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Abstract 

The long term isolated pulsar monitoring program, which commenced in 1984 using the 
26 m radio telescope at the Hartebeeshoek Radio Astronomy Observatory (HartRAO), 
has produced high resolution timing residual data over long timespans. This has enabled 
the analysis of observed spin down behaviour for 27 braking pulsars, most of which have 
dataspans longer than 14 years. The phenomenology of observed timing residuals of 
certain pulsars can be explained by pseudo periodic effects such as precession. Analytic 
and numerical models are developed to study the kinematic and dynamic behaviour of 
isolated but torqued precessing pulsars. The predicted timing residual behaviour of the 
models is characterised, and confronted with timing data from selected pulsars. Cyclic 
variations in the observed timing residuals of PSR B1642-03, PSR B1323-58 and PSR 
B1557-50 are fitted with a torqued precession model. 

The phenomenology of the observed timing behaviour of these pulsars can be explained 
by the precession models, but precise model fitting was not possible. This is not surprising 
given that the complexity of the pulsar systems is not completely described by the model. 

The extension of the pulsar monitoring program at HartRAO is used as motivation 
for the design and development of a new low cost, multi-purpose digital pulsar receiver. 
The instrument is implemented using a hybrid filterbank architecture, consisting of an 
analogue frontend and digital backend, to perform incoherent dedispersion. The design of 
a polyphase filtering system, which will consolidate multiple processing units into a single 
filtering solution, is discussed for future implementation. 
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CHAPTER 1 

Introduction 

The discovery of a rapidly pulsating radio source in 1967 [79], and subsequent confirmation 
of the rotating neutron star model [69] proposed by Baade and Zwicky in 1934, was the first 
step in a field that has provided such diverse applications as solid state physics, particle physics, 
magneto-electrodynamics and general relativity. Since that initial discovery, the number of cat-
alogued pulsars has increased to approximately 1500 at present [81], and the field has produced 
three Nobel laureates in Anthony Hewish (1974), Russell Hulse and Joseph Taylor (1993). 

During the past decade, pulsar science has become one of the major research fields in modern 
astronomy and is a science driver for the construction of future, large scale telescopes such as the 
Square Kilometer Array [66]. Figure 1.0.1 illustrates the growth in pulsar related publications, 
complemented by the rapid growth in the number of catalogued pulsars. 

These highly compact, ‘point masses’ have become ideal laboratories for experiments in a 
variety of fields of research, with applications found not only in the radio pulsar system itself, 
but the surrounding interstellar medium [64] and large scale galactic magnetic field [74]. 

The observation of a sudden discontinuity in the rotation period of the Vela pulsar in 1969 
[148, 149], a phenomenon known as a glitch (Vela has since undergone nine such glitches [58, 
154]), and subsequent recovery was interpreted as a large scale exchange of angular momentum 
within the neutron star [20, 21]. Glitches have since been used as probes into the neutron star 
interior [106]. The possibility of the existence of exotic matter within the neutron star core, 
such as pion condensates, raises fundamental questions in the field of particle physics. 

The large variety of observed emission mechanism signatures has resulted in the classification 
of a number of classes of neutron stars, namely: 

• Radio Pulsars (PSR): The most populous class of pulsar, their pulsed emission is gener-
ally observed in the radio frequency band. However, a number of pulsars have shown to 
emit in the optical, infrared, X-ray and γ-ray energy spectrum. Powered by their own 
rotational energy, two distinctive evolutionary paths divide these pulsars into two sub-
classes: normal and millisecond pulsars. Normal pulsars tend to have rotation periods 
of between 0.03 and 8.5 seconds, and spin down parameter Ṗ ≥ 10

−17
s.s

−1
. However, 

normal pulsars in globular clusters appear to be spinning up due to their acceleration 
in the gravitational potential of the cluster [176, 23]. Millisecond pulsars are identified 
as a separate and much older population with distinct evolutionary histories. Having 
gone through a period of ‘spin up’, their spin periods are less than a nominal value of 
20 ms [41]. Often termed as ‘recycled’ pulsars, mass and angular momentum transfer 
from a binary companion is seen to be the cause of spin up. They are characterised 

1 



240 

210 

180 

800 

700 

600 

500 

200 

100 

0 

P
ublished P

apers 

400 

300 

N
ew

ly
 d

is
co

ve
re

d 
pu

ls
ar

s 

150 

120 

90 

60 

30 

0 
1965 1970 1975 1980 1985 1990 1995 2000 2005 

1. INTRODUCTION 2 

by very low surface magnetic fields, B ≈ 10
8 
 − 10

9 
 G, and subsequent small spin down 

rates of Ṗ ≤ 10
−19

s.s−1
. 

• -y-Ray Bursters (GRB): First detected in satellite measurements between 1969 and 1972 
[87], they are characterised by short duration -y-ray bursts of ≈ 10 s. Recent obser-
vations by BATSE (Burst and Transition Experiment) and the Beppo-SAX satellite 
provides good evidence that the bursts originate at extra-galactic distances, and are 
associated with star forming regions, or supernovae. To date, over 3000 GRBs have 
been observed, distributed evenly across the sky. 

• Soft -y-Ray Repeaters (SGR): This small class, emitting multiple -y-ray bursts, is distinct 
from the GRBs with only five observed, all radio quiet [177]. Strong evidence of being 
neutron stars is supported by their association with supernova remnants [91, 122]. 
The source of SGRs has been explained by both magnetar models [60, 88], where the 
neutron stars are born with very short periods and high magnetic fields > 10

14 
 G, and 

accretion based models [141]. 

Arecibo 1 
Arecibo 2 
Arecibo 3 
Arecibo 4 
Green Bank 1 
Princeton−NRAO 
Green Bank 2 
Green Bank 3 
Jodrell Bank 1 
Jodrell Bank 2 
misc 
Molonglo 1 
Molonglo 2 
Parkes 20−cm 
Parkes Southern Sky 
Parkes Multibeam 
Swinburne Multibeam 
Parkes Globular Cluster 

FIGURE 1.0.1. Newly discovered pulsars in each major survey accord-
ing to the ATNF Pulsar catalogue [81].  The black line corresponds to 
the number of papers published with the keyword ‘pulsar’, according to 
the NASA Astrophysics Data System at http://adsabs.harvard.edu/ 
abstract_service.html 



1.1. THE NATURE OF TORQUED PULSARS 3 

• X-Ray Pulsars and Binaries: Most of the pulsating X-ray sources have been associated 
with binary systems, where the release of energy from accretting matter onto the 
neutron star surface is emitted as X-rays. They are classed in terms of companion mass 
size. The High Mass X-ray Binaries (HMXBs) have a companion mass size greater than 
10Mp. With periods of 0.069 < P < 835 s, the timing stability of HMXBs is far less 
than that of radio pulsars. They are found to show a spin up, and characterised by 
variable X-ray emission. The Low Mass X-ray Binaries (LMXBs), with companion 
masses less than 2Mp, are difficult to observe with little, if any, light observable from 
the companion star. The main source of light is due to the liberation of gravitational 
energy. This heats the surrounding gas, which subsequently gives off X-rays. 

• Anomalous X-Ray Pulsars (AXP): Much like the SGRs, the AXPs can emit multiple, 
regular X-ray bursts with a spectrum that appears softer than that of the SGR emission. 

With accurate spin down models, analysis of timing residual behaviour allows for the study of 
the internal and external structure of radio pulsar systems [92, 47, 46]. This includes magne-
tospheric fluctuations [36], vortex creep and internal temperature models [10] and interactions 
between the stellar crust and superfluid interior [29]. Observational studies have resulted in 
accurate measurements of the neutron star mass, radius, temperature, age and internal compo-
sition [96], whilst the rotational stability of millisecond pulsars in binary orbits has been shown 
to be consistent with Einstein’s theory of general relativity [34, 50, 163, 167]. The newly 
discovered double pulsar system PSR J0737-3039 provides the opportunity for fundamental rel-
ativistic tests of gravitation [109]. 

1.1. The Nature of Torqued Pulsars 

The spin down phenomenon of pulsars has led to strong interest in the modeling of pulsar 
magnetic fields and the surrounding magnetosphere. With no viable alternative, the rotating 
magnetic dipole model has dominated our understanding of isolated pulsar dynamics. However, 
this model is at variance with a spate of observational evidence. The theoretical braking law that 
describes the spin down of a rotating magnetic dipole is dependent on the rotation frequency to 
the third power (commonly referred to as the braking index). Observed spin down behaviour is 
in regular disagreement with theory [4, 102], with possible reasons including the different scaling 
of torque due to outflowing plasma [27] and magnetic field distortion [143]. Polarimetric results 
of millisecond pulsars have shown behaviour that departs significantly from that expected of a 
rotating magnetic dipole [139]. Possible time dependencies have been considered in the braking 
law [115] as a result of a time dependent braking torque [4]. In many cases, however, dominant 
timing noise has shown to be the most likely cause of inconsistent values for measured braking 
indices [19, 37]. 

