using the formula : 

F = F 
x Y S 1/b 

Y 

where F = fish length 
S = scale radius 

and the subscripts x and y indicate time of capture and time 

of check formation respectively (Weatherley & Rogers, 1978). 

All backcalculations of growth and analyses of growth data were done 

by the author using the ICL computer at Rhodes University and the 

Statistical Fackage for the Social Sciences (Nie ~ al., 1975). 

F. CALCULATION OF YEAR CLASS STRENGTH 

To calculate year class strength, · the proportions of the catch, 

or the catch corrected for any bias of the sampling year, of a given 

year class is computed . There are two basic ways to do this . One is 

to superimpose length distributions of each year class on the full length 

frequency distribution . This is frequently done using probability 

paper ("Cassie curves") (Harding, 1949; Cassie, 1954). This method 

is also used to discern mode s , but here it offers no advantage over 

the regular length-freq·lency distribution, upon which it is based 

(Macdonald & Pitcher, 1979) . The separation of year classes in this 

way always assumes a normal or near-normal distribution and can be 

very time consuming . Several authors have contributed computer models 

to separate length- frequency mixtures, but these invariably require 

that the number of year classes in the mixture is known (McNew & 

Summerfelt, 1978; Macdonald & Pitcher, 1979). 

The other main approach which was adopted in this study is to 

use an age- le ngth key, first used by Fridriksson (1943) . A 

subsample of the catch is aged and the proportion of fish of a certain 

age in a given length group is assumed to be the same in the sample 

as in the total catch . In using an age - length key, Ricker suggests 

that the following cor,ditions must be met (1975, p . 206) : 
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"In using an age- length key, one must remember that the fish 
used for age determination must be taken from the same stock , 
during the same seasons, and using the same selective 
properties as that used to take the length- frequency samples. 
Above all, an age-length key cannot be applied to length samples 
of any year except the one from which it was derived, unless the 
year classes represented always have the same initial abundance 
and are subjected to the same fishing experience - a condition 
seldom encountered" . 

The age samples can be collected from a random subsample - an 

approach recommended by Kimura (197'7) or from a fixed subsample as 

recommended by FAO (1981). In this study, it was decided to use a 

fixed age subsample for the following two reasons 

i . It was difficult to obtain a random sample from the CPA gillnet 

catches . The catches were worked by nets and the fish cut open . 

ii . A fixed sample ensured that relatively scarce age- groups were 

included. 

During the CPA surveys one sample was taken from each one cm group 

from stations 1 , 3,5 and 6 and two from stations 2 ,4 and 7. No samples 

were taken during the July 1980 survey and inadequate samples were 

obtained in July 1981. Here samples from the following October 

surveys were used since no growth was observed between those surveys . 

The systematic collection of samples for age and growth analysis 

were discontinued in late April 1982 . The examination of scales and 

otoliths collected at station 2 in October 1982 showed that neither 

the large Barbus species nor 1. capensis had grown since April . 

Therefore the ageing results from material collected in April 1982 

were also applied to the catches f rom the October 1982 survey . 

Prior to calculating year class strength, catches were adjusted for 

gillnet se lectivity. 

The sampling between CPA surveys was too smal l to be of value in 

calculating relative year class abundance . Generally two or more 

samples were taken from each cm group for the growth study . Larger 

fish were scarce in these samples . Scales of B. holubi collected by 

CPA workers in October 1978 were interpreted and included when 

determining the growth of the 1977/1978 season. Si nce early checks 

are difficult to interpret when no guidance can be had from otoliths , 

no at tempt was made t o compute year class strength on the basis of 

those samples . 
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IV . THE ENVIRONMENT AND AGEING 

In this chapter, temporal and spatial variations in the biotic 

and abiotic environment are described . This is followed by a section 

on ageing in which the validity and reliability of age determinations 

and backcalculation of lengths are assessed. In variable environments , 

the accuracy of these methods largely depends on the knowledge of 

environmental changes and how these may affect the fi sh populations . 

The hlo sections of this chapter set the scene for the following 

chapter on population dynamics . The ageing is necessary for the 

estimation of population parameters, such as growth, mortality and 

year class strength and the environmental variability is important 

in explaining changes in these parameters . 

A. ENVIRONMENTAL VARIABLES 

Generally, reservoirs pass through a succession of changes 

before they stabilize or mature . Production is usually high intially 

after filling, but decreases after two to three years whe n a phase 

of "trophic depre~sion" is entered . This stage lasts for a variable 

time whereafter production increases again before stabilizing 

(lowe- McConnell, 1973) . The species composition of fish and their 

prey is also likely to change in the face of new environments. 

Changes of this nature are long term, but superimposed upon these 

are seasonal changes . 

In this section seasonal and longer term changes in important 

environmental variables in Lake le Raux are described . Changes in 

density and composition of the fish community will be treated later . 

1. Temperature 

Temperature varies seasonally, reaching 22° - 24°c in the surface 

waters of the pelagic zone in summer and decreasing to 12°C in winter 

(Fig . 16) . It appears that changes in water temperatures are primarily 

influenced by changing air temperatures, with the release pattern 

not directly influencing the direction or rate of change . The upper 

and lower thermal ext r emes may however be restricted by initial 
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temperatures of water released from Lake Verwoerd (Allanson, 1981). 

From Fig . 16 it can be seen that water is typically coldest in 

July to August and warmest in November to April, showing a distinct 

seasonal pattern, although there are some inter- annual variations 

both in timing (Table 12) and depth penetration of particular 

isotherms (Fig . 16) . 

Water temperatures in sheltered shallows around the lake are 

more extreme than those found in the pelagic zone . After frosty 

winter nights a thin sheet of ice was found along the water's edge, 

while in summer temperatures between 35° and 40°C were frequently 

measured. 

Table 12 . Time intervals in which surface waters of Lake le Roux 
were at or above 20°C. (Based on data from Allanson, 
pers . comm . ). 

Season Period 

1977/1978 Early November - early Apr i l 

1978/1979 Early De cember - l ate Apri l 

1979/1980 Mid November - earl y Apri l 

1980/1981 Early De cemb er - late Mar ch 

1981/1982 Early December - mid March 

2 . Fluctuations in water level 

Water level fluctuations and associated effects have important 

repercussions for the success of fish populations in reservoirs 

(Bhukaswan, 1980). Scmetimes fluctuations are used as a management 

tool to interfere, either positively or negatively , with the 

reproduction of a species, as discussed in Chapter -1. Water level 

fluctuations have a major effect on the repr oductive success of the 

species under study in Lake le Roux. 

The difference between high and low water mark in the lake is 

about 13 m (Fig. 16). At the lower limit the reservoir is only filled 

to about 50% of its capacity . Under natural conditions the river 

normally rises ,in early spring, but in the lake, water levels are 

generally receding at that time because of reduced releases from Lake 

Verwoerd. Usually , water levels in Lake le Roux rise sharply in late 
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summer. Thus flow in the river connecting the reservoirs does not 

exhibit the seasonal pattern of the pristine river (Fig . 17) . 

Tributaries to Lake Ie Roux and the Orange River between the two 

reservoirs drain a total catchment of 19 093 km' (Noble & Hemens, 1978). 

Flow i n these tributaries is unpredictable and mainly consists of 

short-lived flash foods . The largest of the tributaries, Seekoei 

River (Stn . 6), drains approximately 25% of the local catchment. 

Flow records from a gauging station on the Seekoei River were 

examined for a two year period from July 1980 to June 1982. Flow was 

only observed between February and October 1981 (Fig . 18) . Compared 

to the volumes discharged from Lake Verwoerd, the contribution of the 

tributary inflow is mi nor. 

Changes in water levels in the lake, the inflowing Orange 

River and the tributaries , will be discussed further under the heading 

of reproduction (Chapter V, C). 

3. Turbidity 

Turbidity in Lake Ie Roux is primarily caused by suspended silt 

particles and greatly affects several fish popUlation parameters, 

such as growth , mortality and dispersal. The system is light- limited 

and even a moderate increase in turbidity severely reduces primary 

production (Selkirk , 1982) and thus food supply. However, the most 

dramatic influence comes about because changes in turbidity can be 

sudden but not seasonal and thus changes are not ant icipated by the 

fish populations. 

Temporal changes in water clarity at Station 1 are shown in Fig. 

19 . It is noteworthy that changes in turbidi ty occur chiefly during 

the sUmm,r months, but are not cyclical, with markedly different 

conditions every year. For example, in the summer of 1977/1978, 

Secchi disc readings ranged from 0,6 m in November to 1,6 m in 

February after which there was a rapid decline to 0,3 m in April . 

In summer 1978/1979, readings were consistently around 0,2 m, but 

in spring 1979 they rose to 0,4 m and remained constant until 

spring 1980. 

Apart from temporal changes, there are spatial variations as 

well (Fig . 20). In general, turbidity decreases down the lake , with 
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the gradient steepest during periods when changes are most marked, but 

reduced or disappearing inbetween. Thus there was a marked gradient 

in summer 1977/1978 and again in 1980/1981. In 1979/1980 the gradient 

was less marked and in 1978/1979 and 1981/1982 conditions were 

generally uniform throughout the lake. 

Turbidity is of overriding importance for population size and 

structure as will be discussed in Chapter V. It becomes important 

to identify the main causes which govern the turbidity regime in Lake 

Ie Raux if the fish populations are to be well managed. Lake Ie Raux 

receives most of its water from Lake Verwoerd and local runoff only 

has a minor effect on overall hydrological conditions. Hence it is 

necessary to briefly consider processes in Lake Verwoerd . 

The Orange River normally flo>ls from September/October to April/ 

May (Fig. 17), carrying heavily silt- laden water (Keulder, 1979) . 

I n winter the river is reduced to a trickle of clear water. During 

the first few years of Lake Verwoerd (early 1970 ' s) the upper 

reaches were relatively clear in winter, but in summer the lake was 

clearest at the dam wall. S~bsequently, due to silt deposition 

and the flat unprotected shoreline, the winter flow upon entering 

the lake became turbid through windmixing (Hamman, 1981). It follows 

that Lake Verwoerd is now clearest in spring to early summer near 

the dam wall before the seasonal floodwaters reach there. 

Despite seasonal changes in turbidities in Lake Verwoerd, the 

hydrological processes which seem to exert the major influence on 

turbidity i.n Lake le Roux are water retention time in Lake Verwoerd 

and temperature of the water released into Lake Ie Raux. Stegmann 

(1974) found that the water just above the Verwoerd dam wall showed 

thermal stratification from early spring (October) and that a 

thermocline was well developed at 22 to 25 m by December . 

Temperatures in the epilimnion and hypolimnion were then 20°C and 12°C 

respectively . At times of thermal stratification, the temperature 

of the water released from lake Verwoerd depends on lake level and 

which outlets are being used . Except for periods of minimum 

release for riparian owners, outlets other than through turbines 

are negligible . The turbine intake is at 1220,42 to 1227,73 m above 

sea level and cylindrical. Hence, if the water is passed through the 

turbines in early spring to summer, progressively more epilimnetic 
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water will be drawn off as the lake level drops below 1252 m.a.s.l., 

presuming an epilimnetic layer of 25 m. This level is marked on 

Fig . 17 . 

The sharp increases in turbidity during the late summers of 

1978 and 1981 were associated with low spring water levels in Lake 

Verwoerd and consequently a short retention time and r eleases of 

epilimnetic water (Fig . 17). This water spread rapidly down Lake 

l e Raux, and since it "las relatively warm and buoyant it stayed on 

or near the surface where it would be susceptible to windmixing. 

This probably caused the sharp and sudden increase in turbidity IV) '''llS <:l.>'"\Olo, '01 , 

(Fig . 19) . In 1979/1980 , when water clarity in Lake le Raux 

improved, retention time in Lake Verwoerd was relatively short due to 

low lake levels in late winter. The water released that spring and 

summer was, however, hypolimnetic (cold and dense) and probably 

entered Lake Ie Raux at some level below the surface and did not 

much affect water clarity in the upper strata . 

The hydrological processes mentioned here and their influence on 

the turbidity regime of Lake le Raux are being studied by limnologists 

(Allanson et al ., work in progress), and should be better understood 

once their analyses are complete . 

4 . Primary production and zooplankton 

Standing stocks of phytoplankton (as chlorophyll) and both zoo­

plankton abundance (as biomass) and species composition were studied by 

Hart (1981). There is a marked seasonal change in abundance (Fig. 21). 

Seasonal maxima in zooplankton biomass , particularly of herbivorous 

components, seem to be associated with water clarity (Hart, 1981; 

Fig . 22) . 

Zooplankton abundance generally increases upstream in the 

reservoir and probably reflects reduced predation by ~. ho lubi in the 

more turbid environment (Hart, 1981) . In the riverine part of 

Station 8,however , zooplankton biomass is 'generally less than 1% 

of that found elsewhere in the lake (Hart, pe rs. comm.) and probably 

not enough to support a pelagic population of Bo holubi. 

Ballpark estimates of total zooplankton production in Lake Ie 

Raux, based on mean annual biomass and generalized P/B values for 
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zooplankton communities found in the literature , are given in Table 13. 

The extent to which planktivorous fish can make use of this resource 

is undoubtedly influenced by the specific composition of the 

zooplankton community and turbidity levels which jointly influence 

the vulnerability of zooplankton to visual and tactile predators . 

But, judging from the annual variation in potential production of 

zooplankton , fisheries production can b~ expected to be highly 

variable between seasons . 

Table 13. Tentative estimates of seasonal zooplankton production 
in Lake le Roux (dry weight; f r om Hart, 1981). 

Season Estimate 

1977/78 1 035 tons 

1978/79 360 tons 

1979/80 580 tons 

1~0~1 635 tons 

B. AGEING 

In most age and growth studies in temperate climates, two basic 

assumptions are made. Firstly it is assumed that growth checks are 

registered once a year on hard parts of the body, such as scales 

and otoliths. Secondly it is assumed that these checks form at the 

same time each year, when growth commences in spring . Thus the 

number of checks should indicate the age of the fish and distances 

between the checks coul d be taken as a measure of a year ' s growth. 

The latter assumption forms the basis for backcalculation of length 

to a previous age . However, in any ageing study, a critical 

examination of the two basic assumptions is nec essary (De Bont , 1967; 

ottaway & Simkiss , 1977) . 
In this section, time and frequency of check formation on scales 

and otoliths will be examined . Photographs of scales and otoliths 

are frequently used to illustrate points made in the text. In spite 

of much effort, these photographs are not as clear as the material 

when viewed under the microscope or on a microfiche reader . It was 

felt, however, that their inclusion still benefitted the presentation. 
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1 . Time and freguency of check formation 

Check formation was examined by calculating the growth corres­

ponding to the measured increment shown on the scale beyond the last 

check . This method was chosen in preference to direct scale 

measurements since the relationship betseen scale radius and fish 

length is not proportional (Figs . 14 and 15). The data were then 

analysed by age groups (i . e. number of checks shown on the scale 

and otolith) since it is well known that growth is largely size 

dependent. Indeed the validi ty of age and growth studies is often 

inferred from how well a von Bertalanffy growth curve fits the data, 

using the method of Walford (1946) (e . g . Hellawell, 1974; Linfield, 

1974; Bruton & Allanson, 1980; Hecht, 1980) . However, this. may be a 

dubious practice unless inter- annual variations in environmental 

variables is small , since it assumes that the fish populations are 

in a steady state (Weatherley, 1972) . 

a . Barbus holubi 

Growth, calculated from marginal increments of scales from 

B. holubi, is presented as a time sequence of histograms in Figs . 23 

and 24 . Time of check formation occurs when the modal length of the 

histograms shifts from right to l eft over a period of time . The 

1977/1978 year class had formed an annulus by late November 1979 , 

but had a more protracted period of annulus formation in October 

1980 to January 1981 (Fig. 23). In contrast , the younger fish of 

1978/1979 and 1979/1980 year classes had mostly formed their 

annulus in October 1980 (Fig. 24) and in November their modal 

increment was 10 mm larger than that of the older fish (Fig . 23) . 

The samples collected in winter 1981 showed that about 20% 

of the two younger year classes had formed a check since the March 

sampling , before cessation of growth that season (Fig . 24) . Most 

of these checks could not be distinguished from true annuli (Fig. 25). 

Checks were also formed on the scales of some larger (older) fish, 

but could be distinguished from true annuli in that no "cutt ing over" 

of circuli was observed laterally on the scales as is common at this 

size . 
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Otoliths showed the same pattern as the scales and were 

generally easier to interpret. In larger fish the interruption in 

growth in late summer 1980/1981 was not registered on the otolith, 

but the formation of a false check was increasingly common in smaller 

fish. Thus in the 1980/1981 year class, known from length-frequency 

distributions, 31% (n = 175) of those examined had false checks on 

their otoliths (Fig. 26). False checks could not be detected on 

scales of the youngest fish. 

The formation of checks on scales and otoliths in April 1981 can 

be attributed to a sharp and sudden increase in turbidity in March 

(Fig. 19). The two Barbus species feed on zooplankton in the pelagic 

zone, selecting their prey visually (Eccles, 1980). The much red.lced 

field of vision, caused by the increase in turbidity, may temporarily 

have caused a cessation in feeding. High water temperatures still 

maintained a high metabolic rate, cau~ing a growth check. The 

physiological condition of individual fish determines their reaction 

to environmental conditions and may cause checks to be formed on some 

or all fish of a year class (De Bont, 1967). In Lake Ie Roux the 

smaller fish appear to be more sensitive to changes in the environment. 

This is further borne out by seasonal changes in relative condition 

(Chapter V, A). 

In 1977/1978 there was similarly a sharp increase in turbidity 

in late summer (Fig. 19). The results related above led to a 

revision of the ageing of fish which had been spawned prior to that 

time. It was concluded that about 3~~ of the 1977/1978 year class 

had a false check on their otoliths (Fig. 27) and had erroneously 

been assigned to the 1976/1977 year class. This had given the 

impression that growth in 1977/1978 had been highly irregular and 

particularly poor for a large percentage of small fish. No evidence 

of a similar occurrence was found during the 1978/1979 and 1979/1980 

growing seasons. 

A majority of the 1978/1979 and 1979/1980 year classes formed 

annuli in spring and summer of 1981/1982 (Fig. 24). Of the 1977/1978 

year class, 15% Cn = 55) did not show plus growth on the scales by 

April/May 1982 and a further 42% showed less than 10 mm of plus 

growth (Fig. 23). Considering that scales may resorb (Fig. 28) it 

can become difficult to a~e these fish in later years, unless their 

h , •. , 
11 



Figure 26. 

Figure 27. 
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Otolith from B. holubi , 93 mm, caught at station 7, 
11/3 1982. Age 1+. The centre check is a false check 
formed in April 1981. 