Although timing noise often has the form of stochastic fluctuations, cyclic variations about 
the mean spin down trend have been observed in numerous pulsars. This is thought to be the 
result of precession [54, 114, 156, 164]. The verification of a precession mechanism would 
pose difficult questions of current understanding of neutron star interiors and beam models. 
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While most candidate precessing pulsars are seemingly fitted with untorqued models, this is 
contradictory to the observation of a pulsar that is spinning down. The effect of the magnetic 
field on precession has been thoroughly described by a number of authors [102, 103, 124, 125, 
126]. A computational model, which produces theoretically observable residuals, would be an 
important tool to aid the understanding of the dynamical behaviour of torqued pulsars. 

1.2. Pulsar Observation 

The efficacy of the detection and monitoring of pulsars is limited by receiver instrumentation. 
The success of the Parkes Multibeam survey, which has more than doubled the number of 
catalogued pulsars [80, 90, 120, 131] (see figure 1.0.1), lies in the multi-beam feed array and 
modern electronic data processing. See D’Amico (1998) [48] for a current summary of major 
pulsar surveys. 

The low cost, digital electronics of the modern era have paved the way for sophisticated, 
multi-purpose reprogrammable solutions such as COBRA [39] and the Mark IV pulsar processor 
[146]. They have allowed for the introduction of re-programmable solutions in the guise of 
software receivers, field programmable gate arrays (FPGAs) and microcontrollers. Since their 
introduction in the mid 1980’s, FPGAs have become viable alternatives to custom hardware, 
suited to perform a variety of computational tasks such as digital signal processing [72, 73, 144] 
and radar processing [72]. Their use has changed communication technology and will, in the 
not too distant future, become standard hardware components in modern observatories. 

Since the commencement of the pulsar timing program at Hartebeeshoek Radio Astronomy 
Observatory (HartRAO) in 1984, few modifications to the pulsar timing receiver instrumen-
tation have been made, although significant improvement of the telescope has occurred with 
the installation of cryogenically cooled receivers. Hence, with the inability to detect newly dis-
covered, low flux objects, the pulsar timing program has produced long dataspans of timing 
residual behaviour of 27 pulsars. To date, the primary science of the timing program has been 
the monitoring of glitches in the Vela pulsar and PSR B1641-45 [61, 63]. 

1.3. This Thesis 

This thesis aims to examine the dynamical behaviour of isolated torqued pulsars in order 
to investigate evidence of precession in the HartRAO pulsar sample. A scientific case will 
be developed to argue for new digital instrumentation for the extension of the monitoring of 
precessing pulsar candidates at HartRAO. 

The 20 years span of timing residual data at HartRAO affords the opportunity to study 
the long term spin down behaviour of 27 pulsars. However, measurement of braking indices for 
these pulsars have shown to be inconsistent with known braking law theories [37]. Chapter 2 
discusses the theoretical and observational anomalies of the braking law for torqued pulsars. 

The apparent cyclic variations in the HartRAO timing residual data for a subset of pul-
sars suggests precessional behaviour. Although already identified as possible candidates for free 
precession, the notion of a spinning down pulsar implies that a torqued model is appropriate. 
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Chapters 3 and 4 present the results of numerical modeling for untorqued and torqued preces-
sional behaviour, with a comparison of the theoretical predictions and observed timing residuals 
at HartRAO following in chapter 5. 

The ability of HartRAO to continue its timing program, and to expand its detectable pulsar 
subpopulation, is limited by the current instrumentation. Chapter 6 makes a scientific argument 
for the construction of a new pulsar processor at HartRAO, with the design and development 
of the processor discussed in chapter 7. Subsequent testing and results for the new instrument 
are discussed in chapter 8. Chapter 9 consists of a general conclusion and discussion of future 
work, followed by appendices A-L. Appendices F, K and L are found on the accompanying CD. 



CHAPTER 2 

Braking Pulsars 

2.1. Introduction 

Consideration of a torqued precession model when analysing cyclic behaviour in measured 
timing residuals requires a knowledge of the braking mechanism of pulsars. Whilst a rotating 
magnetic dipole is the most common model used for a braking pulsar, and has been adopted 
for the purposes of this thesis (see chapter 4), it is important to determine whether pulsar 
observations provide any evidence as to the nature of pulsar braking mechanisms. This chapter 
expands on what we know about the measurement of braking pulsars, and the interpretation of 
noisy data. Deviations from theoretically predicted results are described in terms of plausible 
physical mechanisms as well as interperative errors. 

2.2. Braking Model 

The rotation rate of isolated pulsars has been observed to vary with time. The dominant 
trend is one of slow spin down. Superimposed on this spin down are smaller effects, which 
may be classified into three categories: sudden and dramatic spin up events known as ‘glitches’, 
stochastic fluctuations about the mean periodicity, known as ‘timing noise’, and highly corre-
lated oscillations about the mean spin down trend, the cause of which may be interpreted as 
systematic, non-random behaviour of the pulsar, such as precession or the presence of a binary 
companion. 

The dominant spin down trend is assumed to evolve according to a theoretically predicted 
spin down law, 

(2.2.1) w˙ = −Kw
n  

where w is the rotational angular velocity, the exponent n is called the braking index and 
K a positive coefficient dependent, in general, on the various parameters that determine the 
magnitude of the braking torque. The coefficient K has no established name and will be called 
the torque coefficient for the purposes of this thesis. 

The standard model of a pulsar is a spinning magnetic dipole with moment m~ rigidly fixed 
in the crustal surface of the star [126, 83]. The pulsar rotates with angular velocity w about 
an axis inclined at an angle a to the magnetic axis, radiating energy at the rotation frequency 
by magnetic dipole radiation. The radiation reaction torque on a spinning dipole is ([174], pp 
482-484) 

2m
2 
 sin

2 
 a 

3c3 w3wˆ 

6 

τ~= 
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where c is the speed of light. The equation of motion τ~ = d J~ 
dt , 

results in a change of angular velocity 
J~ being the angular momentum, 

2m
2 
 sin

2 
 α 

(2.2.2) W˙ = — 
 3Ic3  W3 

which is of the form shown in equation 2.2.1, with n = 3 and K = 2m
2 
 sin

2 
 α  

3Ic3  . Similarly, quadrupole 
and gravitational radiation requires n = 5, while multi-pole radiation will have even higher 
indices [11]. 

In reality, the assumption of a single braking mechanism is incorrect since several braking 
mechanisms will operate simultaneously. The spin down law should therefore be written as a 
linear superposition of braking law terms 

W˙ = —ΣiKiW
ni  

where, in general, Ki and ni (b i) are different. To a good approximation, one of the terms in 
this expansion will dominate the others by several orders of magnitude, reducing the expansion 
to equation 2.2.1. 

To test the braking law by direct measurement, equation 2.2.1 could be rewritten in the 
form 

log(— Ẇ) = log K + n log W 

where a plot of the measured values log(— Ẇ) vs log W results in the determination of K and n using 
linear regression. This method, however, fails because measured values for W˙ show fluctuations 
dominated by timing noise. The large scatter on data points makes the determination of K and 
n unreliable. 

To determine n , experimenters differentiate equation 2.2.1 

W¨ = —KnW
n−1 

 Ẇ = nW
−1 

 ˙W
2  

to obtain 

(2.2.3) nobs = 

where nobs  is the braking index calculated from observed parameters. The common use of 
equation 2.2.3 by astronomers has effectively redefined the concept of the braking index, which 
is not necessarily equivalent to that of the theoretical braking index n used in equation 2.2.1. 
For K and n constant, equation 2.2.3 can be solved for Ẇ, resulting in the equivalence of nobs  and 
n. However, there is reason to believe that either one, or both, of K and n are time dependent 
[4, 27].  For either K̇ =6 0 or ṅ =6 0, equation 2.2.3 does not follow from 2.2.1 and the two 
parameters n and nobs  should be regarded as distinct. The definition of nobs  in equation 2.2.3 
is therefore independent of any form of spin down law that a pulsar may obey, and does not 
presuppose a spin down law of the form given in equation 2.2.1, unless by the ideal approximation 

ẄW 
Ẇ

2  
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κ̇ = ṅ = 0. The concept of a spin down law should not admit a braking index as defined by 
equation 2.2.1, and so we have no alternative but to admit equation 2.2.3 as a definition. 

To maintain this distinction, n will be called the theoretical braking index, while nobs  the 

observed braking index. Given the definition of nobs  in equation 2.2.3, and the fact that ω is a 

function of time, we have no a priori reason to assume that nobs  will be constant. 