'-' F'.C .~ 

Otolith from B. holubi, 215 mm, caught at station 4, 
30/3 1980. Age 2+. The centre check is taken to be 
a false check formed in March-April 1978. 
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Figure 28 . 

79 

Scale and otolith from B. holubi, 262 mm caught 25/7 1980 , 
station 2. Age 4+. The entire season ' s growth has 
resorbed laterally on the scale . The first check is 
unclear on the scale. 
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growth history is kept in mind. Otoliths tend to be more reliable 

than scales for identifying years of poor growth, although when there 

are several successive years of poor growth ageing becomes difficult 

(Fig. 29). In summer 1981/1982 it was often difficult to distinguish 

between false checks and annuli, especially early in the season. 

The risk of error was reduced as the season progressed in that the 

smaller fish which are most susceptible to false check formation, are 

also the fish which first resume growth. 

b. Barbus kimberleyensis 

The results for B. kimberleyensis are similar to those for 

B. holubi, although growth is resumed earlier in spring in ~. holubi 

(compare October and November 1980 in Figs. 23 and 24, and 30 and 31). 

Time of annulus formation is generally earlier and less protracted in 

fish of smaller size. False checks were formed in late summer of 1981 

~n 25% (n = 48) of the 1978/1979 and 1979/1980 year classes (Fig. 30) 

and in 1~~ (n = 112) of the 1976/1977 and 1977/1978 year classes 

(Fig. 31). The occurrence of false checks was related to size. This 

result can be explained by the smaller size reached by B. kimberleyensis 

than B. holubi in the first few years of life in Lake Ie Roux (Chapter 

V, B). 

A majority of the 1978/1979 and 1979/1980 year classes showed 

plus growth in 1981/1982, but older fish commonly showed no plus 

growth on their scales. Of the 1976/1977 and 1977/1978 year classes, 

3~~ (n = 37) failed to register plus growth (Fig. 31). Older 

~. kimberleyensis had a distinctive short period of growth in 

1975/1976 clearly visible on the otol·iths (Fig. 32), which was used 

as a llmarker ll to determine the age of these fish. In April 1982, 

six out of twelve fish in this group did show some plus growth on 

their scales. 

c. Labeo capensis 

While the majority of B. holubi caught and examined in this study 

were spawned in 1977/1978 and later, older L. capensis dominated in 

the L. capensis catches throughout the period of study. The results 

have been presented according to age, separating pre- and post­

impoundment year classes (Figs. 33 to 35). Time of annulus formation 

", 



Figure 29. 
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Otoliths and scale taken from B. holubi, 344 mm female 
caught in Lake Verwoerd 20/11 1981 . The left otolith has 
been ground , revealing two additional checks . The first 
two and last 4-5 checks on the otolith cannot be identified 
from the scale . Corresponding checks on the scale a,d 
otoli th are marked. Based on the scale, the fish would 
probably have been assigned an age of 4+, but rul age of 8 
or 9+ is obtained fron the otolith reading. 

• 
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Figure 32. Otolith from ~. kimberleyensis, 458 mm FL male, caught 
17/} 1982, station 5. Age 9 (no plus growth in season of 
capture) . A characteristic short growth band between the 
3rd and 4th check . corresponding to the 1975/76 season, 
can be seen. 
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Figure 33 . Backcalculated growth from last check formation on scales 
of Labeo capensis , 1976/77 and 1977/78 year classes . A 
check is for med when the mode of the length frequency 
distribution moves from right to left with time . 
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in 1980/1981 occurred over a long period (November to January) 

especially in the older fish (Fig . 33) . In 1981/1982 no plus growth 

(annulus formation) was observed for the majority of the population. 

Even in the smallest fish (Fig . 35) seven out of eighteen did not 

show any plus growth . 

Growth in ~. capensis often appears to be slow. In such cases, 

growth can only be inferred from otolith readings (Fig. 36). Age 

determination of ~. capensis was aided by the generally poor growth 

in the 1978/1979 season . This showed up clearly on the otolith but 

was often difficult to determine on the scales. The season of poor 

growth then served as a "marker" in the same way as the 1975/1976 

season I S grovl th for B. kimberleyensis . 

37 and 38 . 
Examples are shown in Figs. 

Unlike the two Barbus, false checks did not form in this species 

in late summer 1981 . L. capensis is a herbivore-detritivore which 

feeds off the bottom and does not rely on sight to do so. Production 

in Lake Ie Raux is primarily limited by light penetration (Selkirk, 

1982) . Thus, while increased turbidity may have limited the food 

supply of ~. capensis , the effe·ct was not as immediate as in the case 

of the two Barbus species . 

2. Comparisons between observed and backcalculated lengths 

The ageing of large cyprinids in Lake Ie Raux is complicated by 

irregular growth among seasons and the occasional formation of false 

checks . It is thus important to test the conclusions reached in 

other ways . One of t\le criteria applied to evaluate the accuracy of 

ageing by scales is to compare backcalculated lengths to observed 

lengths of fish at a known age (Maraldo & MacCrimmon , 1979) . The 

usefulness of this comparison depends, however , largely on how 

constant conditions r emain through time . In this study, large 

amounts of data were generated using backcalculations. There are 

potentially three main problems associated with using such data 

(Bagenal & Tesch, 1978) : 

L Only survivors are sampled . Different ial growth-related. 

mortality may cause average growth rates based on back-calculated 

data to differ from actual average growth rates. 



• • ; , 

, 

88 

Frequency 

Figure 35. 

fl 

Nov 80 
Dec /:SO 
Feb 81 

Winter 81 
Nov 1:S1 
. Jan ~2 

5. .-!I. Apr 82 

b=~1~o~~20f=~30~~~~~5~O~~6~oJC7+-0 ~=rM --9To--J 
Marginal increment! mm 

Backcalculated growth from last check formation on scales 
of Labeo capensis , 1978/79 and 1979/80 year classes. A 
check is formed when the mode of the length frequency 
distribution moves from right to left with time. 

Figure 36 . Otolith from L. capensis, 98 mm FL, caught 22/11 1980, 
station 8. Age 3+ . The plus growth is only just visible 
on the edge. 
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Scale and otolith from~ . capensis, 222 mm FL, caught 
26/3 1981 , station 1 . Age 4+, showing typically poor 
growth i n the 1978/79 season. 
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Figure 38 . 
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Sc~le and otolith from~. capensis, 225 mm FL , caught 
21/4 1982, station 1. Age 5. Typical poor growth in 
1978/1979 season and no plus growth during the 1981/1982 
season can be seen . 
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ii . Body- scale relationship used for backcalculations may be 

inaccurate . This can introduce a systematic bias i nto the 

results . 

iii. Sampling of age i ng material is not random. This can be caused 

by gear selectivity, and in lake le Roux, by local differences 

in growth rate . 

All three types of errors have been observed in previous studies , 

often giving rise to "Lee' s phenomenon" of backcalculated lengths 

at a given age becoming smaller when scales from older fish are 

used (Ricker , 1975; Bagenal & Tesch, 1978) . 

To validate the results of backcalculation, backcalculated 

lengths and observed lengths of the same year classes were compared. 

These comparisons will now be discussed . 

a . Barbus holubi 

The results for different year classes are presented in Figs . 

39 and 40. Growth generally t.apers off in April and there is good 

agreement between observed lengths in winter and subsequent 

backcalculated lengths . There is a characteristic reduction in 

backcalculated lengths to the second annulus from the beginning of 

the third growing season . This is because cohorts do not become 

fully recruited into the gillnets unt i l early in their third growing 

season. Other variations in the results may be due to variations 

in the sampling gear (Table 9) . Relatively greater numbers of large 

fish were sampled during CPA gillnetting surveys than at other times . 

b. Barbus kimberleyensis 

This species shows a higher degree of variability than B. holubi 

(Figs . 41 and 42) . There is a reduction in backcalculated lengths to 

the third annulus from the beginning of the fourth growing season . 

This reflects the smaller size at age in ~. kimberleyensis than 

B. holubi in lake le Raux (compare backcalculated lengths at age for 

the same year class, e . g . 1977/1978 year classes, Figs. 39 and 42). 

c . Labeo capensis 

It is commonly observed that ageing become s l ess accurate with 

old er fis~ (Carlande r , 1974) . However, the r elatively constant 
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results for the 1973/1974 year class (Fig . 43) indicate a 

consistency in the ageing procedure . Comparison of backcalculated 

and observed lengths for the younger year classes (Figs. 44 to 46) , 

show a high degree of variabili ty . In the 1977/1978 year cl ass , 

(Fig . 46) a gradual decline in backcalculated lengths at the third 

annulus may indicate that recruitment was incomplete prior to the 

fourth summer . However, much of the variation in the 1977/1978 , 

1976/1977 and 1975/1976 year classes (Figs . 44 to 46) may reflect 

variable growth rate and pattern of dispersal of this species in the 

lake (see Chapter V) . Thus variations in sampling have a greater 

effect on results for L. capensis than for the Barbus . 

3. Conclusions and discussions 

As a ru le , an annulus is formed when growth is resumed in spring 

or early summer, though interpretation is complicated by the following 

four ma in factors : 

i . The first annulus is often difficult to interpret from scales 

or may even be missing . 

ii . False checks may be formed during sudden in- season environ­

menta l changes, but do not affect t he entire population 

uniformly . 

iii . Time of annulus f ormation may be protracted over several months . 

The older (larger) the fish , the later in the season growth is 

resumed. 

i v . Growth is highly variable among seasons . In extreme cases no 

incremental growth may be registered on the scales. 

It is concluded that a study of age and growth, using scales and 

otoliths , of the large cyprinids in Lake le Raux can only be successful 

if : 

i. Sampling is done frequ ent l y throughout the year and 

ii . the history of environmental changes in the lake is well known 

and borne in mind when scales and otoliths are interpreted. 

Marked fish have often been use d successfully to eval uate ageing 

results , but tags may affect growth and results must be interpreted 

with care (Bagenal & Tesch, 1978) . Practical difficulties , discussed 

in Section A, prevented the use of marked fish in this study . 
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It appears that in previous age and growth studies in South 

Africa, periodicity of check formation on scales and otoliths (Bru t on 

& Allanson, 1974; Hecht, 1979; 1980) and spines (Bruton & Allanson, 

1980) has only been investigated in subtropical regions . None of 

the above autho~s found that checks were formed regularly once each 

year . Studies in more temperate regions usually assume that checks 

are formed annually, usually during the cold season . However, as 

seen in the present study, such assumptions may not always be 

warranted, especially if only scales are used. Several factors, 

other than temperature, have been shown to cause check formation in 

temperate climates. These include handling, injury, water level 

fluctuations and variation in food s upply (Ottaway & Simkiss, 1977; 

Weatherley & Rogers, 1978) . Little or no growth in scales of old 

(large) fish often causes age to be underestimated by the scale 

method, and is commonly observed in temperate climates (e.g. Alvord , 

1954; Regier , 1962; Buchholz & Carlander, 1963; Beamish , 1973; 

Jonsson, 1976 ; Maraldo & MacCrimmon, 1979; Mills & Beamish, 1980). 

Ageing using otoliths is generally better in these cases (e . g . 

Jonsson, 1976; Maraldo & Mac Crimmon, 1979 ; Mills & Beamish , 1980) 

although t he reverse situation has also been observed (Messieh & 

Tibbo, 1970) . All methods of age determination are not equally 

suited for different populations and more than one method should be 

used in each study . 
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V. GROWTH, MORl' ALITY AND REPRODUCTION 

The react i on of a fish population to exploitation is largely 

governed by those parameters which define population size and 

structure, i . e. growth, mortality and reproduction . There are two 

basic ways in which these are estimated (Pitcher & Hart, 1982) 

i . If the environment is stable and variation in reproductive 

success is small, growth and mortality can be estimated by 

comparing size at age and the relative abundance of successive 

cohorts at a given point in time . 

ii . If the environment is variable, large fluctuations in population 

parameters may occur. It is then necessary to follow the fate 

of individual cohorts through time. Fac t ors influencing 

population parameters can then be identified and their 

relationships established to guide management decisions . 

Due to the large environmental fluctuations in Lake Ie Roux (Chapter IV, 

A), and the relative lack of previous studies on these aspects in 

South African reservoirs, the second approach was adopted in this 

study. 

Length- weight relationships are necessary for the estimation 

of population biomass from length measurements, and changes in 

relative condition also provide supporting evidence when temporal 

changes in the populations are interpreted . These will be described 

prior to examining growth, mortality and reproduction . 

A. RELATIVE CONDITION 

Condition factor is a measure of weight relative to length and 

is often used to ~onitor the general well- being of a population 

(Bagenal & Tesch, 1978). Ivlev (in Weatherley, 1972) showed that 

interspecific differences in relative condition increased whe n fish 

were starved . It can thus be useful to measure not only the mean 

but also the range in condition within a population at any given time . 

Different ways to compute and interpre t condition factor are 

discussed by Le Cren (1951) , vleatherley (1972), Ricker (1975) , 

Bagenal & Tesch (1978) and Bruton (1979) . The one chosen in this 

study is : 
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C - obse rved weight = relative condition factor 
- expected weight 

where expected weight is calculated from an overall length-weight 

relationship. This method has the advantage that the condition of 

different size fish can be compared even if growth is allometric. 

Thus size composition of the sample does not affect the value of C, 

provided that the length-weight r elationship does not change with 

size, sex or age. Length- weight relationships therefore need to be 

established. 

1 . Length- weight relationships 

The relationship between length (L) and weight (W) can usual ly 

be described by the formula 

W = aLb 

where a and b are constants (Le Cren, 1951; Bagenal & Tesch, 1978) . 

If the exponent b equals three then growth is isometric, i . e ., if the 

density of the fish remains constant, so will the shape of its body 

(Ricker, 1975). If b does not equal three , body form will change 

with size and growth is said to be allometric. 

The length-weight r elationships were calculated based on data 

collected in November 1979 to October 1980 for the Barbus species and 

from January to October 1980 for ~. capensis . The results are given 

in Table 14. The re lationships for all species are similar for 

both sexes and when unsexed fish are included . The two Barbus 

species have near isometric growth (b - 3) . L. capensis has 

allometric growth (b > 3) , becomi ng relatively heavier with increasing 

length . The relationships fit the data well and there is no need 

t o divide the data according to size, sex or age. 

In this study, length-weight relationships were calculated 

primarily to monitor changes in relative condition with time, but 

also for the conversion of length measurements to mass (Section B) . 

2 . Temporal changes in relative condition 

The selective properties of fishing gear may influence the 

relative condition of the catch (Le Cren, 1951 ; Kipling , 1957) . 



Table 14. Length-weight relationships of some large cyprinids in Lake le Roux. 

Species Sex Relationship n Significance 2 Sampling time r 

B. holubi Males W = 1 , 24 x 
- 5 3 ,010 

10 L 621 p< 0 ,00001 0 ,99 November 1979 
to October 1980 

Females W = 1,08 x 10-5 L3 ,037 856 p< 0 , 00001 0,99 

All w 1,06 x 
-5 3 ,039 

1749 P <. 0,00001 0,99 = 10 L 

B. kimberle;yensis Mal es W = 0,74 x 10-5 L3 ,091 
265 P <. 0,00001 0,99 November 1979 

to October 1980 

Females W = 0 , 62 x 10- 5 L3 , 125 261 p <. 0,00001 0 , 99 ~ 

0 
~ 

All W = 0 , 71 x 10-5 13 ,099 664 p<.0 ,00001 0,99 

L. capensis Males W = 0,28 x 10':5 L3 ,298 951 p <. 0,00001 0 , 98 January 1980 to 
to October 1980 

Females W = 0 , 28 x 10- 5 L3 ,297 1217 p <. 0 , 00001 0,99 

All w = 0 , 38 x 10- 5 L3 ,241 3170 p <. 0 , 00001 0,98 
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Therefore, the relative condition factor was only calculated for 

the samples taken during the CPA gillnetting surveys . Since these 

samples were collected in the same way each time, they should be 

comparable . Pbssible variations in relative conditkn with size were 

examined by plotting individual deviations from expected weight 

against length for each season (i . e . summer and winter) (Fig . 47) . 

In winter 1981 and summer 1981/1982 changes with size of condition 

of B. holubi were abrupt between 220 and 240 mm (Fig . 47). The 

condition of B. holubi was therefore examined in two groups, those 

less than 230 mm and those larger than 230 mm (Fig. 48) . In general, 

the relative condition of B. holubi reaches a peak in summer (January), 

with a seasonal trend. showing more in the smaller fish . In October 

1981, condition of B. holubi ~ 230 mm was poor and variable, but 

this size group had recovered by January 1982. Fish ~ 230 mm showed 

high individual variation in cO:ldition in October 1981 and January 

1982 (Fig . 49) as indicated by the large standard deviation (Fig . 48) . 

By April, relative condition was again more uniform. 

The relative condition of Barbus kimberleyensis was, for 

comparative purposes, calculated separately for the same size groups 

as~. holubi (Fig . 50) although no trends were seen with size . No 

seasonal trends can be seen (Fig . 50) and this may in part be the 

result of variations in size composition of the sample for different 

sample dates. Catches were usually so low that the samples reflected 

the size distribution of the catch . 

Analysis of individual deviations from expected weight for 

L. capensis showed a trend with size in winter 1981 which became 

more pronounced the following summer (Fig . 47) . On this basis, 

samples were divided into three size groups for the analysis of 

relative condit ion; ,, 180 mm, 181 - 310 mm and '> 310 nun . The 

smallest group shows similar seasonal trends to ~. holubi, with 

relative condition peaking in summer (Fig . 51) . In the larger 

groups this trend is not observed and generally the condition of 

~. capensis declined from October 1980 until the end of the study 

period (Fig. 51) . Although small and large ~. capensis were in 

better condition in late summer 1982 than me dium- sized fish, all 

size groups examined were in relatively poor condition . 
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3. Discussion 

Several authors have examined length- weight relationships for 

B. holubi (Mulder, 1973a; Koch , 1975; Hamman, 1981), B. kimberleyensis 

(Mulder, 1973a; Bloemhof , 1974 ; Hamman, 1981) and L. capensis 

(Mulder , 1973b; Bloemhof, 1974; Baird & Fourie, 1978 ; Hamman, 1981) . 

In all cases the exponent b does not deviate markedly from three , 

as >Ias found in this study . 

Lengt.h- weight relationships in other species may be affected by 

the se l ectivity of the fishing gear (Kipling , 1957) , size at sexual 

maturity (Weatherley, 1972) and feeding periodicity (Bruton, 1979) . 

Thus the size composition of the sample and the time of year when 

samples were taken can affect the relationship. In this study , 

the relationship for the tHO Barbus species is based mainly on young, 

immature fish . However , old individuals of this species can become 

very deep-bodied and heavy (Chapter II, F). Mulder (1973a) found 

that B. holubi in the Vaal River became relatively deep-bodied when 

they exceeded 20 cm in length. The sample used to determine the 

relationship for L. capensis included many sexual ly mature f i sh , in 

which gonads can make up 20% of total weight . However, as ~. capensis 

grow lar ger they often accumulate large quanti ties of intestinal fat 

as well , which has also been observed by Baird & Fourie (1978). 

The relationship probably accurately reflects a relat ive increase in 

"plumpness" with size . 

Seasonal differences In r elative condition of B. holubi and 

L. capensis have also been reported from other water bodies . In Lake 

Boskop the condition of ~. holubi was lowest in winter (Koch, 1975 ). 

In Lake Verwoerd, Hamman (1981) found no seasonal differences in the 

condition of ~. holubi, but there was a decline from 1972 to 1976 . 

In this study , only males ) 260 mm and females > 310 mm we r e included . 

Smaller fish have been shown in the present study to exhibit greater 

seasonal differences than larger fish and this may account for the 

absence of seasonal trends in Hamman 's (1981) data . 

Relative condition of L. capensis was found to be generally 

higher in summer than at other times of the year in Lake Har dap 

(Bloemhof, 1974) , Lake Boskop (Koch , 1975) and. in Lake Verwoerd 

(Hamman, 1981) . In the Caledon River, seasonal differences in 
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condition were minimal (Baird & Fourie, 1978) . 
In the present study, B. holubi were in particularly poor 

condition in October 1978 and October 1981 . In both cases, this was 

preceded by a sharp rise in turbidity during the latter half of the 

previous summer (Fig . 19). Increasing turbidity can be expected to 

interfere negatively with the feeding of ~. holubi since this species 

feeds on zooplankton, selecting its prey visually (Eccles, 1980). 

The negative effects of turbidity are most apparent in spring when the 

temperature of the water is rising . The small fish adjusted to the 

new conditions by January, but many of the larger fish were still in 

poor condition at that time as seen by the large standard deviation 

(Fig. 48). 
The decline in condition of the larger L. capensis had started 

before the lake became turbid. This may be the result of increasing 

population density which was then further aggravated by the rise in 

turbidity (Sect ion B) . 

B. GROWTH 

1 . Introduction and rationale 

Growth can be studi ed as changes in individual size or as 

changes in the size of a population. Growth of individuals and 

populations is closely linked. Individual growth is usually inversely 

related to population density (Backiel & Le Cren, 1967), and since 

fecundity i s positively related to size, individual growth increases 

the reproductive potential of a population (Weatherley , 1972). 

Generally then, growth of a population is usefully analysed in terms 

of individual growth. 

Fish typically have a wide int raspecific range of growth rates , 

which reflect different conditions in the envir onment (Weatherley & 
Rogers , 1978) . Variations in growth rates are usually larger in 

freshwater than in marine populations, because of larger inter­

seasonal variations in freshwater habitats (Weatherley, 1972) . 

Large variations in growth among individuals within a season are also 

observed, especially when food becomes limiting (Nikolskii, 1969) . 

Similarly , individual growth r ate is highly variable in the pond 
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culture of many species (Purdom, 1974), particularl y if there is 

competition for food (Purdom, 1979) . However , it is difficult to 

differentiate between the effects of space and the effects of food 

avai l ability (Weatherley, 1972) . 

Within fresh wate r s , a distinction can be made between the 

response to limitations in s pace or food of fish populations in 

lotic habitats and lentic habitats . In perennial rivers , territorial 

behaviour acts t o regulate density through reducing population 

numbers when space or food becomes limiting . In seasonally flowing 

rivers , biomass also is regulated through reduction i n numbers 

since predation pressure may be extremely high , particularly during 

the dry season (Jackson , 1961f; lowe- McConnell, 1967) . In lakes, 
~ 

adult fish tend to respond to limitations in food supply by a 

reduction in individual growth rate , rather than a reduction in 

population numbers (Le Cren , 1965). This i s the basis for the inverse 

relationship between density and growth rate in fish populations 

(Backiel & Le Cren, 1967) . Thus the growth rate of individuals in 

lake populations may improve when subjected to heavy fishing 

pressure (Healey, 1980), or when there is a marked r eduction in 

population density , due to catastrophic natural events, such as a 

heavy parasitic infestation (Burrough & Kennedy, 1979) . 

The mode of popUlation regulation in lakes is particularly 

important to reservoir fisheries management . During and shortly 

after filling, reservoirs are usually relatively fertile with rapidly 

expanding fish popUlations . The fish population explosion coincides , 

however, with reduced productivity of the water and unless measures 

are taken to reduce population numbers at this stage, the food 

supply may become limited and the fish stunted (Fowler , 1978) . 

Thus a progressive decrease in individual growth rate and a shift in 

size structure of the population towards smaller fish has frequently 

been observed and has led to drastic population reduction measures , 

as reviewed by Thompson (1955), Barsons (1958), Shields (1958) and 

Jenkins (1970) . 

Fish production in lakes and ponds depends on density and is 

highest at some intermediate density (Backiel & Le Cren, 1967; 

Hofstede , 1974) . Thus the estimation of growth should be central 

to the proper management of fi sh pop~lations . 
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In this section, growth will be considered in t erms of length . 

Changes in length are indicative of long term changes , whereas 

weight changes may occur in the short term (Welcomme, 1979). 

in weight in relation to length were discussed in Section A. 

Changes 

Growth 

as measured in seasonal length increments will be analysed according 

to age, sex , locality and size . 

2 . Spatial differences in growth rates in Lake le Roux 

As outlined in the introduction to this section, it is important 

to continuously monitor seasonal growth of the fish populations. 

However, it is imperative that before such a study is undertaken, 

the homogeneity of each species should be established . It is 

especially important for management purposes to know whether the 

species exploited forms one population or consists of discrete stocks 

(Maclean & Evans, 1981) . If stocks are spatially separated, one can 

expect to find differences in population parameters, although this 

does not necessarily imply reproductive isolation (Casselman ~ al . , 

1981) . 

Patterns of changes in length frequency distribution with 

locality (Section C) suggest that ~. capensis has a tendency to form 

local populations. Parker & larkin (1959) argued that size rather 

than age is the most important factor in determining the growt h 

response of fish to environmental conditions . For example , the 

ability of f ish to obtain and digest food changed with size rather 

than age . Valid comparisons of growth rates can thus best be made 

by comparing growth of the same size groups in different year s , at 

different times of the year or from different environments . In Lake 

le Roux, growth rates for all the species studied become slower 

further from the dam wall . Longitudinal differences in growth rate 

showed the same trend in all seasons, but the 1979/1980 season was 

the earliest from which information on all three species was available. 

Analysis of growth rates by locality and season can be used to 

assess the mobility (mixing) of a specie s in the lake. This was done 

in the following manner. Individual growth in the 1979/1980 season 

was summarized accordi ng to the size of individuals at the beginning 

of the s eU50n . This was done separately for stations 2 , 4 and 7 
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at which most sampling has been performed. Growth rate was 

calculated separately for samples obtained in winter 1980, summer 

1980/1981, winter 1981 and summer 1981/1982 . The increments of the 

1979/1980 season were then compared for each sampling period by size 

group and locality. For example, Table 15 shows that B. holubi which 

were 50 - 99 mm in winter 1979 showed increments of 81, 66 and 58 mm 

at stations 2 , 4 and 7 respectively as calculated from samples taken 

at these stations in winter 1980. Increments for the same size group 

in the 1979/1980 season , calculated from samples taken in subsequent 

seasons show that the di fferences with locality observed in the winter 

of 1980, disappear with time. The r eduction in increment at station 2, 

and the increase at station 7 cannot be explained by differential 

mortality and is almost certainly the result of mixing. 

a . Barbus holubi 

The results from the samples taken in winter 1980 show a signif­

icant difference in length increments between stations 2 and 7 for 

all length groups (Table 15) . There is an increase in both absolute 

and relative difference with size . In the 50 - 99 mm group , there 

is a gene ral r eduction in i ncrements calculated from the data 

collected in summer 1980/1981 , from the winter 1980 results . This is 

caused by recruitment, with some of the slower growers of that size 

group not fully recruited into the sampling gear by winter 1980. 

The observed differences in winter 1980 disappear during the following 

one or two seasons, indicating that ~. holubi move freely within the 

lake and do not form local populations . Mixing lS slower in the 

smallest size group than the larger ones. 

b. Barbus kimberleyensis 

Growth increments of size groups at different stations in 

1979/1980 as calculated from samples taken in subsequent seasons are 

shown in Table 16. The pattern observed is similar to that of 

B. holubi . There is an increase in relative difference of increments 

with size group between localities in winter 1980 . Differences in 

growth rate with locality disappear with time and the r ate of mixing 

is faster in the larger size groups than in the smallest one . 
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Table 15 . Length increments of different size groups of B. holubi 
in summer 1979/80, by locality and season . -

Length Station Growth in 79/80 (mm ±95% confidence interval) 
group as calculated from samples collected in 

winter 80 summer 80/81 winter 81 summer 81/82 

50 - 99 mm 2 81(5,8) 68(5,8) 68(5,2) 65(12,1) 
4 66(5,4) 57(7,1) 75( 10 ,0) 68(6,5) 

7 58(5,7) 52(6,3) 60(9,0) 66(15,2) 

100 - 149 mm 2 87<3,7) 83(4,5) 76(7,2) 85(6,9) 
4 79(4,9) 80(7,1) 83(5,1) 82(5,0) 

7 63(5,9) 76(5,8) 74(5,0) 75(5,6) 

150 - 199 mm 2 77(4,2) 79(6,6) 78(6,9) 78(7,8) 

4 65(7,0) 73(8,3) 76(9,8) 76(6,6) 

7 50(6,7) 68(9,1) 74(8,9) 76 (9,1) 

200 - 249 mm 2 70(7,1) 76(7,5) 74(11,4) 81(8,3) 

4 63(7,0) 58(13,0) 65(15,0) 66(12,3) 

7 40(17,0) 59(11,3) 69(24,0) 67(38,2) 

Table 16. Length increments of different size groups of B. kimberley­
ensis in summer 1979/1980 by locality and season , . 

Length Station Growth in 79/80 (mm ±95% confidence interval) 
group as calculated from samples collected in 

winter 80 summer 80/81 winter 81 summer 81/82 

50 - 99 mm 2 99(9,2) 71(8,0) 64(8,0) 68(11,3) 

4 81 (12,7) 71(8,5) 64(4,6) 65(14,7) 

7 63(8,7) 57(4,7) 62(13,3) 64(11,0) 

100 - 149 mm 2 86 (19,6) 76(9,0) 70(13,9) 59(6,3) 
4 74(10,8) 72(18,1) 63(9,2) 59(11,3) 

7 57(6,9) 59(6,8) 57(26,1) 62(10,3) 

150 - 199 mm 2 81(6,0) 68(7,2) 60(9,4) 74(22,6) 

4 65(8,0) 69(6,4) 63(9,2) 67(9,2) 

7 50(8,0) 59(6,1) 51(8,0) 76(24,7) 
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c. Labeo capensis 

The pattern of observed differences in the 1979/1980 length 

increments with size group and locality for L. capensis are presented 

in Table 17. The temporal change in observed differences of the 

smallest size group follows the same pattern as in the Barbus species . 

Differences are maintained for longer in the 100 - 149 mm group than 

in the same group of Barbus, but growth rates between localities in 

the 150 - 199 rom group were not significant . Significant differences 

between increments at stations 2 and 7 in the 200 - 299 mm groups 

were maintained throughout the period of study. In the two largest 

groups observed initial differences disappear with time . 

The reasons for the disappearance of observed differences in the 

smallest and largest size groups are probably not the same. The 

smaller fish dispersed in the lake following a sharp increase in 

turbidity in 1981 (Section C) . The largest size groups may 

experience a differential mortality rate . Results presented in the 

following subsection indicate that fast - growing ~. capensis males 

have a higher mortality rate than slower growers . 

3. Growth of individual year classes 

Initial differences in growth rate have been found in all the 

species studied. The two Barbus species are highly mobile and f orm 

homogenous populations. Labeo capensis is less mobile, but although 

exploitation might cause local depletion, such areas would eventually 

be "seeded" from other parts of the lake (Section C). Each species 

can thus be considered to form one stock and it is valid to combine 

all observations when temporal patterns in growth ar e examined. 

When backcalculated lengths were compared to observed lengths 

(Chapter IV, B, Figs. 39 to 46) no trend could be observed with time 

that could not be ascribed to recruitment . Therefore, to increase 

the number of observations, all observed lengths at age in winter 

and backcalculated lengths have been combined when the growth of 

year classes was studied . The results are presented in detail in 

Appendix 1 , and are presented in graphical form in this subsection . 
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Table 17· Length increments of different size groups of L. capensis 
in summer 1979/1980, by locality and season . -

Length Station Growth in 79/80 (mm 95% confidence interval) 
as calculated from samples collected in 

winter 80 summer 80/81 winter 81 summer 81/82 

50 - 99 mm 2 62(5,0) 54(7,8) 56(8,6) 45(6,7) 
4 51(4,8) 46(5,7) 44(5,7) 43(4,3) 

7 33(5,2) 29(5,1) 44(6,4) 42(5,2) 

100 - 149 mm 2 57(5,5) 51(5,6) 58(6,1) 48(5,2) 

4 40(3 ,8) 47(4,9) 49(5,7) 49(4,0) 

7 36(4,5) 38(5,7) 45(9,2) 45(5,5) 

150 - 199 mm 2 56(4,0) 57(4,3) 56(6,0) 57(4,8) . 

4 43(4,7) 51 (5,8) 53(6,4) 45(4,7) 

7 48(12,2) 35(7,2) 43(8,8) 48(6,3) 

200 - 249 mm 2 53(3,5) 51(4,9) 54(4,9) 54(4,1) 

4 42(4,0) 45(4,8) 58(5,8) 50(5,5) 

7 34(7,8) 36(5,8) 45(7,6) 37(8 ,2) 

250 - 299 mm 2 40(4,5) 45(5,5) 51(5,7) 45(5,5) 

4 39(6,1) 37(4,9) 34(9 ,8) 33(10,6) 

7 21(9 ,07) 25(5,7) 31(6 ,4) 24(7 ,2) 

300 - 349 mm 2 33(2,7) 38(4,0) 31(5,8) 28(4,7) 

4 27(3,0) 34(3,6) 32(4,5) 34(5,7) 

7 18(2 ,8) 27(4,3) 28(5 ,0 ) 25(4 ,3) 

350 - 399 mm 7 26(4,1) 33(4,4) 27(8,0) 29( 7,6) 

4 22(5,5) 27(7,6) 17(2,0) 28(9,1) 

7 17(2 ,8) 21(5,7) 19(4,2) 31(4,5) 
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a . Barbus holubi 

Lengths at age for each year class are presented separately for 

males (Fig. 52) and females (Fig . 53) . Growth rates of the two sexes 

are similar initially, but females grow faster than males from t he 

age of five to seven years, depending on year class . Length at the 

end of the first summer is fairly constant for all year classes, 

except for the 1980/1981 year class . The observed similarity may in 

part be due to the method used. The first annulus is difficult to 

identify or may be absent on the scales of fish which are less than 

50 mm in length at the end of their first growing season . The 

apparent larger size at age 1 for the 1980/1981 year class is probably 

caused by gear selectivity . At the end of the sampling programme, 

only the faster growers of this year class were recruited into the 

gillnets . In previous years, backcalculated data for slower growers 

was included . 

At age 2, post-impoundment year classes are significantly larger 

t han pre-impoundment year classes (Appendix 1, Tables 1 and 2), 

indicating improved growing conditions for 1+ fish in the lake. There 

are large inter-seasonal variations in gr owth, which increase with 

the age (size) of the fish. This variation in growth will be analysed 

further in the following subsection . 

b . Barbus kimberleyensis 

~. kimberleyensis reach a larger size than B. holubi i n Lake Ie 

Raux. The growth rates of mal es (Fig. 54) and females (Fig. 55) are 

similar, but , as seen from the relatively abundant 1972/1973 year 

class (Appendix 1, Tables 3 and 4), females grow faster than males 

late in life. The contrast at age two between pr e- and post­

impoundment year classes is not as sharp as that observed for B. holubi . 

Size at age two is smaller for B. kimberleyensis than for ~. holubi, 

but the difference is less at age three and disappears by age four . 

c . Labeo capensis 

Size at age is similar for males and females of the 1975/1976 

year class and younger , but in older fish, females tend to be larger 

than males even a t age 3 and somet i mes at age 2 (Figs. 56 and 57, 

Appendix 1, Tables 5 and 6). These results indicate that differences 



117 

LENGTH/ mm 

PRE-IMPOUNDMENT POST-IMPOUNDMENT 

400 

300 

Age 8 ~ Age 9 
+ - '\.. \Ql 

' / )I::e10 
7 ,-+ ~<. 
~ ·/~---7" 

o / + 0/ ~ . 

Age 

A • • o / /; 
IJ./ 

A 

/ ... 
200 'j ... 

... 

/ ... 

/ o 

o 

100 Age 

• • • I I , 
1 • I , 

1 I 1 I 1 I , 
I I I 1 I I 1 1 

I 1 I I I 
1 I 1 I , , 

1 I 1 1 1 
I I 

I , 1 1 1 1 -I I 
I 1 I I I 1 I 

I I , 
1 I I I 

I I I I I I 1 I I I 

1972 1974 1976 1978 1980 1982 

Figur e 52 . Length at age of male ~. holubi in Lake le Raux , 
based on backcalculated and observed lengths. Year 
classes are connected by solid lines. All fish of 
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in observed len~ths-at-age between males and females are due to 

differential mortality between fast and slow growing males, and 

do not necessarily reflect sex- related differences in growth rate. 

Males mature at a smaller size than females (Section C) and faster 

growing individuals mature at a younger age than slower growers. 

Alm (1959) found for many species that spawning did not cause 

increased mortality. In Lake Ie Roux, spawning of !. capensis does 

not necessarily weaken individuals enough to induce increased 

mortality. Spent!. capensis were often caught and invariably found 

to be i n good condition. However, spawning occurs in temporary 

habitats in newly inundated shallow marginal areas. Thus breeding 

populations are susceptible to stranding and their vulnerability to 

predation is increased during spawning. In the··Orange River, 

downstream from Lake Ie Roux, farmers have reported that in ' spring 

and summer adult L. capensis were occasionally found stranded in 

small residual pools when flow in the river had suddenly been reduced. 

The good growing conditions which were created in the lake 

during the first two years of impoundment apparently could only be 

utilized to the full by fish in their third growing season or older . 

This has caused the re latively large gap between the growth lines of 

the 1974/1975 year class and the 1975/1976 year class. The latter 

year cl ass , and younger cohorts , show a particularly poor growth 

rate as compared to the two Barbus species . 