2.3. Distinction between n and nobs 

Equations 2.2.1 and 2.2.3 are equivalent for κ and n constant. It is simple to confirm this 

relation by calculating nobs  from equation 2.2.1 (see section 2.2). It is necessary to show the 

converse: given nobs  constant, then equation 2.2.3 must imply a spin down law of the general 

type in equation 2.2.1. 

Assuming nobs = n0 constant, the differential equation 2.2.3 is solved by substitution of 

u = ln ω 

n0 = 
ω̈ω 
ω̇

2  = 1 + 
ü 
u̇

2  

C

1

/  
d  

= 1 — 
dt u̇ 

which integrates to 
1 

u̇ = 
— (n0 — 1)t + c 

where c is a constant of integration. 

This function has two solution branches selectable by choice of initial condition, defined at 

time t = 0. Since we know the pulsar to be spinning down, u̇ < 0 making c < 0 ==>. c = —k
2 
 , k 

a constant. Then 

u̇  = (
n0 — 1)t + k2 

1 

and, provided n0 =6 1, this integrates to 

u = (
n0 — 1) 

1 
ln[(n0 — 1)t + k

2
] + b 

where b is a constant of integration. The solution is valid for all t such that (n0 — 1)t + k
2 
 > 0. 

Expressed in terms of ω, 
1   

ω = e
b
[(n0 — 1)t + k2] (1−n0) 

which is an explicit solution for ω = ω(t) . To obtain the corresponding spin down law, ω is 

differentiated to give 

ω̇ = —e
b
[(n0 — 1)t + k2] (1−n0) −1 1   

= —e−(n0−1)bωn0 

which is of the form ω̇ = —κω
n
. It has been shown that for nobs  constant and not equal to 1, 

the spin down law is necessarily of the form in equation 2.2.1 and n = nobs . 
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If nobs = nobs (t ), the above result does not follow. 
ω

ω̇

¨

= nobs (t ) 

⇒ u̇  = 
1 

1 − f nobs (t )dt + c Z 
1  

⇒ u = 
1 − 

f 
nobs (t )dt + c

dt + b 

f  
1−

f 
n

obs
( t )dt+c 

1  dt+b ⇒ ω = e ¸ f  · 1 1−
f 

n
obs

( t)dt+c  
1  dt+b ⇒ ω̇  = 	 e 

1 − f nobs (t )dt + c 
¸ 

1  
ω 

1 − 
~ 

nobs (t )dt + c 

This is as far as the calculation can be taken due to the indefinite integral 
f 

 nobs(t )dt . This does 
not satisfy the form of the spin down law in equation 2.2.1 unless nobs(t)  satisfies the equation 

ξ(t ) = eγ( t )(
f 

ξ ( t )dt+b ) 

for γ(t ) where ξ(t) = (1−
f 

nobs( t )dt+c ) . In general, therefore, if nobs  is time dependent, the spin 1   

down law will not necessarily have the form in equation 2.2.1. This result can be expressed in 
terms of a theorem: 

THEOREM 2.3.1. If the spin down law has the form 

ω̇ = −κω
n  

the theoretical and observed braking indices are equivalent if and only if κ and n are constant. 

COROLLARY 2.3.2. If the observed braking index 

ω̈(t )ω(t ) 
nobs = 

ω̇(t )2 

is constant and not equal to 1, then the spin down law has the form ω̇ = −κω
n 
 with κ constant 

and n = nobs . 

2.4. Time Dependence in the Braking Law 

Timing irregularities, such as glitches (including glitch recovery) and timing noise, have made 
long timing spans necessary for the reliable measurement of ω̈. To date, only four pulsars have 
had their observed braking indices measured to within theoretically expected magnitudes [82]. 
Only the Crab pulsar has long enough data spans available to ensure a reliable measurement of 
nobs . Separating this data into four 5 year time spans to obtain four values for nobs ,  Lyne et al 
(1993) [115] found an appreciable time dependency in nobs.  The data, however, spanned merely 
2% of the total lifetime of the pulsar. Statistically, this would not constitute a well sampled 
population. The determination of nobs  is dominated by timing noise and the observed time 
dependency could be a sampling effect. Baykal et al (1999) [19] were able to compile over 30 
years of timing data for PSR 0823+26, PSR 1706-16, PSR 1749-28 and PSR 2021+51. However, 

ω̇ 
ω 

~
= 
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the data was highly contaminated with frequency derivative noise and led to unphysical braking 
indices of -10726, 1739, 301 and -887 respectively. 

Observed braking indices are in disagreement with the theoretical value of n = 3 expected 
for magnetic dipole radiation [102, 4]. This could be due to a different scaling of the torque with 
frequency other than that of a magnetic dipole radiating in vacuo, possibly caused by out-flowing 
plasma, removing a significant amount of angular momentum [27], or strong magnetospheric 
currents, which produces a non-dipolar magnetic field. Magnetic field distortion can also take 
place via mass accretion, requiring Ma  ≥ 10

−5
Mpwhere Ma  is the accreted mass [143]. However, 

time dependencies in the torque function κ are highly likely to be the cause of deviation of the 
observed braking index from 3. Inspection of the form of κ, shown in equation 2.2.2, indicates 
that any number of physical effects may be the cause of time dependencies: magnetic axis 
wandering [119], non-dipolar magnetic field structure [26], variable magnetic moment as a 
result of magnetic field decay or a change in the angle between m~ and ω~ [27], time dependencies 
in the moment of inertia of the star, plasma removal from the magnetosphere and propeller 
torques from supernova fallback [127]. This list is not exhaustive, but is indicative of the type 
of physical mechanisms that affect pulsar spin down. It is suggested by Link & Epstein (1997) 
[102] that the persistent, permanent increase seen in the spin down rate ω̇ of the Crab pulsar 
during post-glitch recovery is due to sudden, glitch induced reorientations of the star’s magnetic 
axis. The discrete effect on α would cause variation in the magnetic field and torque [104]. 
The variation in the moment of inertia of the star can be attributed to shearing material across 
the equator, caused by starquakes [107]. The shearing action results in the accumulation of 
crustal material (approximately 100 µm high) near shearing faults. This breaks axial symmetry 
of the principal moments of inertia, shifting I~  by a small angle, and causes the star’s angular 
momentum vector and rotational vector to become misaligned, resulting in precession. Another 
possible source of a changing I~  is the accumulation of superfluid vortices in capacitor regions, 
coupling a significant fraction of the superfluid to the crust [8]. It is thus unreasonable to expect 
κ and n to be constant. 

First consider a time dependent braking index with constant κ. Assume that if the braking 
index has a time dependence, then it is slow and 

n(t) = n0 + εf (t) 

with ε << 1 . For a constant κ 

(2.4.1) nobs = 
ω̈ω 
ω̇

2 

ε  
= n(t) − ω

1−n ḟ (t) ln ω 
κ 

The observed braking index nobs  is different from the theoretical braking index n(t) by a quan-
tity of first order smallness. Since the measured braking indices vary substantially from the 
theoretically expected value of 3, time dependence in n is therefore not the dominant factor 
responsible. 

Consider now a constant braking index n and κ = κ(t). Equation 2.2.1 gives 

(2.4.2) nobs = 
ω̈ω 

= n + 
κ̇(t)ω 

  

ω̇
2  κ(t) ω̇ 
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which can lead to a significant difference in the theoretical and observed braking indices. These 
differences would arise from either a discrete event, such as a glitch, or a continuous variation 
in the torque coefficient. 

Allen and Horvath (1997) [4] estimate the total amount of continuous and discrete variation 
in the torque coefficient that would be necessary to account for the values of observed braking 
indices, using a theoretical value of n = 3. They estimate a continuous variation of κ to be 

while a discrete variation is 

κ
˙ = (nobs — 3)
κ  

ω̇ 
ω 

≈ 1.9 x 10
-4 

 yr
-1  

≈ 3 x 10
-5 

 yr
-1  

The discrete variation accounts for only 15% of the total variation. In the rotating dipole model, 
κ is a function of the magnetic field strength B, magnetic alignment angle α and the moment 
of inertia I (see equation 2.2.2). Recalculating equation 2.2.3 for κ = κ(t), the generalised 
dependency of nobs  on these parameters is 

(2.4.3) nobs = n + 
κ̇ω 
κω̇ = 

n 
ω 

Ã 
İ 

! 
Ḃ 

I 
— 2 

 α ˙ 
tan α 

— 2 
ω ˙ B 

Equation 2.4.3 can therefore be used to set limits on the variation of parameters in κ to fit 
measured data. 