4. I nter- seasonal variations in growth rate 

Figs. 52 to 57 show that there have been considerable inter­

seasonal variations in growth s ince the lake was formed in October 

1976. It is however difficult to quantitatively compare seasonal 

growth rates from these figures. In this subsection, inter­

seasonal variations in growth will be assessed using two different 

methods. The first method, described by Kempe (1962), considers 

relative growth of year classes among seasons. The second method, 

developed in this study, is based on absolute length increments of 

size groups, f r om which growth curves are constructed . 



124 

a . Description and discussion of methods 

In the method presented by Kempe (1962) , a "standard of growth" 

is calculated as the average increment of each age group over a 

series of years . For example , the standard of growth of age 2 

Barbus holubi in Lake Ie Raux is 71 mm, the average increment of 

age 2 fish in the six seasons since the lake was formed (Table 18). 

Increments for each year class in individual years are then expressed 

as a percentage of the standard , giving relative growth . In the 

original method (Kempe, 1962), weighted averages were taken , but in 

the present study arithmetic averages were used. There are two 

reasons for this : 

i . The calculations of growth of year classes in the present study 

are largely based on backcalculated value s and sample size does 

not necessarily reflect the relative abundance of year classes 

in any given year . 

ii. The main interest here is to examine variations in individual 

growth, whereas Kempe's (1962) original method is more 

appropriate when population growth is analysed. 

In calculating length i ncrements, both sexes have been combined and 

only growth for the third season onwards has been considered . This is 

because the first annulus on many scales could not always be r ead . 

An estimate of the first season's growth would therefore be 

positively biassed and negatively biassed for the second season 's 

growth. Also , time of spawning varies among seasons and, if an 

accurate assessment of the first season' s growth was possible, it 

might not accurately reflect growing conditions in the lake . This 

method offers a quick way to compare seasonal growth rates within 

a lake. 

The second method is laborious, but is less susceptible to 

sampling bias than the first method. Growth is usually more 

de pendent on length than on age (Parker & larkin, 1959), and data 

analysed according to length are not affected by non- random 

sampling of the population, except possibly for the smallest size 

groups . This method does not require a "standard" and comparisons 

can be made between water bodies . In populations where annuli are 

difficult to interpret near the centre of the scale, growth curves 

can be constructed from the last few years ' increments . There is no 
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need to know the absolute age of the fish. 

In constructing growth curves for each season, it was assumed that 

length at the end of the first season was always 60 rom. This value was 

chosen based on Figs . 52 to 57. Variations in growth usually increase 

with size (age) (Deelder, 1951 ; Kempe, 1962). Fixing the size at the 

beginning of the second season should not introduce a marked bias . The 

increment in the second season is taken as the average increment of the 

50, 60, and 70 rom size groups. This increment added to 60 rom gave the 

hypothetical size at the beginning of the third growing season . Growth 

in the third season was calcUlated from three length groups around the 

value obtained for size at the beginning of the season . This procedure 

was then repeated for the whole size range for which data were available . 

For example, the growth curve for male~. holubi during the 1980/1 981 

season (Fig. 58) was calcUlated as follows: 

i. Length at end of first season: 60 rom. 

ii. Average increment of 50, 60 and 70 mm length groups in 

1980/1981 : 88 mm . 

iii. Length at end of second season: 60 + 88 = 148 rom. 

iv. Growth during third season was the average increment of 

130, 140 and 150 rom size groups: 94 rom. 

v. Length at end of third season is thus: 148 + 94 = 242 rom. 

This procedure is then continued unt il no more data are available. 

Growth curves were usually calculated separately for males and 

females. The von Bertalanffy growth model was fitted to the data, as 

described by Everhart ~..;g. (1975). The model describes a sigmoid curve 

approaching an asymptotic length. The curve is given by the relationship 

( -K(t-t)) 
It = La> 1-e 0 

where It is length at time t (t = 1 ,2 ,3 . . . ) , 
L 

"" 
is the asymptotic length , 

e is the base for natural l ogarithms, 

K is a "coefficient of growth" which describes 

how fas t La> is approached, 

and t is the time at which length equals O. 
0 

The correlation coefficient (r') for a Walford regression of length at 
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age t + 1 against length at age t varied from 0,98 to 1,00 . A good fit 

for the Walford regression shows that the data are well described by 

the von Bertalanffy model (Everhart et al., 1975). This confirms that, 

given a constant environment, growth is dependent on length, as was 

suggested earlier in this section. 

b . Barbus holubi 

The relative growth rate of different year classes of B. holubi 

in Lake le Roux is shown in Tabl e 18. Relative growth varies among 

seasons, the variation increasing with age . However, the extent of 

growth in different years is simil ar for all age groups . Exceptions 

to this are age 4 in 1980/1981 and 1979/1980 and age 2 in 1980/1981 . 

The latter is possibly due to differential mortality with fast growing 

fish of the 1974/1975 year class (age 2 in 1976/1977) being shorter 

lived than the slower growers . 

The growth curves constructed on the basis of seasonal increments 

of size groups are shown in Fig. 58, and the von Bertalanffy growth 

equations are given in Table 19 . Females reach a larger ultimate size 

than males and their coefficient of growth (K) is generally lower t han 

that of males. This is supported by the observation that females pre­

dominate among older fish (Appendix 1, Tables 1 & 2) . 

Growth was best in the 1976/1977 season when the lake filled 

(Table 18) . During subsequent seasons, relative growth rates of 

B. holubi are closely related to turbidity (Fig. 59). However, as 

seen in Fig . 58, the growth rates of fish smaller than 260 - 280 mm 

were faster in 1980/1981 than in 1979/1980. The trend is reversed in 

fish larger than 280 mm which grew slower in 1980/1981 than the previous 

season . This is probably an effect of density. In October 1980, density 

of B. holubi was more than three times higher than in October 1979 

(Fig. 60). 

Similarly, the differences in both relative growth rates (Table 18) 

and growth curves (Fig. 58) between the 1978/1979 and 1981/1982 seasons 

in which the water was equally turbid can partially be explained by 

density effects . There was a large-scale mortality before and during 

both seasons as indicated by the decline in biomass in Fig. 60. 

However , in 1978 the effect was more severe (the relative condition 

factor in October 1978 was 0,80 as opposed to 0 ,91 in October 1981 , 
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Table 18 . Average annual increments of B. holubi in Lake Ie Raux, 
expressed as increments in fork length, in mm, and as 
percentage of average growth over all seasons. 

Growth of ~. holubi at age 

Season 2 3 4 6 
Average percentage 

5 of standard 

1981/1982 men 42 38 7 6 10 
-

% 59 59 15 17 33 37 

1980/1981 mrr, 94 73 52 47 26 

% 132 114 108 134 87 115 

1979/1980 men 72 67 61 29 26 

% 101 105 127 82 87 101 

1978/1979 mm 46 31 20 16 15 

% 65 48 42 46 50 50 

1977/1978 men 86 79 59 48 49 

% 121 123 123 137 163 133 

1976/1977 mm 87 98 89 62 57 

% 123 153 185 177 190 166 

Mean increment 
"standard" mm 71 64 48 35 30 

Table 12· Values for the constants in the von Bertalanffy growth 
equation as fitted to length increments of Barbus holubi 
in different seasons in Lake Ie Raux . 

Season Sex L K t 
'" 0 

1977/1971$ males 603 0,19 0 ,52 

females 710 0,16 0,47 

1978/1979 males 403 0,20 0,61 

females 435 0, 16 0,15 

1979/1980 males 529 0,19 0,31 

females 535 0, 18 0, 21 

1980/1981 males 435 0,31 0 ,50 

females 476 0, 26 0,37 

1981 /1982 males 261 0,34 0 ,25 

females 260 0,37 0 ,30 



128 

LENGTH/ mm 

1977/1978 

400 1979/1980 

1978/1979 

300 

___ --- 1981/1982 

200 

100 

2 6 8 10 , 12 14 16 

AGE/ years 

Figure 58 . Constructed growt h curves for male ~. ,holubi in Lake 
le Roux during different seasons , fitted to the 
von Bertalanffy growth model. 
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Fig . 48), probably due to the higher initial abundance of fish in 1978 . 

Thus , while a large portion of the fish in 1981/1982 lingered on for 

most of the season, density was adjusted sooner in 1978/1979 to below 

the carrying capacity of t he environment and growth was resumed . The 

growing period in 1978/1979 may also have been longer than in 1981/1982 . 

Temperatures during the 1978/1979 seasons were generally warmer and 

surface waters in the pelagic zone remained above 20°C for about six 

weeks longer than in 1981/1982 (Table 12) . 

The effec t of turbidity may be two- fold . Hart (1981) found that 

zooplankton production is negatively related to turbidity and reduced 

field of vision further limits the use B. holubi can make of this 

resource . This may explain why larger fish show a greater density­

dependent decline in growth rates than the smaller individuals . 

c . Barbus kimberleyensis 

The relative growth rate of ~. kimberleyensis is presented in 

Table 20 . The trend with age and season is the same as observed for 

B. holubi (Table 18 , Figs . 58 and 61 . This is to be expected since 

during the first years of their lives, these species have similar 

feeding habits . Later B. kimberleyensis turn to piscivory and this 

is reflected in the large Loovalues in 

equations for this species (Table 21) . 

the von Bertalanffy growth 

The growth curve for 1981/1982 

is based on the growth of individuals which were less than 270 rom. 

The result is misleading in that nine specimens larger than 400 rom 

caught in April 1982 showed an average increment of 7 mm. However, 

if conditions in the lake were to remain as they were in 1981/1982 

(Fig . 61), it would be several years before~ . kimberleyensis turned 

to piscivory . Such a situation does not favour the building up of 

substantial numbers of large specimens of this prized sport fish. 

d. Labeo capensis 

~ . capensis growth is characterized by equal reduc t ion in relative 

growth rates for all age groups when conditions are poor e . g. 1978/1979 

and 1981/1982 seasons (Table 22) . Relative growth is similar for all 

year classes in each year, whereas in the Barbus species it was much 

less variable for the younger fish. However, when combined , the 

pattern is like that observed for the Barbus , except in the 1979/1980 
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Table 20. Average annual increments of ~. kimberleyensis in Lake 
le Roux , expressed as increments in fork length , in mm , 
and as percentage of average gr owth over all seasons . 

Growth of B. kimberleyensis -
at age 

Average percentage 
Season 2 3 4 5 of s tandard 

1981/1982 mm 45 32 12 12 

% 65 53 18 22 39 

1980/1981 mm 90 81 54 55 

% 130 135 83 102 112 

1979/1980 mm 69 61 60 lE 

% 100 102 92 98 

1978/1979 mm 56 39 38 30 

% 81 65 58 56 65 

1977/1978 mm 69 88 109 78 

% 100 147 168 144 140 

1976/1977 mm 88 60 119 97 

% 128 100 183 180 148 

Mean incr<;>ment 
"standard" mm 69 60 65 54 

'" i nsufficient data available 

Table 21 . Values for the constants in the von Bertalanffy gr owth 
equation as fitted to length increments of Barbus 
kimberleyensis in different seasons in Lake le Roux . 

Season Sex L ", K t 
0 

1977/1971:l combined 1073 0,09 O,LfI:l 

1978/1979 males 553 0 ,13 0,03 

females 639 0 ,11 0 ,10 

1979/1980 males 556 0 ,16 0, 20 

females 630 0 ,14 0 , 20 

1980/1981 males 512 0 , 22 0 , 39 

females 574 0 ,18 0,38 

1981/ 1982 combined 288 0 ,40 0,43 
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Figure 61 . Constructed growth curves for male ~. kimberleyensis in 
Lake le Roux during different seasons, fitted to the 
von Bertalanffy growth model. 



133 

Table 22. Average annual increments of ~. capensis in Lake Ie Roux, 
expressed as incr ements in fork length, in mm, and as 
percentage of aver age growth over all seasons . 

Growth of L. - capensis at age 

Average percentage 
Season 2 3:' 4 5 6 7 of standard 

1981/ 1982 mm 18 13 1 11 lE 11 

% 37 27 2 29 46 28 

1980/1981 mm 52 46 42 41 27 16 

% 106 94 102 108 79 67 93 

1979/1980 mm 47 52 49 43 34 26 

% 96 106 120 113 100 108 . 107 

1978/1979 mm 26 25 19 16 14 13 

% 53 51 46 42 41 54 48 

1977/1978 mm 70 66 60 56 46 47 

% 143 135 146 147 135 196 150 

1976/1977 mm 82 92 78 64 50 34 

% 167 188 190 168 147 142 167 

Mean increment 
"standard" mm 49 49 41 38 34 24 

~ insufficient data available 

Table 23 . Values for the constants in the von Bertalanffy growth 
equation as fitted to length increments of Labeo caEensis 
in different seasons in Lake Ie Roux . 

Season Sex La> K t 
0 

1977/19715 males 50b 0, 19 0 ,39 

females 609 0 , 16 0 ,43 

1978/1979 males 533 0,07 0 , 11 

females 742 0,04 0,92 

1979/1980 males 593 0 , 11 0 ,07 

females 688 0 ,09 0 , 12 

1980/1981 males 490 0 , 15 0,13 

femal es 557 0,13 0 ,08 



and 1980/1981 seasons (Fig . 59). Relative growth of L. capensis was 

better during the former season whereas B. holubi grew on average better 

during the latter season. 

The relative growth of L. capen sis in 1981/1982 is high (Table 22). 

Only 13% (n = 283) of the~. capensis caught in April 1982 showed any 

growth in this season. Taken over t he whole sample , average growth in 

1981/1982 was 2 mm. Thus the growth in this season is not accurately 

reflected in the data of length- at- age. There is a large size range 

for each year class in this species, and the discrepancy in the results 

can be explained by insufficient sample sizes obtained in April 1982 . 

Alternatively, differential mortality of smaller fish dying at a faster 

rate than larger fish could also explain the results, but there are no 

other indications of this occurrence. 

The growth curves reflect a similar relative change in growth i n 

all length groups . Ultimate length (Loo) values (Table 23) are relatively 

constant, but the time it takes to reach the ultimate size varies greatly 

between seasons (Fig . 62) . Females reach a larger ultimate size than 

males (Table 23). No growth curve could be constructed for the 1981/1982 

season, since average increments in that season were too small to make 

the exercise meaningful . 

The growth rates of L. capensis are apparently related to turbidity 

(Fig . 59) but the relationship is not as close as for the Barbus. The 

decrease in growth rates from 1979/1980 to 1980/1981, in spite of reduced 

turbidity, is probably due to the high density of ~. capensis at the 

beginning of the 1980/1981 season (Fig . 60) . Similarly, relative con­

dition of L. capensis declined from October 1980 until the end of the 

study (Fig . 51). 

5. Summary and discussion 

In all the species, females attain a larger size than males. In 

the two Barbus species this is due to sex related differential growth 

rates. In~. capensis the observed differences were probably due to 

differential mortality with faster growing males experi encing higher 

mortality rates than slow growers. 

~. holubi grows faster than B. kimberleyensis for the first two 

years, but by age 4 the two species are of a s i mil ar size, whereafter 
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Figure 62 . Constr ucted growth curves for male ~. capensis in 
Lake l e Roux during different seasons , fitted to 
the von Bertalanffy growth model . 



~. kimberleyensis is larger . L. capensis generally grow at a slower 

rate than either of the Barbus species . 

Growth in all species is reduced with increased distance from the 

dam wall (Tables 15 to 17). The disappearance of observed growth 

differences for a given season with time shows that the Barbus species 

mix uniformly in the lake. L. capensis, part~cularly the smaller size 

groups, mix when living conditions become adverse and reproductively 

isolated units are not maintained . 

There are large inter- seasonal differences in growth rates, which 

are closely related to turbidity and population density. Both these 

factors operate to reduce available food resources per individual. 

Absolute seasonal length increments are inversely related to length 

of the fish. In the two Barbus species inter- seasonal variation in 

growth increases with size and Loo , calculated from the growth in each 

season , varies. In~. capensis relative differences in growth rates 

between seasons are similar for all size groups . Loo is thus relatively 

constant in spite of varying growth rates . 

As expected, both the Barbus species and~ . capensis reacted to 

changing conditions by adjusting individual growth rate . However , the 

sudden deterioration in environmental conditions in 1978 and 1981 

(increased turbidity) also caused high mortalities in~. holubi on both 

occasions and~. capensis in 1981. Thus the expected slow deterioration 

in growing conditions was interrupted. 

Growth in fish generally follows a sigmoid curve directed towards 

an asymptotic length, determined by environmental conditions (Warren, 

1971 ) . A reduction in growth rates is usually accompanied by a re­

duction in Loo. Beverton & Holt (1957) concluded that while W 
00 

(Loo) Was affected negatively by adverse growing conditions, K (the 

rate at which Loo is approached) was a species specific constant. The 

results of the pr esent study are at variance with Beverton & Holt ' s 

(1957) conclusion. AlthoughLoo closely reflects growth rates of the 

two Barbus species, K also varies considerably be t ween season. In 

L . capensis, changes in growth rates are mainly reflected in changes 

in K, while Loo is relatively constant . 

Sainsbury (1980) showed that, because of individual variation in 

growth, values of K and Loo represen t a distribution around a mean 

but are not a fixed property of a population. Pitcher & Hart (198?), 
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in discussing the von Ber talanf fy growth equation , question t he 

biological i nterpr et ation of constants in the model, but conclude 

that it is a convenient way to descr ibe gr owth . Similar views were 

expr essed by Warr en (1971) . However , the von Bertalanffy model 

descr ibes well t he gr owt h of the cyprinids i n this study and high­

lights a major difference in growth response between the Barbus 

species and L. capensis . The significance of variable asymptot ic 

lengths in the Barbus species and a relatively constant Loo in 

L. capensis will be discussed in mor e detail later . 

C. REPRODUCTION , RECRUITMENT AND MORTALITY 

The prediction of future yields i s an important part of 

fisheries management. If a fishery depends only on a few species 

whose abundance fluctuates markedly in response to non- cyclic 

environmental variations (as is the case in Lake le Roux, Fig . 60), 

the monitoring of year class strength prior to recruitment becomes 

an important facet of management (Regier, 1977). When long- term 

data are available, models can be developed to predict yields in 

relation to environmental changes. 

Growth has been discussed in the previous section, and other 

aspects influencing the recruitment process will be considered he r e . 

Reproduction is discussed in terms of time and locality of spawning , 

and recruitment in terms of year class strength and mortality. 

Catch per unit effort (CPUE) is used extensively in interpreting 

year class strength , reproduction and mortality . However, CPUE 

can be influenced by such factors as ,later temperatures, wave action 

and turbidity . If these act uniformly in the population, relative 

abundance is still a valid measurement of year class strength . 

If , however, patterns of distribution change, CPUE may not be a 

good measure of temporal changes in abundance of different cohorts 

(Jester,1977). It is necessary then to first describe the distribution 

of subadult and adult fish , i . e. fish recruited into the CPA gillnets 

(generally ;;. 130 mm) . 
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1 . Distribution of subadult and adult fish in Lake Ie Raux 

Catches in the CPA gillnets accurately reflect the location of 

modes in the size distribution of the populations (Chapter III, B). 

Therefore it is valid to compare length-frequency distribution of 

catch through time and between localities. The catch of~. holubi 

~. kimberleyensis and ~. capensis during the quarterly CPA gillnet 

surveys is presented as length- freq'lency histograms (Figs. 63 to 65). 

Catches of B. holubi and L. capensis at stations 1 & 2, and at 

stations 4 & 5 consistently showed similar patterns, so these have 

been combined and the average catch plotted. For the last two 

sampling dates, after the number of gillnet sites had been reduced 

from 28 to 20, the catch has been adjusted to represent the catch as 

four settings per station in order to make it comparable to previous 

sampling dates. Catches of B. kimberleyensis were too low for 

subdivision into stations . 

a. Barbus holubi 

The length-frequency distributi.on of ~." ho~ubi gen!'rally sh()wed 

distinct modes (Fig. 63). The mode of the smallest fish is usually 

highest at the upper station (particularly station 7) in January or 

April . As the mode moves, it becomes best represented at the lower 

station, reflecting the same trend in distribution as larger fish. 

Generaldeclines in catches with distance from the ciam wall are 

associated with an increase in turbidity (Fig . 20) . 

A mode at 2lfO mm in April 1980 was relatively small and 

indistinct. This represented a weak year class which by January 1981 

separated the mode of new recruits at 130 - 140 mm and older fish. 

Relative year class strength will be discussed in the following 

sub- section . 

It may be concluded that new year classes are first recruited 

in the upper parts of the lake, but within a year an unbiassed catch 

anywhere in th.e lake should give a good indication of ' ~. holubi' s 
'(eo.V" c. \o.'Ss 

relativeAstrength . 

b . ~. kimberleyensis 

B. kimberleyensis larger than 350 mm are relatively well 



139 

NUMBER 

,·40 

30 

20 

10 

10 

5 

5 

10 

10 

5 

30 

20 

10 

40 

30 

20 

10 

20 

10 

Station 1 and Station 3 Station 4 and 5 Station 6 Station 7 

150 250 350 150 250 350 150 350 150 250 350 150 

Figure 63. Length frequency distribution by station of Barbus holubi, caught during CPA 
gillnetting surveys on Lake Ie Roux. The numbers graphed represent the catch in 
four settings. All fish 390 mm and larger are combined. 
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represented in the catches (Fig. 64) . In contrast to ~. holubi, 

modes in fish smaller than 300 mm are indistinct and the catches 

fluctuate less. 

c . Labeo capensis 

Catches of L. capensis in April 1978 showed a bimodal distribut­

ion at all stations, although the smaller mode was only poorly 

represented at stations 1 to 3 (Fig. 65). The two modes are probably 

caused by the good growth of the 1974/1975 year class and older fish 

during the first year of impoundment (Section B, Figs. 56 and 57). 

Fish in the smaller mode (1975/1976 year class and younger) 

were well represented at stations 1 to 3 by January 1979 (Fig . 65). 

Growth in that season was poor (Table 22) which indicates that these 

fish had immigrated to the area . With time , small fish are recruited 

at all stations. In the 1980/1981 season, recruitment at stations 

1 to 3 failed, and fish 120 - 200 mm were poorly represented in the 

catches in April 1981 . In April 1981, small fish disappeared from 

station A and subsequently, small fish (~200 mm) entered the catches 

i n the lower station while catches were reduced further up the lake. 

Growth in 1981/1982 was very poor (Section B) and can be ruled out 

as the cause of recruitment of fish ,, 200 mm at the lower stations 

in January 1982, and again immigration is the most plausible 

explanation. This is in agreement with results on growth differences 

within the lake presented earlie r in this chapter (Table 17), which 

indicated movement of fish, 200 mm in winter 1981 and summer 1981/ 

1982. 

It is evident then, that changes in CPUE of L. capensis in 

Lake Ie Raux, especially of fish smaller than 200 mm, may reflect 

dispersal within the lake, as well as changes in gear efficiency 

and in numerical abundance . The reasons f or and effects of movement 

of small~. capensis in 1978/1979 and in 1981/1982 wil l be discussed 

further in the following sub-section . 

2 . Mortality and relative year class strength 

The reproductive potential of fish is reduced by factors whi ch 

limit spawning and subsequent survival during various stages of their 
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Figure 65. Length frequency distribution by station of Labeo capensis, caught during CPA 
gillnetting surveys on Lake Ie Roux. The numbers graphed represent the catch 
in four settings. All fish ~ mm and larger are combined. 
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life history . I f the factors which limit reproduction and 

recruitment do not operate uniformly between seasons, it becomes 

imperative that they be identified and that their relationships are 

understood. 

In this sub- section , year class strength wi ll be assessed on the 

basis of CPUE of newly recruited year classes into the CPA gillnets. 

Subsequent changes in CPUE of individual year classes are presented 

and discussed . Reproduction will be dealt with in the following 

sub- section. 

a. Barbus holubi 

Changes in CPUE of individual year classes show a considerable 

temporal variation (Fig . 66, Table 24) . These variations are due 

to changes in catchability and to changes in abundance (result of 

mortality and recruitment), and their effects are difficult to 

separate. New year classes ar e recruited into the catches during 

their second year, but results from backcalculation of lengths 

at age indicate that the slowest growers are only recruited early in 

their third year (Chapter IV, B). 

Ageing, based on scales collected in October 1978, showed that 

the first mode in the catches in April 1978 (Fig . 63) was chiefly 

made up of the 1976/1977 year class , but that the upper range and 

the dip in the frequency distribution, reflects a relatively weak 

1975/1976 year class . The changes in CPUE of these two modes from 

1978 are presented in Fig. 67 . 

There was a sharp decrease in CPUE after 1978 (Fig. 67) and 

again after April 1981 (Figs. 66 and 67). In both cases this 

followed a sharp increase in turbidity (Fig. 19). B. holubi feeds 

visually in the open water (Eccles , 1980), and a reduced field of vision 

will also reduce the speed at which it effectively can search for 

prey. Larger fish may also turn to a benthic mode of life and then 

be less vulnerable to capture in floating nets. A decline in the 

effectiveness of the gillnets towards B. holubi undoubtedly accounts 

for some of the decrease in CPUE . 

The increase in CPUE until January 1980 (Fig . 67) probably 

reflects improved clarity of the water . The further large increase 

in CPUB in April 1980 of the 1975/1976 and younger "year clas ses 
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Figure 66 . Tempor al changes in catch of different year classes of 
Barbus holubi in Lake le Roux . Catches have been adjusted 
for gillnet selectivity and reduced effor t in April and 
October 1982. The scales have been adjusted to represent 
catches as a portion of catches in April 1981. 



Table 24 . 

Time 

Apr. 79 

Jul. 79 

Oct. 79 

Jan. 80 

Apr. 80 

Jul. 80 

Oct. 80 

Jan. 81 

Apr. 81 

Jul. 81 

Oct. 81 

Jan . 82 

Apr . 82 

Oct. 82 
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Calculated catch per unit effort of different year classes 
of ~. holubi during CPA surveys . The original catch was 
adjusted for gillnet selectivity and the catches in April 
and October 1982 have been corrected for reduced effort 
to make the data comparable . 

Year class catch per unit effort 

80/81 79/80 78/79 77/78 76/77 75/76 74/75+ 

273 86 19 84 

113 41 15 73 

187 83 12_ 99 

508 203 27 281 

212 1449 513 77 234 

134 996 273 85 174 

126 895 297 117 318 

364 259 1207 246 106 232 

1?55 308 1181 300 161 242 

458 64 549 103 6 10 

321 51 472 105 9 20 

227 164 26 242 46 39 56 

935 164 25 263 108 46 79 

554 165 15 92 44 26 47 
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Figure 67. Catch of B. holubi spawned in 1976/77 and earlier in 
Lake le Raux during gillnetting surveys as a percentage of 
the catch in April 1978. Catches have been adjusted for 
gillnet selectivity and reduced effort in April and 
October 1982. 
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(Table 24, Fig . 66) is probably the result of changed twine 

thickness of gillnets (Table 8, Chapter IV, A). The 1975/1976 and 

1976/1977 year classes at that time were caught mainly in the 57 and 

73 mm meshes. The twine thickness of the larger meshes did not 

change, which may explain why a similar increase in CPUE was not 

observed in the older fish (Fig. 66). 

Changes in the effectiveness of the gear make it difficult to 

estimate mortality and relative year class strength. The reduction 

of catches from April 1978 was permanent, although catches in 

subsequent surveys varies (Fig. 67). Taking into account the change 

of nets in April 1980, it can be assumed that the increase in 

turbidity in late summer 1978 caused 80 to 90% mortality in year 

classes 1976/1977 and older . The decline in catches was less sharp 

following the second increase in turbidity in late summer 1981. 

A year later, catches were between 10 and 30% of the April 1981 

catch (Fig. 66) as compared to about 5% for the corresponding period 

in 1978/1979 (Fig. 67). Low relative condition in October 1978 

(Fig. 48) further supports the contention that there was a 

substantially greater decline in the population in 1978/1979 than in 

1981/1982. This is probably due to the higher density of B. holubi 

in April 1978 than in April 1981 (Fig. 60), as well as the greater 

changes in turbidity in April 1978 (Fig. 19). 

Young-of-the-year probably do not suffer the mortality of the 

older cohorts at times when turbidity increases sharply. The 

1977/1978 year class was entering the catches in January 1979 (Fig. 63) 

when catches of older fish were at their lowest. Similarly the 1980/ 

1981 year class was beginning to be recruited in January 1982 (Fi g . 66). 

Relatively small variations in growth during the second year of life 

(Fig. 52) further indicate that this age group is not as affected by an 

increase in turbidity as older fish. 

The 1977/1978 year class dominated in the catches for three 

years (Table 24) but catches of the 1978/1979 year class numerically 

only made up between 10 and 26% of the 1977/1978 year class . The 

catch of the 1979/1980 year class was 4,6 times higher in April 1981 

than the catch of the 1977/1978 year class in April 1979 . However 

the catches of the two were similar in April 1981 (Table 24). The 

1979/1980 year class was probably weaker than the 1977/1978 year 
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class had been . The difference in the April catches of age 1 fish 

almost certainly is the result of different gillnets and cleare r 

water in 1981. 
The 1980/1981 year class was caught with more efficient nets at 

the end of its second season than the 1977/1978 year class, but water 

clarity was similar on both occasions . Although other factors than 

wate r clarity and twine thickness of nets may influence the 

catchability of ~. holubi, it is likely that the 1980/1981 , 'Sear 

class is at least as strong as the 1977/1978 year class. 

In conclusion, the B. holubi 1977/1978 and 1980/1981 year classes 

appear to be strong, the 1978/1979 year cl ass weak and the 1979/1980 
year class moderately strong . The causes for these differences will 

be examined in the sub-section on reproduction . 

b. Barbus kimberleyensis 

Catch per unit effort of individual year classes of B. 

kimberleyensis is presented in Fig . 68 and Table 25 . New year classes 

are ma inly recruited into the gillnets during their third growing 

season . There are considerable temporal variations in CPUE which to 

some extent undoubtedly reflect the small numbers . 

The reduc tion in catch seen in B. holubi after April 1981 is 

only observed in the 1977/1978 year class of ~. kimberleyensis 

(Fig. 68) . Older year classes do not show a particular temporal trend . 

This may be an expression of good survival, but could also be a result 

of the increased catchability of larger predatory fish. 

The 1977/1978 year class appears to be the strongest of the 

post-impoundment year classes but the r elative strength of other 

cohorts is difficult to assess because of small numbers and late 

recruitment . 

c. Labeo capensis 

Catch per unit effort of individual year classes of ~. capensis 

is presented in Fig . 69 and Table 26 . Temporal variations in cat ch 

are similar for all year classes and indicate that gener ally , the 

same factors influence the catchability of all size groups . There 

are exceptions to the general pattern which will now be examined . 
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Figure 68. Temporal changes in catch of different year classes of 
Barbus kimberleyensis in Lake le Roux. Catches have 
been adjusted for gillnet selectivity and reduced effort 
April and October 1982. The scales have been adjusted 
to present catches as a portion of catches in April 1981. 



Table 25. 

Time 

Apr . 79 

Jul. 79 

Oct. 79 

Jan. 80 

Apr . 80 

Jul. 80 

Oct. 80 

Jan. 81 

Apr. 81 

Jul. 81 

Oct . 81 

Jan . 82 

Apr. 82 

Oct. 82 
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Calculated catch per unit effort of different year classes 
of ~. kimberleyensis during CPA surveys . The original 
catch was adjusted for gillnet selectivity and the catches 
in April and October 1982 have been corrected for reduced 
effort to make the data comparabl e . 

Year class catch per unit effort 

80/81 79/80 78/79 77/78 76/77 75/76 & older 

1 23 118 

1 19 111 

3 19 101 

28 46 190 

2 60 66 134 

14 42 78 51 

9 33 64 55 

7 53 121 64 72 

8 - 23 92 70 66 

19 20 26 51 18 

11 12 20 51 28 

5 13 18 28 28 33 

6 14 45 31 49 60 

21 9 27 16 28 35 
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Figure 69 . Tempor al changes in catch of different year classes of 
Labeo capensis in Lake le Roux . Catches have been adjusted 
for gillnet selectivity and reduced effort in April and 
October 1982 . The scales have been adjusted to represent 
catches as a por tion of catches in April 19()1 . 



Table 26 . 

Time 

Jan. 80 

Apr . 80 

Jul. 80 

Oct . 80 

Jan . 81 

Apr. 81 

Jul. 81 

I Oct. 81 

Jan. 82 

Apr. 82 

Oct. 82 
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Calculated catch per unit effort of different year 
classes of L. capensis duri ng CPA surveys . The ori gi nal 
catch was adjusted for gillnet select ivi ty and the 
catches in April and October 1982 have been corrected 
for reduced effort to make the data comparable . 

Year class catch per unit effort 

79/80 78/79 77/78 76/77 75/76 74/75 73/74 72/73 & older 

24 546 1394 298 271 273 

440 612 993 267 140 110 

261 666 1045 138 174 139 

508 1191 1735 240 337 309 

19 722 843 1603 254 361 198 

18 38 372 608 1231 202 223 185 

13 32 147 320 261 19 52 68 

29 73 456 869 775 47 8 141 

49 28 443 826 492 68 116 51 

54 28 187 433 179 33 76 24 

71 35 266 635 262 53 131 41 

Changes in CPUE of L. capensis f r om April 1978 to October 1979 

are examined separately for the two main modes in length frequency 

distribution in the catch (Fig . 65) and presented in Fig . 70. 

Following an incr ease in turbidity in 1978 , ther e was about a fou r fold 

increase in CPUE of the smaller fish, while catches of larger fish re­

mained fairly constant. Thi s reflects changes in distribution within 

the lake . Instead of only being caught at the upper stations of the 

lake , the smaller fish become vulnerable to capture throughout the 

lake following dispersal in 1978/1979 . 

The increase in CPUE of the 1977/1978 year class from January 

to April 1980 pr obably mainly reflects recruitment , although 

reduction in twine thickness of the smaller nets would also infl ue nce 

the catches . This influence lS lessened in older year clases, but a 

slight increase in CPUE in the 1976/1977 year class and a reduction 

in CPUE which becomes more pronounced in older fish (Fig, 69) points 

to the increased efficiency of the smaller meshes. 
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Catches generally decrease in April and July , but rise sharply 

in October and remain high in January (Figs. 69 and 70). This 

probably reflects an increase in feeding and breeding activity in 

spring and summer. However there is an overall trend of decrease in 

catches from January 1981 until the e nd of the study. This decrease is 

relatively less in the post-impoundment year classes than in older 

fish, because of the dispersal of ~. capensis ~200 mm from the upper 

stations down the lake after April 1981. 

Increases in turbidity in 1978 and 1981 in poth cases caused the 

dispersal of ~. capensis smaller than 200 mm . In 1978, the lower 

stations of the lake, which include the largest basin, were under­

populated by ~. capensis. Growth was relatively poor in the 1978/ 

1979 season, but dispersal into previously vacant areas allowed fo r 

some growth and generally good survival. In 1981, .however, the whole 

lake was densely populated by ~. capensis . When resources were 

further limited by the increase in turbidity, the fish did not grow 

in length (Sec t ion B) and there was a large reduction in relative 

condition (Fig . 51) . It is likely that the reduction in CPDE in 

1981/1982 represents an acceleration in mortality rate , which up 

until then appeared to be very low. 

Because of the discontinuous pattern in distribution, it is 

problematic to assess relative year class strengths. - Of post- impound­

ment year classes, the 1976/1977 year class was strong, probably 

about twice the strength of the 1977/1978 year class (Table 26). 

The following two year classes were both very weak. The late 

recruitment of year classes into the CPA gillnets prevent any 

information on the strength of the 1980/1981 and 1981/1982 year 

classes . 

3· Reproduction 

The increase in CPUE of s mall fish (subadults) may initially 

reflect distributional tendencies in B. holubi and at times largely 

reflect dispersal in ~. capensis. Ultimately though r ecruitment 

depends on reproduction. It has been argued that reproductive 

adaptations, more than any other stages of life history , determine 
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the success (measured as distribution and abundance) of a species 

of fish (Balon , 1975; 1978) . 

In this sub- section, reproductive adaptations are studied with 

particular reference to how they are affected by the lake environment. 

a. Barbus holubi and Barbus kimberleyensis 

The two large Barbus species i n the lake cannot be distinguished 

in the field until they reach a size of about 80 mm . Catches of 

subadult and adult~. kimberleyensis only form a minor percentage of 

the total catch, but caution must be exercised when inferences are 

made from juvenile samples. 

Juvenile Barbus appeared fi rst in the riverine section of the 

lake (station 8), where evidence of two disti nct sqawnings was 

found (Fig. 71). Time of spawning was variable , although the time 

when evidence of each spawning was found was influenced by the 

sampling time and frequency. 

Table 27 . Time of juvenile surveys when evidence of first and 
second spawning of large Barbus was found at station 8 

(Extracted from Figs. 72 and 73) 

Season Date when evidence of spawning was found 

First Second 
1977/1978 1/2 1978 1/2 1978 

1978/1979 26/3 1979 26/3 1979 

1979/1980 17/12 1979 29/2 1980 

1980/1981 26/11 1980 9/1 1981 

1981/1982 12/12 1981 13/1 1982 

To examine whether multiple spawning could explain the two 

spawnings, ova diameter of 22 B. holubi females was measured . The 

distribution was typically unimodal and skewed to the right (Fig. 74) . 