We consider the motion of the magnetic axis with a varying magnetic inclination angle 
α. Discrete variation would correspond to an average growth rate of 1.5 x 10

-5 
 rad / yr. The 

magnetic inclination angle for the Crab pulsar, αCrab,  would have moved just 0.82 degrees in 
its lifetime. Romani & Yadigaroglu (1995) [151] show that αCrab ^ 70

°
, giving a required 

increase of about 10
-4 

 rad / yr. An increase of this magnitude would result from continuous 
variation. A mechanism for this variation in α is that proposed by Ruderman’s plate tectonic 
theory [153]. The drifting of magnetic poles from the rotation axis to the equator, which is 
a consequence of the breakdown of the solid structure (leading to starquake induced glitches), 
causes a net increase in the spin down rate. The movement of crustal plates occurs continuously 
during the spin down lifetime of the pulsar [152], resulting in continuous variation in κ. Further 
mechanisms for time dependencies in α could include post glitch reorientation of the magnetic 
axis and the tendency for the star to become an aligned rotator through the minimisation of its 
rotational energy state. 

It has been argued by a number of authors that neutron star magnetic fields evolve over 
a timescale of a few million years [42, 71, 134]. The measurement of nobs < 3 could imply 
growth in the external magnetic field, possibly due to ohmic diffusion of a trapped field beneath 
the crust, where Bext  Pz~ 10

8 
 — 10

9 
 G and Bint > 10

12 
 G. In the case of the Crab pulsar, this 

would be possible if the pulsar underwent fast neutrino cooling, resulting in the rapid freezing 
and corresponding decrease in the electrical resistivity of the crust. After approximately 20 
years, the growth rate of the magnetic field slows considerably, and the magnetic field enters 
the saturation regime [133]. This scenario is further complicated by the action of accreting 
material onto the surface of the pulsar, which can act to initially screen the surface magnetic 

Δκ 1 
Δt κ 
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field and is dependent upon the rate of accretion (comparable to that of ohmic diffusion at 
˙

Mc  ≈ 10
−10

MO yr
−1

) [44]. 
Ohmic dissipation leads to a decrease in magnetic field strength on a typical timescale of 

4σR
2  

τµ  = 

 

πc
2  

where σ is taken as the electrical conductivity of the crust, R the radius of the star and c the speed 
of light [93]. Predicted values range from τµ  ≈ 4 × 10

6 
 yr [140] to τµ  > 10

8 
 yr [35], depending on 

the assumed electrical conductivity of the neutron star interior. The dependence of the magnetic 
field on the thermal evolution of neutron stars is well studied, raising the possibility of thermal 
and rotational instabilities in neutron stars due to crust-core interactions [24, 33, 95, 160, 159]. 
Evolution of the magnetic field due to the Hall effect also gives reasonable timescales [44]. 

Since nobs ≈ 2.5, ṅobs < 0, for the Crab pulsar [115], the magnetic field could be interpreted 
to be increasing, particularly at times of glitches. The characteristic age of the pulsar is therefore 
increasing slowly with time. The evolution of the pulsar on the P − P˙  diagram is toward the 
region generally occupied by magnetars [110]. If it is supposed that n = 1 for a Crab-like 
pulsar, the evolution time would be approximately 5000 years. On this timescale, the supernova 
remnant from which the pulsar originated may still be visible. 

2.5. The Generalised Braking Index 

The interpretation of nobs  is such that it is defined by a spin down law of any form. In the 
special case where nobs  is constant, it coincides with the theoretical braking index defined in the 
spin down law of the form given by equation 2.2.1. If it is time dependent, this interpretation 
falls away. However, nobs  can be naturally interpreted in terms of a dimensionless time series 
in ω. This also allows for an interpretation of the second braking index and other higher order 
braking parameters. 

If ω(t) is continuously differentiable to order k , k > 2 , and is smooth, then ω(t ) will possess 
a power series expansion about any given value t0 of t of the form 

(2.5.1) ω(t) = ω(t0) + ω̇(t0)(t − t0) + 
2!  ¨

ω(t0)(t − t0)
2 
 + ... 

1 

where dot notation represents differentiation by time, with all coefficients evaluated at time 
t = t0 . Both dependent and independent variables are dimensioned and are not suitable for 
mathematical arguments nor for use as parameters designed to measure physical characteris-
tics independent of the unit of measurement used. Therefore, equation 2.5.1 is written in a 
dimensionless form. This is done by first removing ω(t0 ) as a common factor 

ω̇(t0) 1 ω̈(t0) ω(t) = ω(t0)[1 + 
ω(t0)  (

t − t0) +  
ω(t0)(

t − t0)
2 
 + ...] 

2! 

The series inside the square brackets is clearly dimensionless. In particular, the term 
'(t0)  (t − t0) 
'̇(t0 )  

is a normalised dimensionless measure of time, in which the time t is measured in units of '(t0 )  
'̇(t0 ). 

This ratio is a natural timescale, or unit of time, which is defined by the spin down law and 
is generally related to a characteristic spin down time. Although commonly referred to as the 
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‘characteristic age’ of the pulsar, this timescale is not directly related to the actual age of the 
pulsar. 

It is convenient now to introduce a dimensionless time parameter τ defined as 

τ 
= ω̇(t0) 

ω(t0)
t 

and similarly 

τ0 
= ω̇(t0) 

ω(t0)
t0 

Then equation 2.5.1 becomes 

1 ω̈(t0)ω(t0) 
(2.5.2) ω(t ) = ω(t0 )[1 + (τ − τ0) +  

ω̇2(t0)  (
τ − τ0)

2 
 + ...] 

2! 

Equation 2.5.2 is in dimensionless form and the coefficients of the series in brackets carry in-
formation about the spin down law in a simple way. The coefficient of (τ−τ0)2  

2!  is the observed 
braking index evaluated at time t0 . The second, third and higher order braking indices, to 
order k, are obtained from a generalised equation in the form 

n(k) = 1 
ω 

d
k
ω 

dtk 

3
ω 

 ´ 
= 

ωk−1 dkω 
ω̇ ω̇k dtk 

where the k
th 

 braking index is defined as the coefficient of the term (τ −τ0)
k  

k ! in the dimensionless 
power series expansion. In general, the braking indices n(k) will be functions of time, while those 
obtained from equation 2.5.2 will be n(k) evaluated at time t0 . 

The implication of equation 2.5.2 is that a single measurement of nobs  is simply a measure-
ment of the coefficient of the quadratic term in equation 2.5.2. This does not constitute a test of 
the spin down law and nothing can be inferred about its form. No assumption was taken with 
regards to the form of the spin down law, yet it was possible to obtain a generalised formula for 
the braking indices to any order simply by writing out a time series expansion. This is illustrated 
further by the form of the solution for nobs  in equation 2.4.2, obtained for a constant theoretical 
braking index n and varying torque function κ . Assuming κ = κ(t ) , a power series expansion 
is obtained 

(
ω(t0 )

) 2  κ̇(t0)  ω(t0) 1 κ̈(t0) κ(t ) = κ(t0 )[1 + 
 ω̇(t0)(

τ − τ0) +     (τ − τ0)
2 
 + ... 

κ(t0) 2! κ(t0) ω̇(t0) 

where τ = ω(t)t and τ0 = ω̇(t) 

	

	
ω(t0)t0 . The second term in equation 2.4.2 is therefore the coefficient ω̇(t0)  

of the quadratic term in the power series expansion of a generalised function κ = κ(t ) . Again, 
higher order terms can be obtained to determine the full time dependency of κ(t ) . 

To establish the form of the spin down law, one needs to measure a number of coefficients 
using existing data spans, or at least until there is a sufficient number indicating those coefficients 
of the higher order terms are negligible. To date, this has not been the case, with attempts at 
measuring the second braking index resulting in values greater than the first braking index [27] 
and showing a power of n dependence. This is a clear manifestation of the problem of noisy 
data. As higher order coefficients are determined from the data, more noise is fitted. The strong 
presence of fitted noise decreases the possibility of fitting long term spin down trends. 
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The assumption that the only fault with the spin down law is that n =6 3 but a number 
1 < n < 3 is therefore premature. We have no indication at present as to the form of the 
braking law, and will not until a long enough data span is available to establish the form of time 
dependence of nobs  . 

2.6. Timing noise in the Measurement of nobs 

For pulsars monitored at HartRAO, the measurement of nobs,  obtained by polynomial fits 
of phase residuals, resulted in values inconsistent with any known theory of braking indices 
[37]. Only two, PSR B0450-18 and PSR B1727-47, of the 27 regularly monitored pulsars had 
0 < nobs < 10, with the rest ranging between large positive and negative values. The inconsis-
tent results, together with physically implausible measurements of negative values for ω̈, shows 
evidence for the fitting of timing noise through higher order polynomial fits of the form in equa-
tion 2.5.2 (Section 2.6.2 discusses a mechanism that could result in large positive and negative 
measurements of nobs ).  Chukwude (2002) [37] was able to show strong influence of timing noise 
absorption levels on measured values of ω̈ in HartRAO data by correlating the measured value 
for ω̈ with the rms phase residuals obtained from second and third order polynomial fits. The 
determination of the coefficients in equation 2.5.2, be it by polynomial fitting or measurement 
of ω, ω̇ and ω̈, should therefore not be attempted to be reconciled with any existing braking 
index theories. 

An assumption that the measured values for ω̈ are not heavily contaminated by timing noise 
would require the presence of a physical process that is independent of the long term braking 
trend of the pulsar. A stationary stochastic process with non-zero mean could result in the 
measurement of a net ω̈, the value of which would appear anomalous using existing braking 
index theories [43]. The stochastic process would originate from a noisy torque, either internal 
or external, which is not modeled in the braking law of equation 2.2.1. Reported measurements 
of ω̈ using the HartRAO data show that 13 of the 27 regularly monitored pulsars have negative 
measured values, possibly the result of noisy torques. 

2.6.1. Noisy Rotational Motion. The theoretical basis for the effects of a noisy torque 
on the rotational behaviour of a pulsar is taken from the development of brownian motion for 
rotating rigid bodies [38, 123]. 

Following the pulsar clock model of Cordes (1980) [40], a pulsar can be treated as a rotating 
sphere subject to a noisy torque. The origin of this torque is not important in this discussion 
and can be represented as an angular collision torque τ(t). The rate at which stochastic events 
occur in τ(t) can be characterised by a correlation time Δt, which will be of the same order as 
the response time to that event. 

The nature of τ(t) is such that the rotation of the body has an effect on the torque. This 
implies the presence of a slowly varying component τ˜(t), which acts to bring the rotating body 
into equilibrium together with a rapidly fluctuating component with an expectation value of 0. 
τ˜(t) is expanded in terms of a power series where the first non-vanishing term is linear in ω(t), 
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to give the general form 
τ˜(ω(t )) = βω(t ) 

where β is a constant. 
Now consider the process 

dθ(t )  ω(t ) = 
 dt 

that satisfies the equation 
dω(t

) + βω(t ) = n(t ) 
dt 

where n(t ) is a white noise process with zero mean E{ n(t ) } = 0 and constant frequency spec-
trum Sn(ω ) = µ, and β a frictional constant. ω(t ) describes the angular velocity of the body. 
If we consider a massive body with moment of inertia I that is acted upon by a frictional 
force proportional to the angular velocity of the body, with no other external torques explicitly 
expressed, the equation can be rewritten 

(2.6.1) ω̇(t ) + ξω(t ) = τ(t ) 

where ω̇(t) = dω(t )  
dt , ξ = βI and τ(t) = n(t )  

I  is an angular collision force. Choosing a cartesian 
coordinate system, the derivation is performed in one dimension. The results are the same for 
the other two basis vectors. 

The microscopic nature of τ(t ) can be complicated, but by assuming the differential dt to be 
large compared to the response of each collision, but small enough to cause a small variation in 
the process ω(t ), then both ω(t ) and τ(t ) can be treated as moving averages, written in terms 
of instantaneous values ωi (t ) and τi (t ) as 

Z t+Δt 1 
ω(t )  =  ωi (α )dα 

Δt 
Ztt+Δt 1 

τ(t )  =  τi (α )dα 
Δt t 

The rotating body would therefore have a delayed response to the stochastic process, and behave 
under the action of an averaged process. ω(t ) and τ(t ) still satisfy equation 2.6.1, shown by 
considering the instantaneous values ωi (t ) and τi (t ) in the equation 

ω̇i (t ) + ξωi (t ) = τi (t ) 

and integrating. 
ξ would not only be dependent on I, but also on the viscosity of the surrounding mediums 

of the pulsar crust, both internal and external. It is interpreted as the result of a preferred sign 
stochastic event and leads to a net measurement of ω̈ that is not explained by braking law theory. 
If the dominant stochastic process were to originate in the interaction of the magnetosphere with 
the pulsar, such as a differential rotation within the magnetosphere [145], the pulsar should be 
damped and ξ < 0. Were it to originate in the crust-core interaction, through the effects of 
viscosity and friction due to the scattering of electrons by neutron and proton vortices, then in 
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order to bring the system into equilibrium with the faster rotating core, ~ > 0. This would lead 
to a time dependency in ~, since we know the long term dynamics of a pulsar is to slow down. 

2.6.2. Internal Frictional Instabilities . The effect of a frictional crust-core interface 
is well studied. It is known to lead to thermal and rotational instabilities that are largely 
dependent on the differential crust-core angular velocity, temperature sensitivity and equations 
of state [24, 33, 95, 99, 159, 160, 171]. The friction dissipates rotational energy as heat. Once 
the interior of a neutron star reaches an isothermal state, friction becomes an important heat 
source, which can effectively alter the thermal evolution of the pulsar and the interior rotational 
structure. With a high sensitivity to temperature, the frictional crust core interface is unstable 
[160]. This instability in the coupling develops a limit cycle, which effectively has two states: a 
high temperature coupled state and a low temperature decoupled state [159]. 

In the coupled state the internal frictional torque is large, leading to a decrease in the 
differential crust core angular velocity, while angular momentum is dissipated as heat. The 
frictional torque reaches a maximum, causing cv̇ to increase rapidly. Once the differential crust 
core angular velocity is sufficiently small, the friction decreases quickly, with the cooling rate 
of the neutron star dominating the heating rate. As the star cools, it enters a low temperature 
decoupled state where the slow down trend of the pulsar obeys the standard magnetic dipole 
braking. 

In the decoupled state, the differential angular velocity is large and the cycle is repeated with 
a dominant heating rate. These rotational instabilities lead to the measurement of anomalous 
values for ~̈), both negative and positive [159], and even positive measurements of ċv. 

Values for the frictional torque coefficient ~ can be calculated from measured parameters 
as follows. By assuming a spin down law of the form 2.2.1, with n = 3, predicted values for 
~)̈ can be calculated. Observed values for ~)̈ are assumed to follow a spin down law of the 
form 2.6.1. The value ~ in equation 2.6.1 is calculated by determining the residual between 
predicted and measured values of ~̈). Using observed measurements of ~)̈ for the 27 HartRAO 
pulsars analysed by Chukwude (2002) [37], table 2.6.1 lists the results of the determination of 
~ for these pulsars. Detailed documents describing the data processing and timing program at 
HartRAO are described by Chukwude (2002) [37] and Flanagan (1995) [62]. 

¨~obs corresponds to the observed values of ~)̈ obtained by second and third order polynomial 
fits of observed phase residuals, while ~̈pre  is the predicted value of ~)̈ obtained by assuming 
n = 3. Errors for ~ are largely dependent on measurement errors for ~̈obs. 

Using a reasonable approximation of 2 × 10
4 
 yrs for the interior of a neutron star to reach 

an isothermal state [171], none of the pulsars in table 2.6.1 would be excluded from a sample 
group of possible frictional instabilities. Using the thermal evolutionary models of Shibazaki and 
Mochizuki (1995) [160], the onset of thermal rotational instability is reached on the order of 
10

7 
 years. However, it is possible that stars of this age are too insensitive to temperature, with 

thermal rotational instabilities occurring in stars younger than 10
5 
 years [95]. The calculated 

characteristic age of the pulsars is true only for n = 3. In periods of rotational instability, 
marked by very large negative and positive measured braking indices, the calculated age based 



2.6. TIMING NOISE IN THE MEASUREMENT OF nobs 17 

on observed parameters would be a meaningless quantity. Whilst Shibazaki and Hirano (1995) 
[159] predict positive measured values of ω̇ accompanying the anomalous values of ω̈ and nobs, 
this does not seem to be the case for the HartRAO pulsars. The pulsars would therefore be 
entering high temperature decoupled states for ω̈ >> 0 or leaving high temperature decoupled 
states for ω̈ << 0. Given that the duty cycle of the rotational instability is a few percent, 
the probability that all pulsars monitored at HartRAO are moving into or leaving a state of 
frictional instability is highly improbable, and we would expect perhaps only two or three of the 
monitored pulsars to have anomalous values for ω̈. 

Thermal rotational instabilities can hesitantly be excluded as a possible cause for the mea-
sured values of ω̈ due to the sample statistics. There is, however, still room for a large frictional 
internal torque that occurs over a longer period of time. The observed parameters might suggest 
this. 