In two of the samples however, Ova diameter distribution was clearly 

bimodal (Fig. 74) . Both these samples were taken after the spawning 
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Figure 71. Length frequency distribution of juvenile lar ge Barbus 
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season and it could be that the lower mode was due to resorbtion . 

Ova diameter was related to GSI. Ripe females had a GSI of 

three to eleven, and usually between four and seven (Fig. 75) . 

Insufficient samples were obtained to relate changes in GSI or ova 

diameter to time of spawning. 

Males mature at a smaller size (younger age) than females and 

were thus more common in the catches . The GSI of 30 males in ripe, 

running condition (milt was extruded by light pressure on the belly) 

ca'lght in December and January was on average 2,4 (range 0 , 7 - 4 , 2). 

The small gonads and relative scarcity of mature fish made it 

meaningless to weigh gonads in the field. 

Measurements of ova diameter indicate that each fish only 

spawns once during a season. The two spawnings of large Barbus may 

represent spawning of the two species. Mulder (1973a) concluded 

that large Barbus in the Vaal River spawned once in a season and 

that ~. kimberleyensis spawn l ater in the season than B. holubi . 

There is some circumstantial evidence which indicates that the 

first spawning is by ~. holubi and the second by ~. kimberleyensis 

in Lake Ie Raux. The size obtained by the latter at the end of the 

first and second growing season is significantly smaller than that 

of B. holubi (Appendix 1, Tables 1 to 4) . B. kimberleyensis appears 

to be adapted to higher water temperatures than ~. holubi, since in 

spring 1980 growth commenced earlier in ~. holubi than in 

~. kimberleyensis (Chapter IV, B). Also B. holubi is found at 

higher altitudes than ~. kimbe r leyensis (Jubb, 1970) . 

Evidence of spawnings in the Seekoei River (station 6) was 

found in late summer 1981 and evidence of the next season's spawning 

was recorded on 28/11 1981 (Fig . 73). Both these spawnings coincided 

with a flooding of the river (Fig . 18), and probably resulted from 

a resident population . 

Time of first spawning since 1979/1980 was inferred from the 

time of capture of small juveniles in the riverine section, using 

information on incubation time and size in early life from le Raux 

(1968) and Mulder & Franke (1973). A 10 mm larva i s approximately 

10 days old at water temperatures of 19°_ 21°C. Spawning times 

prior to 1979/1980 were inferred from growth rates of j uveniles in 

subsequent years . It was assumed that the characteristics of water 
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released from lake Verwoerd have an over- riding influence on growth . 

Thus it was assumed that initial growth in 1977/1978 was similar to 

that in 1980/1981 (relatively clear , epilimnetic water), and in 

1978/1979 conditions were similar to those i n 1981/1982 (turbid, 

hypolimnetic water). 

Information on estimated spawning t ime, pattern of wate r release 

from lake Verwoerd, initial growth rate and of r elative year class 

s trength of ~. holubi is given in Table 28 . Time of spawning depends 

on hydrological management. Temperatures a re warmer when epi limnetic 

water i s r eleased (when lake Verwoerd is low, Fig. 17), or when the 

rate of release of hypolimnetic water is slow . The conditions which 

determine time of spawning also affect initial growth rates . When 

spawning is late , initial growth rates are s lower than when spawning 

is earlier (Table 28) . 

Table 28 . 

Season 

1977/1978 

1978/1979 

1979/1980 

1980/1981 

1981/1982 

Esti mated year class strength and time of spawning of 
Barbus holubi in successive seasons in lake le Raux. 
Characteristics of water released from lake Verwoerd 
before and during time of spawning (from Fig. 17) and 
initial growt h rates (from Figs. 72 and 73) " ar e incl uded . 

Time of spawning Characteristics of Initial Year 
water released from growth cl ass 
lake Verwoerd rate 

late Oct . - early 10- 50 x 106m3/day strong Nov . epilimnetic 

Early- mid Dec. 15- 20 x 106m3/day weak hypolimnetic 

Mid-late Nov. 5- 20 x 106m3/day 
0 , 33 mm/day medium hypolimnetic 

late Oct .-early 5-1 0 x 106m3/day 0 , 43 mm/day strong Nov. epilimnetic 

late Nov . - early 10- 15 x 106m3/day 0 , 25 mm/day ? Dec . hypolimnetic 

There is a cl ear r elationship between time of spawning and relat ive 

strength of the resulting cohort. In view of the late time of s pawning 

and poor initial growth , it is l ikely that the 1981/1982 year class 

will be a poor one . 
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b. labeo capensis 

Unlike the two Barbus , ~. capensis appears : to. spawn t hroughout 

the lake . In the juvenile survey on 1/2 1978, thousands of ~. capensis 

30 - 50 mm were caught at station 7 and they were common down to 

station 4 (Cambray, pers. comm . ) . From then until the end of 1980, 

no small ~. capensis juveniles were caught below station 7. 

In December 1979 a few small ~. capensis were caught at station 

8 , indicating that spawning had occurred during the season (Fig . 76) . 

In late January 1980, there were two modes , and these modes remained 

r elatively stationary throughout the summer , indicating slow growth. 

Similarly at station 7 , a mode found in January 1980 remained 

prac tically unchanged until late October. 

In January 1981, new modes were found at all stations, except 

3 and 6 (Fig . 77). Comparing the movement of the modes at stations 

1 to 5 to those at s t ations 7 and 8, it is evident that growth was 

poor in the upper reaches of the lake . 

On 27/2 1981 evidence of a spawning at station 6 was found. 

This spawning must have occurred before the flood in the Seekoei 

River (Fig. 18) , but on 1/4 1981 , the smallest mode might have 

resu l ted from a spawning when the r iver f looded. A new mode on 

26/11 1981 (Fig. 77) indicates that spawning occurred during the 

spring flood (Fig . 18) . 

In 1981/1982, juvenile distribution indicated that L. capensis 

had spawned throughout t he lake (except at s t ation 3) (Fig . 77). 

It is however evident that spawning activities are not always 

synchronized t hroughout the lake. This shows the importance of 

local conditions for spawning of ~. capensis . 

Ripe males and females were found throughout the lake. I t was 

difficult to differentiate between resorbing and maturing gonads of 

males . Female gonads however s t a r ted ripening in April when eggs 

were clearly visible in some of the individuals captured. Not 

all fish mature at t he same time and the r e was a great variation in 

GSI (Fig . 78) . Ova diame t er of ~. capensis invariably showed a near 

normal dist ribution with one distinct mode, and spent females were 

found to have shed all their eggs . The large variation in GS I 

(Fig . 78) reflects in part a variability in times of maturity within 

a season. The r elationship between GSI and ova diamet ers indicates 
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that L. capensis are generally ready to spawn when GSI exceeds seven 

(Fig . 79) . 

The drop in GSI of males from October may be due to some spent 

fish being included in the data . Also ripe males often lost 

considerable amount s of mi lt while in the nets and while being handled. 

This may account for the drop in GS I when GSI of the females is 

still rising (Fig . 78). 

The relative year class strength of ~. capensis is different 

from that of B. holubi and a different explanation is required. The 

strong 1976/1977 year class was associated with the filling of the 

lake. During the 1977/1978 season,when a moderately strong year class 

was formed, lake levels rose by six to seven metres from January 1978 

until the dam overflowed in April 1978 (Fig. 16). During the rise in 

lake level some ground was flooded for the first time. During the 

following two seasons, when very weak year classes were formed, lake 

levels remained fairly constant (Fig . 16). 

Lake levels rose sharply by almost 10 m from January to April 

1981 . Different times of spawning in various parts of the lake in 

1980/1981 (Fig . 76 and 77) show that it is unlikely that rising 

water levels triggered spawning. However, rising water levels may 

contribute to increased survival of young-of-the- year. 

4. Size at sexual maturity · 

Although r eproductive success and year class strength in Lake Ie 

Raux are probably more related to environmental fluctuations than 

to the size of the spawning stock, the monitoring of size at sexual 

maturity may be useful in guiding management decisions . Alm (1959) 

showed that growth rate directly influenced size at sexual maturity 

in several freshwater · fish species and Iles (1974) showed that size 

at sexual maturity in herring (Clupea harengus) was directly affected 

by growth rate . The onset of sexual maturity did not slow down 

growth rate, but a reduced growth rate triggered the onset of sexual 

maturi ty. 

In this study , the size at sexual maturity is taken to be the 

size when 40% of the population is in a breeding condition in October 

and January. Here all males classified as having gonads of stage 3 
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(Nikolskii, 1963) or more were included. The size of their gonads was 

clearly larger than that of a ' resting' male. Females were considered 

to belong to the season's reproductive stock if their eggs were visible 

to the naked eye (maturity stage 2 and more) . Only ~. holubi and 

L. caEensis will be considered, since data on B. kimberle~ensis were 

too scarce . Data collected in Lake Verwoerd in December 1980 and 

1981 are included for comparative purposes. 

a. Barbus holubi 

Size at sexual maturity in male ~. holubi during different 

seasons in Lake le Raux and Lake Verwoerd is given in Table 29. 

There are considerable inter-seasonal variations in both lakes . 

Table 29. Size at 40% maturity of B. holubi in Lake le Raux 
and Lake Verwoerd during- different seasons. 

Date length/em percentage 
mature 

Lake le Raux 

October 1978 41 - 42 38 

January 1979 - -

October 1979 31 - 32 50 

January 1980 31 - 32 44 

October 1980 33 - 34 64 

January 1981 33 - 34 77 

October 1981 - -

January 1982 29 - 30 38 

October 1982 29 - 30 28 

31 - 32 33 

Lake Verwoerd 

December 1980 27 - 28 44 

December 1981 23 - 24 53 

n 

8 

-

4 

9 

11 

13 

-

26 

68 

12 

45 

62 
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The gonads of the large cyprinids in lake Ie Raux develop during 

the winter months. The general reduction in condition at that time 

(Fig. 48) and lack of growth in length (Chapter IV, B) show that the 

reserves of one season are used for gonadal production in the 

fo~lowing season . It has often been observed in te l eosts that feeding 

and reproductive cycles do not , or only partially coincide, and that 

they are linked through a cycle of storage (Wootton , 1979) . 

In the Barbus species, L~ calculated from length increments in 

each season (Table 19) reflect well the growing conditions of the 

large fish in the population, from which the following season ' s 

spawning stock will be drawn . Therefore, size at sexual maturity 

was plotted against L~ of the previous season (Fig . 80) . In 

Dec~mber 1980 scales and otoliths of 318 ~. holubi were collected in 

lake Verwoerd and 347 samples were collected in December 1981 . Since 

the early history of environmental conditions in the lake is not 

known in detail to the author, only the increment of the 1979/1980 

and 1980/1 Q81 seasons was calculated and used for the construction 

of a growth curve (Section B). These observations are included in 

Fig. 80. 

There is a positive relationship between L~ and s ize at sexual 

maturity. From Fig. 80, the size at sexual maturity in October 1982 

would be expected to be at about 200 mm, but at 290- 300 mm only 

28% of the males were found to be mature (Table 29). In 1981/1982, 

growth of the smaller (younger) fish was relatively better than that 

of the larger fish (Table 18 ) , some of which showed no length 

increment in that season (Chapter IV, B). Probably, the maintenance 

cost of a large fish in a resource limited environment did not 

allow for energy to be allocated to reproduction (Purdom, 1979) . 

Similarly, the larger than expected size at 40% maturity following 

the 1978/1979 season (Fig. 80) may be caused by adverse conditions 

i n the lake as indicated by poor relative condition in October 1978 

(Fig . 48 ) . 

b. labeo capensis 

Size at sexual maturity in~. capensis in Lake Ie Roux is rela­

tively constant but larger than size at sexual maturity in Lake 

Verwoerd (Table 30) . Ageing of L. capensis from Lake Verwoerd was 
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attempt ed, but found to be di fficul t . It appeared t hat their growth 

r ate was very slow over several years . In view of t he results from 

Lake le Raux , it was decided that estimates of age would be unreliable, 

especial ly i n t he larger fish . It seemed though that growth in Lake 

Verwoerd had been slower , but less vari able, than growth in Lake le 

Roux for some years . 

Wi thin Lake le Raux, no r el ationship was found between size at 

sexual mat urity and Loo calculated from the previous season's growth . 

Table 30. Size at 40% maturity of !. capensis in Lake le Raux 
and lake Verwoerd during different seasons. 

Time Males Females 

length/cm percentage n length/cm percentage n 
mature mature 

Lake le Raux 

October 1978 35- 36 75 8 39- 40 100 5 

January 1979 33-34 44 11 39- 40 58 12 

October 1979 31 - 32 50 62 37- 38 71 34 

Januar y 1980 33-34 40 50 indeterminate 

October 1980 33- 34 40 68 39- 40 53 45 

January 1981 31-33 44 87 indeterminate 

October 1981 35- 36 40 20 39- 40 57 28 

January 1982 33- 34 45 29 37- 38 56 16 

October 1982 33- 34 43 21 37- 38 61 18 

Lake Verwoerd 

December 1980 29-30 39 28 35- 36 · 55 58 

December 1981 27- 28 58 24 35- 36 50 54 
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5. Summary and discussion 

a. Time and frequency of spawning 

In common with most large Barbus species, B. holubi has been 

reported to spawn in gravel beds following a migration during the first 

floods in s pring. The observed spawnings in the Seekoei River show 

that ~. holubi is ready to spawn in early spring, but can also spawn 

in late summer if the floods are delayed . 

The yellow fish populations in Lake Ie Raux spawn in the inflowing 

water in or above the riverine section of the lake . ~. holubi spawn 

earlier in the season than ~. kimberleyensis. Each species spawns 

once during a season, but t here are inter-seasonal variations in time 

of spawning , related to water temperatures . Photoperiod and temperature 

are important factors regulating gonadal development in cyprinids 

(de Vlaming, 197?), and it is likely that the temperature of water 

released from Lake Verwoerd largely controls the rate of gonadal 

development in the two Barbus species. 

Unlike the two Barbus species, spawning of L. capensis was not 

confined to the Orange River, but occurred throughout the lake . 

Time of spawning at station 8 was apparently not markedly inf luenced 

by temperatures of released water from Lake Verwoerd, nor was it 

necessarily triggered by rising lake levels. It seems that local 

conditions are important for the successful breeding of this species, 

and judging from the literature (Chapter II), local flooding is 

probably of major importance . There could be more than one spawning 

during a season in a given locality. This was probably related to 

high individual variation in gonadal development (Fig. 78) since 

each female only spawned once in a season . 

b . Year class strength 

Barbus holubi shows a pattern of year class strength variation 

which is closely linked to time of spawning. The later the spawning, 

the weaker the year class. L. capensis produced two relatively strong 

year classes when the lake was filling, but subsequent cohorts have 

been poor. These variations in observed year class strength will now 

be examined in more detail. 

In the literature, year class strength 1S usually either related 
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to size of parental stock (Ricker, 1954; Beverton & Holt , 1957), the 

condition of parental stock (Nikolskii, 1962; 1969) or the influence 

of the biotic and abiotic environment on eggs and juveniles . 

B. holubi forms a uniform population in lake Ie Raux , but it is 

difficult to estimate the size of the spawning stock , which varies 

with size at sexual maturity. Catches of ripe females were low in 

all years and did not give a reliable estimate of the spawning stock . 

In a variable environment, size of the spawning stock can be expected 

to exert less influence than env~ronmental conditions on year class 

strength (Regier, 1977) . 

Good growth and condition of a parent stock sometimes improve 

the quality of eggs laid the following year, enhancing prospects for 

juvenile survival (Nikolskii, 1962; 1969) . In B. holubi such a 

mechanism may be operating. The strong year class in 1977/1978 followed 

a season of very good growth, and similarly the 1980/1981 year class 

was preceded by a season in which,particularly, the larger fish grew 

well (Fig. 58). The weak 1978/1979 year class was produced by a 

population in a relatively poor condition (Fig . 48) . It is 

plausible that the quality of the eggs laid reflects the nutritional 

status of the population, but further research is needed to investigate 

a possible relationship. 

Barbus kimberleyensis does not show the same distinctive 

reduction in year class strength from 1977/1978 to 1978/1979 as 

B. holubi (Table 25). This could possibly be explained by the 

better condition of the parental stock. Increased turbidity did not 

appear to have the same negative effects on large ~. kimberleyensis 

as B. holubi (Section B). 

labeo capensis do not form one homogenous breeding population 

in the lake . The irregular breeding around the lake suggests that 

the influence of the parent stock is minor when compared to that of 

the environment . 

Water temperatures may influence reproductive success. A sharp 

drop in temperature during the incubation period can cause large 

mortalities of embryos of fish adapted to spawn during rising 

temperatures (Hassler, 1970; Walburg, 1972). Strong year classes have 

often been related to warmer than average water temperatures in early 

life (Kempe, 1962 ; Hassler, 1970; Koonce et~ . , 1977; Goldspink, 1978; 
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Il'ina& Gordeev, 1981), and it has been suggested that this effect 

may be due to improved growth when the water is warmer (Kempe, 1962; 

Goldspink, 1978; Il'ina& Gordeev, 1981) . The inference is that 

natural mortality is inversely related to size (Ware, 1975). Similarly, 

Pitcher & Hart (1982) concluded in their review of year- class strength 

that food supply (growing conditions) was the single most important 

factor affecting year class strength. 

In B. holubi it was shown that year class strength could be 

related to water temperatures (Table 28). When these are at their 

lowest (large releases of hypolimnetic water from lake Verwoerd), 

the range of temperatures experienced is also the largest . There are 

high daily variations in flow, and the greater the average rate of 

release, the larger the fluctuations in wate r flow and temperatures. 

Thus in ~. holubi, year class strength may be related to the influence 

of water temperatures on embryonic survival and initial rate of 

growth. 

In L. capensis, variable temperatures and rates of water released 

from lake Verwoerd may influence reproduction at station 8. ~. capensis 

spawn in flooded r iver banks and apart from the effect which a change 

in temperature may have on survival, changes in water l evel may be 

particularly important for this species. 

Rising water levels usually favour the formation of strong year 

classes (Boon Swee & McCrimmon, 1966; Hassler, 1970; Walburg, 1972), 

and particularly strong year classes may be formed when well­

vegetated new ground is inundated, particularly for the first time 

(Bhukaswan, 1980; Il ' ina& Gordeev, 1981) . 

In other African reservoirs, strong year classe s of labeo species 

have often been observed to form during the initial filling phase, 

but subsequent year classes have been poor (Chapter II). In Lake le 

Raux the same pattern is evident. L. capensis spawn among newly 

inundated vegetation at times of flood and the juveniles are probably 

well equipped to exploit such habitats . Wate r l evel fluctuations 

appear to have less influence on the year class strength of ~. holubi. 