TABLE 2.6.1. Calculation of ξ for 27 HartRAO pulsars 

Pulsar 
[J2000] 

P 
[s] 

Ṗ 
[10

-15
ss
-1

] 

Err ω̈obs 
[10

-25
Hz.s

-2
] 

Err ω̈pre 
[10

-25
Hz.s

-2
] 

tage 

[10
6
yrs] 

ξ 
[10

-13
s
-1

] 

0452-1759 0.5489390994991 5.75246 7 0.013 4 0.0060 1.51 -0.36677 
0738-4042 0.3749197185831 1.62787 3 -8.389 6 0.0015 3.65 724.511 
0742-2822 0.166762352983 16.8138 4 -39.334 5 1.8298 0.157 68.0824 
0837-4135 0.7516228351393 3.542096 16 0.366 9 0.0009 3.36 -58.2328 
1001-5507 1.43659803499 51.9079 8 -13.85 3 0.0271 0.438 551.748 
1056-559 0.4224478120999 3.571362 12 -0.303 8 0.0051 1.87 -15.3946 

1136+1551 1.1879138426560 3.733837 5 0.0622 4 0.0002 5.04 -23.4131 
1224-6407 0.2164772303537 4.954019 4 -0.096 8 0.0726 0.692 1.59465 
1243-6423 0.3884813984385 4.50044 5 -0.774 3 0.0104 1.37 26.3029 
1326-5859 0.4779911691929 3.228641 6 2.472 4 0.0029 2.35 -174.729 
1327-6222 0.529917304148 18.88576 9 -1.554 3 0.0719 0.445 24.1756 
1359-6038 0.1275037184166 6.338324 12 5.048 14 0.5814 0.319 -11.4563 
1401-6357 0.84279410356 16.6632 8 8.553 6 0.0140 0.801 -363.995 
1430-6623 0.785441562099 2.7757 3 -0.197 3 0.0005 4.48 43.8906 
1453-6413 0.1794852776830 2.745765 4 1.561 10 0.0391 1.04 -17.8557 
1456-6843 0.2633768354079 0.098824 4 -0.029 2 ¡0.0001 42.2 20.3672 
1559-4438 0.2570563022579 1.019427 4 0.217 6 0.0018 4.0 -13.9467 
1600-5044 0.1926008276350 5.06234 2 -0.75 7 0.1076 0.603 6.28426 
1644-4559 0.455064996897 20.10576 7 4.1687 5 0.1288 0.359 -41.6111 
1645-0317 0.387690159752 1.7777 2 -0.299 4 0.0016 3.46 25.4179 
1709-1640 0.65305499092 6.2908 10 6.394 9 0.0043 1.64 -433.188 
1731-4744 0.829791467779 163.59359 8 2.403 3 1.4056 0.0804 -4.19955 
1752-2806 0.562559701417 8.1190 2 -0.223 2 0.0111 1.1 9.12536 
1932+1059 0.2265179059111 1.156007 9 -1.584 7 0.0035 3.1 70.4603 
1935+1616 0.3587397964580 6.002093 3 0.120 2 0.0234 0.947 -2.07106 
2048-1616 1.961574563855 10.95891 2 0.0054 9 0.0005 2.84 -1.72839 

Errors are 2σ formal standard errors and denote the least significant digits. 
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2.6.3. External Frictional Torques. The fluctuation of pair production processes in the 
magnetospheric gap, with a typical timescale of 10 µs, causes a variation in the dipole torque, 
which can be shown to cause red noise in pulse frequency derivatives [36, 19]. These processes 
create a rapid variation in the current braking torque ΔT = (SJ × B) where SJ is the perturbed 
magnetospheric current. This rapid variation has an intrinsic frictional nature that could lead to 
anomalous values for ω̈. The magnitude of these variations is speculative and more knowledge 
is needed on the structure of the rotating magnetosphere. 

Evidence in the data available at HartRAO seems to support the contamination of ω̈ by 
timing noise [37]. This does not rule out the possibility of frictional torques influencing the 
rotation of pulsars. To determine the affect of friction on the spin down of pulsars, a long data 
span is required with little or no timing noise. Pulsars that exhibit smooth cyclic variations in 
their timing residuals, possibly due to precession, are ideal candidates for an investigation of 
this nature. 

The fitting of a torqued precession model could be used to determine accurate models for 
the dynamics of spinning down pulsars. The behaviour of torqued pulsars is largely influenced 
by mechanical and magnetic stresses. The absence of relatively large stochastic fluctuations in 
the timing residuals of candidate precessing pulsars provides the possibility to analyse spin down 
behaviour using uncontaminated data. In the following chapters, the kinematics and dynamics 
of pulsar precession are discussed. Chapter 3 gives an overview of what we know about free 
precession in order to maintain consistency. Chapter 4 discusses torqued precession in depth, 
detailing both previous work and results from new numerical simulations. The precession models 
are used as a basis for the determination of observed timing residuals, which are correlated with 
timing residual data from HartRAO in chapter 5. 



CHAPTER 3 

Free Precession 

3.1. Introduction 

Certain pulsars display long term cyclic behaviour in their timing residuals, with periods 
varying between thirty days to over one thousand days. In most cases the timing residuals are 
not coherently periodic. Precession is a likely cause of the observed periodicities. 

The pulsar interior is, in reality, not frictionless. Elastic energy strain is dissipated in the 
crust due to non-hydrostatic deformation [70], whilst imperfect coupling between the crust and 
core causes energy losses [105, 157]. Both sources of friction tend to dampen any initial preces-
sion over a time scale shorter than one precession period. The occurrence of free precession would 
require either a complete coupling, or decoupling, of the crust and superfluid, or a mechanism 
allowing for the continual re-excitement of the precession [85]. Thus, challenges for theories on 
neutron star interiors, the dynamics of crust-core interactions and beam models are posed by 
the observation of apparent long term precession in pulsars such as the Crab pulsar [114], Vela 
pulsar [54], PSR 1828-11 [164] and PSR 1642-03 [156]. Timing residual observations of PSR 
1828-11, showing strong harmonics at periods of 167 days, 250 days, 500 days and 1000 days 
with an amplitude of 1ns, show no obvious signs of damping. Disagreements of timing residual 
observations with precession models, and the existence of long term precession, should be taken 
as an indication that current models of the neutron star interior are incomplete. 

The problem of torque free pulsar precession is well studied [25, 45, 68, 84, 85, 157], and 
so only an overview of the field is made here to maintain consistency. Chapter 4 gives a more 
in depth analysis of torqued precession, detailing recent and new work. 

3.2. The Rigid Body Model 

Evidence of a superfluid interior demands modification of the adopted rotating rigid body 
model, which requires that each point in the body is fixed relative to all neighbouring points. 
Since observational measurements are linked to the rigidly rotating crust of the neutron star, 
the rigid body model is modified to treat only this component. This requires one of two cases: 
the superfluid interior is completely decoupled from, or fully coupled to, the crustal exterior. 
Partial coupling would require that pinned superfluid vortices do not interact with any uncoupled 
component. This is improbable given the presence of proton-neutron vortex interactions and 
the coupling of superfluid and non-superfluid components [147]. Both the fully coupled and 
decoupled approximations are problematic. 

The absence of coupling between the superfluid interior and crust can explain the observation 
of long term precession, which would be damped within a single precession period for imperfectly 
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pinned crusts [155, 157]. It would, however, also dismiss a number of theories used to explain 

glitches and post glitch recovery [5, 6, 9, 7, 8, 86, 105]. For a pulsar displaying precession, be 

it due to an external force or internal dynamics, the resultant internal force could be sufficient 

to unpin the superfluid vortices and prevent further coupling, thus satisfying the uncoupled 

approximation. Link and Cutler (2002) [101] estimate the magnus force required for a glitch 

on Vela to be approximately 10
15

dyn.cm
−1

. This is a lower limit for a non precessing pulsar. 

By comparison, the minimum magnus force of a precessing pulsar > 10
17

dyn.cm
−1

, indicating 

that the vortices in a precessing pulsar should unpin and remain unpinned. Observational proof 

would require that precessing pulsars do not glitch or, if they do, do not follow standard glitch 

recovery models. 

The fully coupled body is limited by the lack of a glitch recovery model, implying the absence 

of differential rotation between the crust and core, and is not considered to be a plausible physical 

reality. 

The rigid body model is a reasonably accurate approximation for the purpose of timing 

measurements and is supported by the observed rotational behaviour of pulsars [29, 53]. 

The following sections outline the standard mathematical approach to the problem of preces-

sion. Using Euler’s equations for rigid body motion, solutions are obtained for the kinematical 

behaviour of precessing axisymmetric and asymmetric pulsars. 