Predation and competition may i n some cases be important in 

determining year class strength. Strong year classes may suppress 

the abundance of subsequent cohorts through predation (Ricker, 1950 ; 

Alm, 1952) . Forney (1971) de monstrated that predation of juveniles 
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may accentuate differences in initial abundance. 

I t is possible that predation plays an important role in year 

class abundance of B. holubi in Lake le Raux, since successive year 

classes usually share the marginal habitat for some time (Figs . 72 

and 73). In L. capensis intra- specific competition may playa role, 

but the relatively good growth rates of juveniles at stations 1 and 2 

in 1980/1981 and 1981/1982 (Fig. 77) where CPUE of ~. capensis was 

the highest (Fig . 65),indicates that conditions suitable for spawning 

and the survival of eggs and larvae are of major importance in 

determining year class strength. 

Spawning time may be a good predictor of year class strength 

in B. holubi but other concurrent changes in the population may 

equally affect year class strength and further research is called for. 

Spawning time of L. capensis is probably determined by local floods 

which are highly irregular . Subsequent survival may be affected 

by water level fluctuations in the lake . However the shoreline has 

during the past been eroded by water- level fluctuations and increased 

lake levels are unlikely to provide conditions as conducive to 

survival as they were during the first two years after impoundment. 

c . Mortality and dispersal 

Barbus holubi form a mobile, uniform population in the lake, 

whose distribution appears to be determined by foraging conditions 

in the pelagic zone. When turbidity increases, ~. holubi may be 

forced to turn to a benthic mode of living (Eccles, 1980) . However, 

littoral areas, and hence benthic resources are scarce . The lake is 

turbid and deep with steeply sloping sides and epilithic algae 

contributes less than 0,1% to the carbon budget (Allanson, 1982) . 

The increase in turbidity leads to a "scramble competition". Such 

competition is expressed in a lower individual ration and may lead 

to large scale mortality which more · than compensates for the reduction 

in food supply (Pitcher & Hart, 1982) . . 

Practically the whole ~. holubi population is dependent on 

zooplankton, i.e . exploits the same resource . Therefore, the smaller 

the fish, the lower the zooplankton concentrations they require (at con­

stant turbidity) for maintenance and growth. This is reflected in a 

decrease in inter-seasonal variations in growth in younger fish (Table 18) . 



and the earlier resumption of growth of younger fish in 1981/1982 

(Figs. 23 and 24) . Changes in relative condition reflect the same 

trend, with smaller fish recovering earlier than larger ones (Fig. 48). 

~. capensis are more stationary than ~. holubi and this leads to 

uneven exploitation of resources in the lake. This was particularly 

evident prior to 1978/1979 when ~. capensis 4 240 mm were relatively 

scarce at stations 1 to 3 (Fig. 65) . When the turbidity in the lake 

increased in 1978, ~. capensis dispersed , and because of relatively 

large underexploited areas, the population did not decline. In 

1981/1982,however, dense populations of ~. capensis throughout the 
lake meant that redistribution of individuals within the lake may 

not have provided the means to adequately feed the whole population. 

Accelerated mortality (Fig. 70) and reduction in relative condition 

(Fig. 51) took place , but changes in abundance were less dramatic 

than in B. holubi . 

d. Size at sexual maturity and reproductive effort 

Barbus holubi has a variable size at sexual maturity which is 

directly related to conditions in the previous season. When growing 

conditions deteriorate, size at sexual maturity is rapidly adjusted 

and the fish mature at a smaller size in the following season (Fig. 80). 

Labeo capensis in Lake Ie Roux have a fixed size at sexual maturity . 

However, ~. capensis matures at a larger size in Lake Ie Raux than in 

Lake Verwoerd. I n the Caledon River, size at sexual maturity is 

still smaller (Baird, 1976). 

I t is a common observation that length at maturity is generally 

positively related to the asymptotic length reached by a species 

(Holt, 1962; Cushing, 1981) , and within a family the length at 

maturity tends to be a fixed proportion of L (Beverton, in = 
Cushir-g, 1981). When asymptotic size varies among populations of 

the same species, or changes with time for a population, it is 

reasonable to expect size at sexual maturity to change as well . 

Alm (1959) found that size at sexual maturity was directly 

dependent on growth rate, but his analysis was complicated in that 

he compared size at an age but not relative growth rate of different 

populations . This may explain why he found that fish which grew 

rapidly in early life often mature at a smaller size than fish 
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which grew at a moderate rate. The relative decrease in rate of 

growth with size might have been a better criterion for the 

comparison of size at sexual maturity. Parker & larkin (1959) found 

that size is a better measure of the potential growth of a fish in 

a given environment than is age . Their reasoning was that the 

opportunity to exploit and the ability to digest food resources change 

with size rather than age. Many examples of this can be found in the 

literature and if the change in the range of resources available at 

a given size is sUdden enough, a new growth stanza is entered for 

which the asymptotic length is larger than the previous stanza (Warren, 
1971 ) . 

The reduction of growth rate and smaller size at sexual maturity is 

c.ommonly known as stunting or dwarfing . An alternate explanation to 

the one outlined above, i . e . that it is a function of nutritional 

limitation, was put forward by Fryer & lIes (1969) and further 

developed by lIes (1973) . Their argument was that the maturing of 

'Tilapia ' at a small size r eflects an adaptation to variable 

environmental conditions and high rates of mortality . However, it can 

equally be argued that the examples of stunting in ' Tilapia ' given 

by lIes (1973) reflect a resource limitation (food or space) . Cichlids 

are prolific breeders and tend to overcrowd the habitat and stunt 

(Odulege, 1982) . This is further supported by an observation by 

Holden (1969) who found that the La> of Oreochromis niloticus incr eases 

with increasing yields in different populations . The reduction in 

yield is possibly associated with overpopulation. 

The reduction in size at sexual maturity with decreased growth 

in ~. holubi can be seen as an adaptation to a limitation in food 

availability . ~. capensis in lake Ie Roux does not appear to show 

the same response. However size at sexual maturity fn lake Verwoerd 

is smaller than in lake Ie Roux, and growth rate s in lake Verwoerd 

appear on ave rage to be slower than in lake Ie Raux. The smaller 

size at sexual maturity in the C~ledon River (Haird, 1976) could also 

reflect poorer average growing conditions in the river than the 

large reservoirs. It is, therefore , probable that in the long term 

size at sexual maturity in~. capensis is reduced in response to 

deteriorating growing conditions , although in the shor t term it is 

relatively constant . 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

The management of fish populations becomes more species- directed 

as knowledge of particular popUlations increase . Thus in the early 

stages of a freshwater fishery, resources are often assessed on the 

basis of general models which predict yield . The most popular of 

these ' first generation ' models, Ryder's morphoedaphic index, and 

several other models , are reviewed by Ryder (1978) and Bhukaswan 

(1980) . 

When more is known about the 

aided by theories 

in biology (Holt, 

of life history 

fish populations , management may be 

(Adams , 1980) , comparative studies 

1962) and knowledge of the complexity and environ-

mental influence on the populations (Regier, 1977) . Ultimately, 

management of fish resources for different purposes is best guided 

through an understanding of the adaptiveness of a popUlation to its 

environment . Nikolskii stated this cl early (1962 , p.277); 
"A knowledge of the forms of adaptive response of populations 
to changes in the conditions of life, and, particularly, to 
changes in food supply, is as nece ssary for a rational 
organization of a fishery, as is a knowledge of the changes in 
living conditions of the population. It is impossible to build 
up a rational fishery industry, based only on studies of the 
changes in living conditions, without trying to understand 
the adaptive response of the population . The fishing industry 
should be planned in such a way that it becomes a component 
of the environment of the species exploited, i.e . the rate of 
the industry's influence should not exceed the range of the 
adaptations of a species . " 

In this chapter the life history strategies of ~. holubi, 

B. kimberleyensis and ~. capensis in relation to environmental 

fluctuations in Lake le Raux are discussed and compared . Influences on 

life history are drawn from the present study and a review of the 

literature (Chapter II). On this basis, management alternatives are 

briefly examined and recommendations for future research are made. 

A. LITE HISTORIES AND THE ENVIRONMENT 

f 
1 . Barbus holubi 

In its natural habitat, B. holubi spawns over gravel beds in 

rivers, following a spawning migration during the first floods in 



spring or summer. This appears to be a general trend in all large 

Barbus species (Chapter II). B. holubi in Lake Ie Roux spawn in the 

regulated Orange River and the time of spawning is dependent on water 

temperatures in spring. 

Time of spawning is related to the survival of eggs and/or larvae 

and a weak year class may result from a late spawning. The eggs are, 

however, relatively large and after an incubation period of a few days, 

the larvae hide in the gravel and live off the yolk sac for some time. 

They are, therefore , not dependent on immediate external feeding . The 

juveniles live in shallow marginal areas, but at 50 mm they begin to 

move away from the shore and disperse throughout the lake. 

B. holubi is an opportunistic feeder. In early life zoobenthos 

and zooplankton is eaten, but later plant matter may dominate in the 

diet. This transition towards herbivory is reflected in an increase in 

the gut length: fish length ratio with size. In Lake Ie Raux 

~. holubi exploits the zooplankton community, visually selecting 

individual prey. Turbidity and zooplankton density may therefore 

determine the upper size limit of B. holubi which can sustain a living 

in the pelagic zone. 

Individual growth rates vary between seasons with inter-seasonal 

variations increasing with age (size). Resources other than the 

zooplankton are restricted and sharp increases in turbidity may 

therefore cause large scale mortalities. A schematic diagram of the 

prinCipal factors governing the density and size structure of the 

B. holubi population in Lake Ie Raux is presented in Fig. 81. 

Reproductive effort is moderate, but when growing conditions 

deteriorate, size at sexual maturity is reduced. In Lake Ie Raux an 

increase in turbidity occurs when the retention time in Lake Verwoerd 

is short, i.e. when the water level in Lake Verwoerd is low in spring 

and silt-laden floodwaters enter the lake. However, when Lake Verwoerd 

is low, water released into the Orange River between the two lakes is 

epilimnetic and relatively warm. This causes an early spawning of 

B. holubi and a rapid initial growth, resulting in a strong cohort. 

The size structure of the population thus rapidly adjusts to changes 

in environmental conditions. It appears that man-made manipulations 

of the hydrological regime are an important factor in determining the 

population structure of B. holubi . 
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Figure 81. Major factors affecting size and structure of the B. holubi 
population in Lake Ie Raux. 



From this study, it appears that ~. holubi is adapted to a 

relatively stable environment. This is reflected in the synchronized 

spawning, moderate reproductive effort, relatively large egg sizes 

and rapid adjustment in size at sexual maturity to growing conditions, 

i.e. it reacts to change as if the change is permanent . B. holubi is, 

however, well equipped to adjust to the fluctuating environment in 

Lake Ie Raux because of relatively secure breeding and early survival 

and quick dispersal. 

2. Barbus kimberleyensis 

Two important differences separate the l ife histories of B. holubi 

and ~. kimberleyensis. Firstly, ~ kimberleyensis appears to be adapted to 

relatively warmer temperatures than B. holubi. This is reflected in 

later resumption of growth and later spawning for ~. kimberleyensis, 

probably causing the consistently weak, although variable, year classes . 

At times when B. holubi suffers high mortalities, ~. kimberleyensis is 

much less affected, possibly because feeding activity is normally 

resumed later in spring/early summer, by which time there has already 

been a considerable reduction in the B. holubi population. 

"scramble competitions" may to some extent be avoided. 

Thus 

A second major difference between the two large Barbus species is 

that B. kimberleyensis becomes increasingly piscivorous with size. In 

Lake Ie Raux this results in a considerably larger ultimate size reached 

by ~. kimberleyensis. However, because of the late spawning of 

~. kimberleyensis it is unlikely t hat this population will ever become 

a major component of the fish community . 

3. Labeo capensis 

As is common in other Labeo species, L. capensis spawns over 

newly flooded ground at times of flood , but longitudinal spawning 

migrations are apparently not required. There is a large intra-seasonal 

individual variation in gonadal development and spawning can occur 

around the lake, but breeding is erratic due to the limited, undependable 

and localized nature of rainfall in the area . ~. capensis can spawn 

once, or more often, in the riverine se~tion every season, but survival 



may be reduced because of the short duration of floods. Similarly, 

flash floods in tributaries may be of short duration. However , the 

eggs are non-adhesive and neutrally buoyant, and stranding may thus be 

avoided . 

The eggs are small (about 1/3 the size of ~. holubi eggs), have 

a short incubation period and the newly hatched larvae swim up into 

the water column, possib~y to avoid stranding . Due to the small size 

of the larvae, external feeding is required after a short time. 

Newly inundated vegetation may provide optimal conditions for early 

feeding and survival, as indicated by the strong year classes which 

formed when the lake filled . In subsequent years, spawning in the 

riverine section or due to local floodi ng did not coincide with rising 

water levels, which may be the main determinant of year class strength . 

In the pristine Orange River, flow is seasonal, but the height 

and duration of peak floods are variable (Fig . 17 ) . The variation in 

gonadal deve lopment ensures that different members of the population 

spawn at different peaks in flow, but survival may depend on the 

duration of high flow . The variable rates of gonadal maturation can 

there f ore be seen as a lack of advantage associated with a particular 

time of spawning . The chances of juvenile survival are not necessarily 

related to time of spawning . 

Dispersal in the lake is slow which may reflect the reliance on 

currents for transport in early life . Lack of pre-spawning migrations 

may further reduce the necessity for active dispersal of the juveniles . 

Knowledge of the feeding of L. capensis in early life is lacking , 

but presumably they are carnivorous before turning herbivorous . Labeo 

species are specialist feeders and L. capensis appears to rely on 

autochthonous material as a source of food. Thus when turbidity 

increased in 1981, ~. capensis reacted by a reduction in relative 

condition and increased mortalities. Food shortages a l so triggered the 

dispersal of fish smaller than 200 mm. A major source of organic 

carbon (: 80%) comes from all ochthonous sources (Allanson , 1982), but 

the marked reaction of L. capensis to increases in turbidity indicates 

that they cannot make extensive use of this source. A schematic diagram 

of the main factors affecting distribution and density of L. capensis 

is presented in Fig . 82 . 
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distribution of L. capensis within Lake le Roux. 
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Growth rates are variable and related to density and turbidity. 

When growing conditions are poor, subadults and adults appear to be 

equally affected, unlike B. holubi. Reproductive effort is relatively 

high, about twice that of ~. holubi, and changes in growing conditions 

do not bring about an immediate change in size at sexual maturity. 

Deteriorating growing conditions may, however, result in reduced size 

at sexual maturity in the long term . 

Results of the present study indicate that L. capensis is adapted 

to a relatively variable environment. Thi s is reflected in the variable 

time of spawning within a population, high reproductive effort, rela­

tively small egg size and slow changes i n size at sexual maturity in 

response to changes in growing conditions, i.e. it reacts to change as 

if change is a normal feature of the environment . ~. capensis is, 

however, poorly equipped to adjust to the lake environment. The risk 

of reproductive failure is increased since reproduction relies on local 

floods and chances of rising water levels accompanying floods are also 

reduced, negatively affecting the survival of larvae and juveniles . 

Dispersal of larvae and juveniles in the lake is poor leading to an 

uneven distribution of the popUlation in relation to available resources. 

B. MANAGEMENT CONSIDERATIONS 

Decisions on exploitation of" a fish resource are influenced by an 

array of socio- economic considerations (Rothschild, 1973) . The present 

study has been confi ned to a biological investigation of three species 

in the lake, and has not considered the benefits or losses society 

might accrue from different types of exploitation. Lake Ie Roux is in 

a relatively sparsely populated area, remote from large popUlation 

centres, and no official policy on exploitation of the fish popUlation 

is available. Therefore, the management considerations" presented here 

are of a general nature. The consequences of the two main aspects of 

exploitation, i.e., the intensity and size composition of the catch, 

are considered . 

1. Barbus holubi 

Barbus holubi is a popular angling fish in South Africa (Groenewald, 
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1951; le Roux, 1968) but because of the remoteness of Lake le Roux 

from urban areas, angl~ng pressure is light and fishing mortality 

negligible. The population of ~. holubi shows a considerable temporal 

variation in abundance (Fig. 60) and size composition (Fig. 63), both 

of which are closely related to turbidity and density. 

In 1978/1979 the index of population density was reduced from 

1000 to 50, and in 1981/1982 there was a second major reduction from 

about 550 to 200 (Fig. 60). These reductions were brought about by 

increases in turbidity which reached the same level in 1979 and 1982 ' 

(Fig. 19). However population density in 1982 was about four times 

higher than in 1979 (Fig. 60). This shows the effect of 'scramble 

competition' (Pitcher & Hart, 1982), which leads to a mortality in 

excess of the reduction in carrying capacity. The excess mortality 

is positively related to initial abundance. This suggests that ex­

ploitation of ~. holubi could have a stabilizing effect on the population. 

In order to attain maximum yields the largest size groups in the pelagic 

zone should be exploited. If there is a desire to retain larger indivi­

duals for recreational fisheries, an upper size limit of fish caught in 

commercial or artisinal operations might be imposed. This could be 

achieved by regulating mesh size of nets used in fishing operations. 

Year class strength of ~. holubi is variable and can be weak 

depending on hydrological management (Table 28). If fishing pressure 

is l ight, variations in year class strength will only have a moderate 

effect on total catches, while changes in turbidity and likely to have 

an overriding effect on population changes. However, if the population 

is being exploited heavily, a fishery might be more affected by variations 

in year class strength than by variation in production due to changes 

in turbidity. 

B. holubi forms a highly mobile population (Chapter V, B). Thus 

fishing in one area of the lake will probably not lead to local depletions. 

Catches are usually highest where the water is the clearest, i.e., near 

the dam wall (Figs . 20 and 63) . In spite of this mobility there are 

enough areas inaccessible to fishing to ensure adequate spawning stocks, 

even if a fishery was relatively intensive. 

The major population parameters of ~. holubi such as growth, 

recruitment and mortality are sensitive to environmental fluctuations 

which are largely the result of hydrological management (Chapter IV , A) . 
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If the hydrological management cannot be adjusted to meet the needs of 

a future fishery, predictions of changes in environmental conditions 

will be indespensable for the planning and optimal use of such a fishery . 

Predictions should be based on an understanding of hydrological prin­

ciples and estimated water-use practices. 

2. Barbus kimberleyensis 

This species is not abundant in the lake and is unlikely to play 

an important role in a commercial or artisinal fishery. However, it 

is a prized angling fish (Mulder, 1973a; Gaigher, 1976). B. kimberleyensis 

is long- lived (Mulder, 1973a; Chapter V, B) and it might be useful to 

impose an upper mesh size limit to protect large individuals, which 

then would contri bute to the excitement of angling. It would be 

impossible selectively to fish for small B. holubi or B. kimberleyensis 

because of the similar habits of these two species. 