3.3. Equations of Motion 

Choose a set of axes ~ei (i = 1, 2, 3), which are fixed in a rigid body such that the moment 

of inertia tensor Iγµ = 0 for -y =6 p. The torque free Euler equations for rigid body motion are 

(see appendix A.1) 

(3.3.1) 

(3.3.2) 

(3.3.3) 

Ẇ1 + 
(I3 − I2) 

W2W3 = 0 
I1 

Ẇ2 + 
(I1 − I3)

W1W3 = 0 
I2 

Ẇ3 + 
(I2 − I1) 

W1W2  = 0 
I3 

where the Wi are the angular velocity components of the pulsar in the body frame ~ei and Ii are 

the moments of inertia. 

3.4. Axisymmetric Pulsar 

~e3 is chosen to be the axis of symmetry. For an oblate body I3 > I2 = I1. Defining e = I3−I1  
I1  

, 

Euler’s equations reduce to 

(3.4.1) Ẇ1 + eW2W3 = 0 

(3.4.2) Ẇ2 − eW1W3 = 0 

(3.4.3) Ẇ3 = 0 

where e > 0. For a prolate body, e < 0. 

http://1015dyn.cm
http://1015dyn.cm
http://1015dyn.cm
http://1015dyn.cm
http://1017dyn.cm
http://1017dyn.cm
http://1017dyn.cm
http://1017dyn.cm
http://1017dyn.cm
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3.4.1. General Solution. There is no a priori reason why the angular velocity ω~ should 

be aligned with a principal moment of inertia at the birth of a pulsar. Were this to be the 

case, the motion of the pulsar would be trivial. For the solution to equations 3.4.1 - 3.4.3, ω~ is 

generalised to lie at an angle β to ~e3. Solving 

(3.4.4) ω̈1 = —εω3 ̇ω2 

(3.4.5) ==>- ω1 = Iω I sin β cos(εω3t + ξ) 

(3.4.6) ω2 = Iω I sin β sin(εω3t + ξ) 

(3.4.7) ω3 = Iω I cos β = ω3(0) 

The projection of ω~ onto the axis of symmetry ~e3 is constant. The magnitude of ω~ is also 

constant, and so the body spins with constant speed at fixed angle β to ~e3.  However, the 

direction of ω~ is not constant since ~ω⊥ = ω1~e1 + ω2 ~e2  rotates in the ~e1 — ~e2 plane. As seen from 

the body frame, ω~ precesses with retrograde motion about ~e3 on a cone at half angle β to ~e3. 

This is the called the body frame precession. 

In terms of the Euler angles, ω~ = φ
˙  ~
E3 + 

˙
θ~n1 + 

˙
ψ~e3 (See appendix A.2). In an inertial space 

frame with basis vectors 
~
Ei , ω~ has the form 

ω~ = —εω3 sin φ sin θ 
~
E1 + εω3 cos φ sin θ 

~
E2 + ( φ

˙ 
 — εω3 cos θ) 

~
E3 

where the angles φ, θ and ψ are the standard Euler angles, commonly referred to as the preces-

sion angle, the nutation angle and the spin angle respectively. 

To an observer in the space frame, the angular momentum vector J~ appears fixed in space. 

The vector ~e3 precesses about J~  on a cone of half angle θ at an angular frequency 
˙
φ. This is the 

inertial frame precession. ω~ is in the plane of J~  and ~e3 and so precesses about J~  on a cone of 

half angle β — θ at an angular frequency 
˙
φ. Figure 3.4.1 is an illustration of the body and space 

cones. The intersection of the two cones is aligned with ~ω. During the precessing motion of the 

pulsar, the body cone will roll along the outside of the space cone without slipping. Thus, two 

precessional motions occur. Firstly, the body frame precession, which is the retrograde motion 

of ω~ about ~e3. Secondly, the inertial frame precession, which is the motion of ~e3 about 
~
J. 

3.5. Asymmetric Pulsar 

Choose the body axes ~ei such that I3 > I2 > I1. Defining ε1 = I3−I2  
I1  

, ε2 = I3−I1  
I2  

and ε3 = 
I2−I1 3.3.1 3.3.3 become I3 

, equations - 

ω̇1 + ε1ω2ω3 = 0 

ω̇2 — ε2ω1ω3 = 0 

ω̇3 + ε3ω1ω2 = 0 

The body axes ~e1 and ~e3 are known as the extreme axes since they are aligned with the minimum 

and maximum moments of inertia I1 and I3 respectively. ~e2 is known as the intermediate axis. 



J 

space cone 
ω 

e
3  

body cone 
θ 

β 
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3.5.1. General Solution. For ~ω(0) Pz~ ω3(0)~e3 or ~ω(0) Pz~ ω1(0)~e1, the solution to Euler’s 
equations approximate that of the axisymmetric case, with a small amplitude oscillation in 
the solutions of ~ω3 or ~ω1 respectively. There is relatively little transfer of angular momentum 
between the angular velocity components, and so the body is defined to be in a stable rotational 
state. 

Assume ~ω(0) Pz~ ω2 ~e2  with a slight perturbation of ω1 and ω3. For ~ω(0) Pz~ ~ω2(0), ω̇2(0) = 
ε2ω1(0)ω3(0) Pz~ 0. Attempting a trial solution 

ω1  = A1e
λt  

ω3 = A3e
λt  

==>- λA1 + ε1ω2A3 = 0 

λA3 + ε3ω2A1  = 0 

and writing the ratio 
A3 

 

λ 
= 

ε1ω2 

ε3ω2 

 

A1 
= 

λ 
==>- λ = +ω2

-\/
ε1ε3 

~
ε3 

==>- A3 = +A1 ε1 

FIGURE 3.4.1. Space and body cone. The precessional motion of the pulsar 
is described by the larger body cone rolling along the outside of the smaller 
space cone without slipping. The line of intersection is aligned with ~ω. 



X 1  

X 2  

3.5. ASYMMETRIC PULSAR 23 

The general solution is the superposition of these two solutions 

⇒ W1  = —C1e
w2VE1E3t 

 + C2e—w2
V

E1E3t // ε3  IC1ew2
V

E1E3t + C2e—w2
V

E1E3t
J 

W3 = 
ε1 

(V
E1 

I 
(VE1 

I  
where C1 = 1 

E3 
W3(0) — W1(0) and C2 = 1 

E3 
W3(0) + W1(0) . 2 2 

Since ε1, ε3 > 0, W1 and W3 are a superposition of exponentially increasing and decreasing 
functions. These solutions only hold for W1W3  small. By the conservation of angular momentum, 
W2 decreases with the increase of these angular velocity components. A large transfer of angular 
momentum occurs, making the rotational state unstable. Once W1 and W3 reach a maximum, the 
cycle is reversed and W2 increases with the decay of W1 and W3. The unstable rotation represents 
a tumbling action of the pulsar. 

A more complete solution by Landau and Lifshitz (1960) [94] gives the solutions to the 
angular velocities of an untorqued asymmetric rigid body as 

s  
2EI3 — J2 

W1 = 
I1(I3 — I1

) cn(7) 

s  
2EI3 — J2 

W2  = 
I2(I3 — I2 )

sn(7)  

s  
J2  —  2EI1 W3 = 
I3(I3 — I1

) dn(7 ) 

where E is the total mechanical energy of the system, cn, sn and dn are Jacobian elliptic V
(I3—I2)(.I

2
—2EI1)  functions and 7 = t . 

X 3 

FIGURE 3.5.1. Rotational stability of asymmetric body. The axes tixz are 
aligned with the body axes tiez. The path traced out by the angular momen-
tum vector J

ti 
 is plotted. The extreme axes tix1 and tix3 are attractor points 

for tiJ. 

I1I2I3 
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Figure 3.5.1 describes the motion of the angular momentum vector J
n 
 relative to the moments 

of inertia (adapted from Landau and Lifshitz (1960) [94]). The axes nxi are aligned with the 
body axes nei. When near ne1 or ne3, which act as attractor points in the configuration phase space, 
Jn precesses about the respective axes. The intermediate axis ne2 is not an attractor and so, given 
an appropriate initial condition, Jn  passes through ne2, travelling a large distance between the 
corresponding poles. This behaviour is descriptive of the nature of stability of the rigid body 
about its respective moments of inertia where small deviations about ne1 and ne3 result in a stable 
rotational state, but deviations about ne2 result in large variation in the motion of 

n
J. 

Since the paths form closed loops, the motion is periodic in the body frame. However, 
viewing from the inertial space frame, solutions for the Euler angles show no definite periodicity. 

3.6. Free Precession in Pulsars? 

The observation of free precession requires a re-analysis of the action of the neutron superfluid 
in the crust-core interface. Jones et al (2001) [83] argues that, in order to be consistent with 
precessing candidates, a crust only precession requires 10

−10 
 of the total stellar mass to be pinned 

superfluid. If one considers a single precessing crust-core component, then this factor increases 
to 10

−8
. Both of these quantities are reasonable even though they are orders of magnitude less 

than those predicted by glitch theories [157]. 
Free precession models have been used to fit the observed timing residuals of PSR B1642-03, 

where Shabanova et al (2001) [156] were able to recover smooth, cyclic variations. The 1000 
day periodicity in brightness of the pulse profile leading component, reported by Blaskiewicz 
(1991) [28], is evidence for a free precession model, which is fitted with 0(0) ≈ 0.5 rad. 