3. Labeo capensis 

Labeo capensis is not readily caught with hook and line and is not 

a potential angling species. In Lake Ie Roux this species does not 

show as large a fluctuation in CPUE as ~. holubi (Fig. 60). Light or 

moderate fishing effort might have reduced natural mortality in 1981/ 

1982 (Fig . 69) and left the survivors in a relatively better condition 

(Fig. 51). Although this species is relatively sedentary, there was a 

considerable movement of fish smaller than 200 mm associated with 

increases in turbidity (Chapter V, C). If the population of ~. capensis 

at stations 1 and 2 had been reduced prior to the increase in turbidity 

in 1981/1982, a situation similar to the one in 1978/1979 might have 

arisen. When turbidity increased sharply in 1978, a redistribution of 

~. capensis into relatively vacant areas at stations 1 to 3 accounted 

for a considerable increase in CPUE of this species (Fig. 70) and 

survival appeared to have been good. 

A major problem associated with the exploitation of Labeo capensis 

is the reproductive uncertainty of this species, which in the lake is 

greater than in the pristine river. Murphy (1967, 1968) showed that 

when reproductive success is variable, a heavy fishery which reduces 
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the number of year classes in the breeding population , may cause a 

collapse of the population in a relatively short time. Y.ul tiple 

spawning and numerous breeding year classes allow for a population to 

maintain a high abundance even if reproductive success is poor in 

consecut ive years. It appears that Labeo species in general may be 

similarly adapted to variable reproductive success , and e'xamples of 

the collapse of large populations may be found . 

Labeo altivelis supported an intensive fishery for several years 

in Lake Mweru and during spectacular spawning migration (known as 

"Kapata" which means explosion) up the Luapula River during floods 

early in the year (Matagne, 1950; De Kimpe, 1964 ). Length frequency 

distribution indicated that the population had a simple age structure, 

with fish larger than 140 mm falling into two distinct modes (Matagne, 

1950) . In 1949 the usual summer floods fa i led and spawning of 

L. altivelis did not appear to have been successful (Matagne, 1950) . 

In 1950, floods were again poor and spawning activity was limited 

(De Bont & Maes, 1956) . Fishing pressure was not reduced and yields 

remained high until 1951 when catches dropped sharply and the 

following year. catches of L. altivelis were insignificant . The catches 

r emained low even into the sixties (De Kimpe, 1964). 

River fishe r ies for Labeo victorianus during spawning runs up 

flooded tributaries to Lake Victoria were at one time of great 

economic importance locally (Cadwalladr, 1965a) . As in the Luapula -

Mweru system, catches remained at a high and relatively constant level 

for several years . In 1955 and 1956 catches decreased sharply and in 

subsequent years catches remained a small fraction of previous levels 

(Cadwalladr , 1965a). The simUltaneous decline of catches in two rivers 

suggests that broad climati c factors might have influenced the reduction . 

The relatively high fecundity and small egg size of Labeo species 

(Chapter II, C) indicates that they are adapted to variable 

reproductive success . Most Labeo species appear to require lateral 

migrations on to a flooded river bank to spawn (Chapter II, B), and 

reproductive success may be determined by the height and duration of 

floods. Rainfall in South Africa is relatively scarc e and shows high 

inter-annual variations, especially in the interior (Dyer , 1981). 

These variations appear to be superimposed upon cycles of approximately 

10 years of relatively dry and wet climates (Dyer, 1978). There is a 
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good possibility of a run of either wet or dry years. 

An intensive fishery on Labeo species would lead to a reduction 

of repeat spawners and a simple age structure of the population . 

Increased exploitations (reduced density) is also likely to lead to an 

increase in growth rate (Backiel & Le Cren, 1967), which is usually 

accompanied by a narrower size range for each year class (Nikolskii, 

1969). In view of the rainfall pattern in South Africa and the effect 

of exploitation on population structure , care must be taken if Labeo 

populations are to be exploited. A high yield can only be sustained 

for as long as reproductive success remains good, but may decline 

rapidly , particularly when reproduction fails in successive years . 

Once reduced, it may take the population a long time to recover 

(Murphy, 1968) . 

In Lake Ie Roux, reproductive success is likely to be more 

variable than in the pristine rive r. Spawning has to depend on erratic 

, local rainfal l and survival is probably chiefly i nfluenced by water 

level fluctuations in the lake . Therefore a large scale fishery on 

~. capensis should not be contemplated, although catches could be 

relatively good in the short term. 

4 . Conclusion 

B. holubi in Lake Ie Roux appears to have the potential to sustain 

a fishery on a oontinuous basis, particularly if hydrological 

management can be adapted to avoid exceptionally weak year classes. 

The intensity of the fishing should be guided by ' predictions of changes 

in the turbidity regime of the lake. If a recreational fishery 

becomes a prima'ry objective ', large scale removal (netting) of small 

fish, or hydr ological management aimed at reducing spawning success 

would be necessary to increase the numbers of larger fish (Fig . 81). 

A commercial fishery should, therefore, not be seen as a threat but 

rather as a benefit to recreational fisheries, since it could be used 

to promote good angling . 

~. capensis is not an angling species and does not have the 

potential cont inually to sustain a large fishery. This species does 

not react as quickly to environmental changes as ~. holubi and has a 

relatively fixed size at sexual maturity. Therefore, it might be best 
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exploited on an "accumulate d stock" basis, i . e . the population 

would be exploited intensively for relatively s hort periods of time 

bu t left to recover for long periods in between. 

In the event of a commercial fishery being established, the best 

procedure might be to mainly exploit ~. capensis at times when catches 

of B. holubi are low. This could be achieved to some extent by setting 

floating gillnets well off shore when the aim is to catch B. holubi, 

while setting in shallower water or near the shore would yield a 

relatively larger catch of ~. capensis. 

Catches are generally highest near the dam wall. If a fishery was 

concentrated at stations 1 and 2, these would be "seeded" from other 

areas, although~. capensis would only disperse when conditions 

deteriorated. If an even supply of catches was desired, a fishery 

which could switch from B. holubi to L. capensis would be essential . 

In a commercial situation, a rotational fishery, based on several 

impoundments (there are four reservoirs in the Orange - Vaal River 

system larger than 100 km'), might be the most efficient. In that 

case a monitoring programme could be established to decide when each 

reservoir is to be exploited to see to the interest of commercial and 

recreational fisheries alike. 

C. RECOMMENDATIONS FOR FURTHER RESEARCH 

One of the main shortcomings of the present study is the lack of 

knowledge on absolute population numbers and therefore potential yield. 

Without information on potential yield it is difficult to plan the use 

of a resource. An intensive experimental fishery should be undertaken 

i n a limited area, e . g. the bay at station 4 (Fig. 8), in order to 

estimate population density and the meaning of CPUE. 

Little is known about the marketability of indigenous large 

cyprinids and a marketing survey, including variously processed fish 

is urgently required. If undertaken, it could be done in conjunction 

with an expe rimental fishery as suggested above. 

Ageing is an important facet of population studies. The lack of 

validation of age i ng methods in studies on other South African cyprinids 

reduces their value . The environmental variability is high and it is 

essential that future studies take into account environmental influences 



on growth and check formation. 

Although the present study can be considered to be long- term in 

relation to most other studies on the fish faunas of South African 

reservoirs, it is short in relation to the . growth rate of the fish and 

to the range of environmental fluctuations in the impoundment and 

river. It is therefore recommended that a monitoring programme is 

continued so that the relationships be tween the life history strategies 

of the fishes and the environmental fluctuations in the impoundment 

can be clarified. 
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APPENDIX I 

Appendix tables 1 to 6. 

Average lengths (from backcalculated lengths and observed 
lengths in winter) at the end of successive growing seasons 
in Lake le Roux . Age refers to the number of annuli at the 
end of the 1981/1982 growing season . For example, age 2 
refers to a fish at the end of its third growing season. 
The number of observations are given above the average 
lengths and are included when there is a change in the 
number of observations from the previous year. A 95% 
confidence interval is included i n brackets. 



Appendix table 1. Average length at age of male B. holubi. 

LENGTH/ mm 

Age 1971- 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 

69 32 
84(4) 149(7) 

2 171 130 19 
66(2) 158(5) 198(8) 

3 118 11} 57 14 
59(2) 122(4) 215(7) 235 (11) 

4 519 532 }25 155 28 
66 (1 ) 122(2) 194(4) 265(4) 276(8) 

5 197 209 97 36 10 
64(2) 135(4) 181(4) 247(6) 297(6) 298(13) 

6 61 85 57 22 7 
60(2) 100(6) 186(7) 215 (7) 275(10) 318(7) 324(1.) I\) 

8 2 
-' 

7 55 65 30 '" 67(4) 109(6) 201(1 1 ) 277(10) 298(9) 328( 11) }47(20) 3;3(70) 

8 }6 56 28 4 
64(4) 105(7) 154(10) 237(12) 309(9) 325(9) 344 (12) 344(18) 3;7 

9 9 15 7 
68(9) 100(1 5) 159(21) 200(25 ) 281(26) }}6(19) 347(16) 344(24) 

10 3 5 2 1 
71 (17) 93(28) 139(25) 194(7) 236(2) 292(26) 346(11) 354(10) }850) 391 

11 3 1 
71( 14) 105(25) 15 1 (40) 198(48) 244(5) 288(64) }45(40) 394(42) }96(37) 379 

12 2 1 
87(23) 116(29) 144(}9) 173(22) 208(8) 230(15 ) 286(15) 329( 17) 350(28) 372 (17) 406 

13 
100 156 204 238 280 313 354 400 422 450 



Appendix table 2 . Average length at age of female B. holubi. 

LENGTH/ mm 

Ag. 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198 1 1982 
1 57 29 

80(4) 149(5) 
2 192 140 27 

67(2) 160(4) 203(6) 
3 11 5 106 35 2 

64(2) 127(4) 224(9) 255(1) 
4 619 643 425 177 26 

66(1 ) 122(2) 195(3) 269(4) 272(10) 
5 281 297 168 47 10 

66 (1 ) 135(4) 181(3) 249(6) 304( 10) 317( 15) 
6 70 107 71 18 4 

58(2) 98(5) 183(6 ) 215(6) 277(9) 330(14) 348(16) I\) 

28 8 -' 7 39 51 3 ..-69(4) 116(8) 198(13) 278(13) 299(6) 327( 16) 360(20) 355 (42) 
8 56 80 39 5 

68(3) 107(6) 172(9) 263(12) 331 (10) 347(5) 378( 12) 412(28) 
9 47 59 36 4 2 

67(3) 112(6) 175(9) 221( 13) 306(13 ) 360( 10) 374( 10) 390( 11) 415( 12) 416(60) 
10 16 27 31 15 

67(6 ) 103(10) 151(13) 205( 16) 267( 16) 324(13) 377(15) 384(16) 404( 16) 415 (22) 
11 1 5 2 

58 91 (8) 139(27) 197(17) 246(15) 285(18) 343(6) 383(17) 397(16) 415( 2) 
12 1 1 

74 111 155 181 199 221 238 333 347 376 
1) 1 

140 172 208 256 279 329 345 398 430 



Appendix table 3 . Average length at age of male B. kimberleyensis. 

LENGTH/ mm 

Age 1971 1972 1973 197" 1975 1976 1977 1978 '979 1980 1981 1982 

6 5 
79(5) 152(3) 

2 4' 40 22 
61(4) 139(7) 187(6) 

3 65 65 43 11 
54(2) 116(4) 207(7) 23.9(9) 

" 112 128 102 58 15 
54(2) 105(3) 176(5) 255(7) 270(11 ) 

5 264 280 140 48 11 
57( 1) 125(4) 183 (4) 244(6) 294(8) 306(18) 

6 19 31 13 5 3 
55(4) 99(13) 173( 17) 214( 17) 276(22) 331(25) 336(2) N 

-' 7 3 10 4 1 \Jl 
57(16) 83( 16) 173(34) 265(43) 305(39) 315(52) 370 370 

8 3 5 
54(9) 91(30) 125( 30) 170(76) 239(70) 315(66) 

9 76 95 96 4'3 26 9 
59(2) 101(4) 160(6) 187(6) 300(8) 374(7) 396(6) 420( 10) 443(11 ) 446(20) 

'0 6 10 2 1 
69( 10) 115(21 ) 176 (20) 248(20) 276 (20) 361(21 ) 416 (15) 434( 13 ) 460(53) 446 

11 2 3 
73(25) 103 (32) 168(36) 241 (58) 283(47) 360(38) 417(40) 43 '(44) 

12 4 
92(20) 147(25) 194(43) 248(34) 315(33) 340(32) 420(26 ) 448(21) 463(20) 

14 1 
,80 255 314 350 424 443 5'2 573 588 622 



Appendix table 4 . Average length at age of female B. kimberleyensis . 

LENGTH/ mm 

Age 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198 1 1982 
2 2 

630) 138(7) 

2 29 28 14 
63(4) 151(8) 193(9) 

3 37 36 28 5 
560) 119(6) 206 (9) 241(23 ) 

" 127 137 99 45 5 
54(1) i03(3) 171(5) 253(6 ) 257(17) 

5 233 257 144 51 6 
57(1) ,,80) ' 73(4 ) 234(7) 293(9) 302(23) 

6 ," 20 8 4 
59(7) 10"(13) 167(19) 203(18) 259(0) 317(4") N 

~ 

7 2 1 '" "8 (26) 89(59) 169(93) 231(125) 260(129) 2'" 28" 

5 3 1 
69(9) ' ''3(3) 183(50) 273(15) 358 O ?) 403( 44) 431 442 

9 48 76 31 13 3 
59(2) 101(4) 16 1 (5 ) 190(5) 316(7) 399(8) 424(8) ";3(13) "72 (24) 5' 5(43) 

10 4 7 1 
68(9 ) 113(33) 170("2 ) 237(48) 285(7) 398(46) "52("0) "68(42) 375 

11 5 13 6 1 
65(6) 102(9) 166(12) 233('7) 302 (24) 328(25) 409(23) 459(24) 477(21) 507(3) 567 

12 2 1 
89(22) 127( 4) 180(56) 245("9) 313(51) 338 (52) 406(79) 435(65) 451(59) 496 

15 , 
230 291 335 "'5 467 496 571 601 615 



AEEendix table 5. Average length at age of male L. caEensis .. 

LENGTH/ mm 

Age '971 1972 197} 1974 1975 1976 1977 1978 1979 1980 1981 1982 

2 18 14 1 
71(4) 129(7) 161 

} 14 1} 2 
55(4) 10}(B) 158(14 ) 177( 11) 

4 118 110 77 17 
56(2) 870) 137(43) 182(7) 175(12) 

5 317 }29 290 187 37 
60(2) 115(4) 143(5) 195(6) 238(7) 243(17) 

6 }99 429 360 134 17 
52( 1) 90(2) 161(4) 186(4) 233(5) 272( 7) 257(21) 

7 125 130 90 24 6 N 
56(2) 92(4) 177(7) 240(8) 259(8) 299(9) }21(19) 332( 12) ~ 

-.J 
8 138 162 134 58 13 

56(2) 910) 130(5) 217(5) 278(5) 293(5) }25(5) }42(7) }45(18) 

9 57 65 4. 14 2 
54(}) 84(5) 1}3(8) 172(10) 246(9) 294(7) }06(8) 328(9) 342(13) 346 (18) 

10 31 35 29 
53(5) 83(6) 126(10) 175(12) 216( 14) 269(11) 3"(10) 324 (9) 352(10) 366(11) 

11 10 12 13 11 1 
50(6) 78(10) 112(18) 156( 30) 196(29) 236(30) 289(21) 326( 17) ,,8 ( 16) }67(12) }74 

12 4 3 
76(18) 105(31) 148(}7) 202(61) 244(58) 287(59) }19(42) 346(30) 356(27) 375(23) 

13 4 1 
99(25) 142(47) 183(31) 239(49) 269(51) 299(41 ) 322(4) 351(29) 360(1) 375(32) 378 



Appendix table 6. Average length at age of female~. capensis . 

LENGTH/ mm 

Ag. '97' 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 
1 

82 
2 23 23 12 

720) 130(6 ) 147(8) 

3 16 14 4 
55(5) 100(8) '50(12 ) 161(19 ) 

4 '" 148 139 lOS 22 
55(2) 35(3) 131 (4) 178(6) 184(12) 

5 '71 337 224 53 
59(2) 113(4) 138(4 ) 189(5) 231(7 ) 247(14) 

6 456 497 388 162 25 
51( 1) 69(2) 159(4) 1S}(4) 233(5) 275(7) 278(20) IV 

~ 

7 133 141 90 26 6 00 

590) 100(6) 160(9) 247(10) 268(10) 314( 13) 345(19) 355 (:.4 ) 
8 234 303 245 102 18 

59(1) 980) 142(4) 236(4) 302(4) 320(4) 354(4) 370(6 ) 367(10) 

9 113 123 126 100 40 6 
58(2) 95(5) 143(7) 186(8) 2E6(7) 326(6) 341(6) 368(6) 384(9 ) 396(19) 

10 85 98 72 27 
57(2) 91(4) 132(6) ~85C7l 225(6) 291 (7) 340(6) 353(6) 381(7) 402(10) 

11 24 31 32 23 4 
56(5) 87(9) '22(11) 169(15) 218(16) 258(16) 310(14) 357(12) 370(11' 393(12) 420(24) 

12 18 15 2 
8}(7) '33(12) 184(20) 238(21) 28}(20) 321(17) 356(13) 384(11) 395 (10) 416(9) 430(9) 

13 6 2 
12905 ) 157(43) 203(53) 249(58) 291(52) 31}(49) 348(4) 387(22 ) 399(15) 412(19) 439( 42) 

16 1 
285 310 330 350 377 396 414 436 447 



Table 10. Linear relationships betw'een anterior median scale 
radius (x 24) mm and fork length* (mm) of B. holubi 
in Lake le Roux . -

Time Relationship 2 r n p 

Jan 1981 SR = 0,44 FL - 29 0,95 168 <0,00001 

July 1981 SR = 0 , 45 FL 33 0 ,94 109 <0 , 00001 

Oct 1981 SR = 0,4(, FL jj U , ~lf 2 18 <0 , 00001 

* Length range 120 - 430 mm. 

Table 11. Relationship be t ween fork length (mm) and anterior median 
scale radius (mm x 24) for some cyprinids in Lake le Roux. 

Species Relati,mship 2 r n p 

B. kimberleyensis SR = o 044 FL 1,314 , 0,,97 457 <0,00001 

B. holubi SR = 0 , 031 FL 1,412 0 , 98 421 <0 , 00001 

caEensis SR 0,041 
1,318 

0,97 411 <0, 00001 L. = FL 
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