PSR 1828-11 has been modeled as a freely precessing, asymmetric pulsar [164] with periods 
of 250, 500 and 1000 days. The absence of damping due to vortices in the superfluid interior is 
explained by a strong decoupling of the crust and core [101]. The pulse profile and amplitude 
changes in the period derivative support a variation of approximately 0.3

° 
 of the angle x between 

r n and ne3 (with x = 60
°
). 

In his thesis, Chukwude (2002) [37] presents evidence for free precession in PSR B1323-58 
and PSR B1358-63, with PSR B1323-58 described by two harmonically related sine functions 
of periods ≈ 2400 and 1200 days. Timing residuals for PSR B1358-63 are fitted with three 
sinusoids with periods of ≈ 3600, 1900 and 1000 days, which could be harmonically related 
given the quoted errors. 

Using photometric results, a simple free precession model has been fitted to both the Crab 
pulsar and Her X-1 neutron star with periods of 60 seconds and 35 days respectively [31, 32]. 
A powerful test of the model is the observed proportionality between the increases in precession 
period and rotation period of the Crab pulsar [32]. It is arguable, however, that given an 
intrinsic slow down in the pulsar rotation rate, whether the precession can strictly be considered 
to be torque free. 



3.7. SUMMARY 25 

3.7. Summary 

The free precession model of axisymmetric bodies is the simplest of precessional behaviour, 
with the precession period dependent on the mass distribution of the pulsar. The two rotational 
states of the asymmetric model may provide an explanation of observed anomalous timing 
residual behaviour, with an asymmetric free precession model having been fitted to PSR 1828-11 
[164]. The unstable rotational state of an asymmetric body results in pseudo-glitch phenomenon. 
This would probably be accompanied with a periodic disappearance of the pulsar signal, as it 
is highly unlikely that the beam would be visible for the entire duration of the precession cycle. 
Whilst there are no known cases of this occurring, suggesting small precession angles in all 
cases, this may be due to selection effects where pulsar surveys have optimised sensitivities to 
non-precessing objects. 

The analysis of precessing pulsars in terms of an analytic framework has laid the basis 
for an investigation into the dynamics of precession and its dependencies on relevant physical 
parameters. The method used to determine analytic solutions for free precession is adopted in 
the treatment of torqued precession in chapter 4. 



CHAPTER 4 

Torqued Precession 

4.1. Introduction 

Pulsars are not torque free, but instead have a number of mechanisms that could account 
for a loss of angular momentum. They include magnetic dipole (and higher order multi-pole) 
radiation, magnetospheric drag and gravitational radiation. Long term periodicities in tim-
ing residuals determined from HartRAO data raise the possibility of torqued precession being 
responsible for the observed periodic behaviour. 

The analysis of a magnetic dipole model, with orthogonal components in the near field 
radiation zone, shows that precession may be a requirement in order for a pulsar to reach a local 
energy eigenstate. If the distortions of the magnetic field are larger than that of the crust, then a 
steady state solution for the rotation of the star is highly unlikely [175]. For an untorqued body, 
the global minimum energy eigenstate occurs when the angular velocity and angular momentum 
are aligned with the largest principal moment of inertia. However, the action of orthogonal 
components in the magnetic field of a torqued body tends to cause alignment of the angular 
velocity with the magnetic axis. Therefore, in the case of an axisymmetric or asymmetric body, 
the coupling between the magnetic axis and angular momentum results in the local energy 
eigenstate displaying precession. Whilst the pulsar may reach this local state in a reasonably 
short time, it will tend to move towards a global energy eigenstate of an aligned rotator as the 
pulsar ages. The effect of radiative precession has been implicated in the bumpy spin down 
of magnetars [125], although evidence for similar features in the spin down of ordinary radio 
pulsars is inconclusive. 

The effect of a magnetic stresses, which in general do not act in the same direction as crustal 
stresses, is such that the rotational behaviour of a torqued axisymmetric body resembles that 
characterised by an asymmetric body, resulting in incoherent periodic timing residuals. 

The following sections outline the mathematical formulism for a spinning magnetic dipole, 
and then solve the angular velocities with a generalised nv(0) for a spherical, axisymmetric and 
asymmetric pulsar. Where analytical solutions are not possible, numerical simulations are used 
to examine the rotational behaviour. 

4.2. Dipole Torque 

The electromagnetic torque resulting from a spinning magnetic dipole is commonly used in 
the analysis of pulsar spin dynamics. 

Consider a pulsar with magnetic axis M n fixed in the rigid crust. Choose a set of body axes 
nei (i = 1, 2, 3) such that M n lies in the ne1 − ne3 plane at an angle X to ne3.  This construction 

26 
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involves a slight loss of generality. For both spherical and axisymmetric bodies, where ~e3 is 
made to lie along the axis of symmetry, an infinite number of axes can be chosen, rotated about 
~e3, such that the basis vectors ~ez lie along the principal moments of inertia. ~ez can always be 
rotated such that m~ lies in the ~e1 − ~e3 plane without loss of generality. In the asymmetric case, 
however, there is a unique set of axes that lie along the principal moments of inertia and m~ 
is not constrained to lie in the ~e1 − ~e3 plane. For a number of cases the Euler equations are 
intractable and generalising m~ further increases complexity. However, restricting m~ to lie in the 
~e1 − ~e3 plane will not cause the solutions to deviate too far from the generalised case. 

A spinning magnetic dipole has a near field and far field radiation zone. The Euler equations 
are written separately with near field torque components: 

(4.2.1) ω̇1 + (ε − ε
0
)ω2ω3 = KG(x0)|ω |ω2(ω1 sin χ + ω3 cos χ ) cos χ 

[  
ε

] [  
1

]  
(4.2.2) ω̇2 −   ω1ω3 = KG(x0)   |ω |(−ω1 cos χ + ω3 sin χ ) 

1+ ε
0 

1+ ε0 

(4.2.3) × (ω1 sin χ + ω3 cos χ ) 
[

ε0  ] [
1 

 ] 
(4.2.4) ω̇3 +  ω1ω2  = −KG(x0 ) |ω|ω2(ω1 sin χ + ω3 cos χ ) sin χ 

1 + ε 1 + ε 

and with far field torque components: 

(4.2.5) ω̇1 + (ε − ε
0
)ω2ω3 = KF(x0 )|ω |

2
(−ω1 cos χ + ω3 sin χ ) cos χ 

[ 
ε   

] [  
1 

 ] 
(4.2.6) ω̇2 −  ω1ω3 = −KF(xo) |ω |

2
ω2 1 + ε

0 
1 + ε0 

[
ε0  

] [

1 

 ] 
(4.2.7) ω̇3 +  ω1ω2  = −KF(x0 ) |ω |

2
(−ω1 cos χ + ω3 sin χ ) sin χ 

1 + ε 1 + ε 

x4 
0+6) 0  

µ0c3I1  
, F(x0) = 

0+1) 
 , G(x0) = 3(x2 

5(x
6 

 
0
−3x

4  
0+36) + 1 

0+36) +  3−2x2 

3(x
2 

5x0(x
6 

 
0
−3x

4 

0+1) 
 , 0   

15x0(x
2  

I3−I1  ε =  I1  
, ε

0 
 = I2−I1 

I1 
[126]. K is used as a scaling factor for the timescales of numerical 

simulations found later in this chapter. The functions F(x0) and G(x0) reflect the structure 
of the far field and near field radiation zones respectively [55], with x0 = r0 |w |  

c . The far field 
torque components are responsible for the familiar braking torque, whilst the near field torque 
components are responsible for a precessional motion that is independent of the mass distribution 
of the pulsar. r0 is the ‘vacuum radius’, defined by Melatos (1997) [124] to be the innermost 
point within the magnetosphere where the plasma can become three-dimensional and field-
aligned flow breaks down. This radius is generally much larger than the radius of the pulsar, 
but is somewhat less than the light-cylinder radius, defined as rL = 

w

c
. 

In representing the pulsar as a rotating dipole, it is assumed that the star is internally 
frictionless. The pinning and unpinning action of superfluid vortices is therefore neglected. We 
assume that the star rotates in vacuo. 

4.2.1. Effect of Orthogonal and Spin Down Torque. The flow of energy for a rotating 
magnetic dipole is calculated by the Poynting vector E~ × ~

B
∗
. The magnetic and electric fields 

0  where K = 27rB2 
0 r6 



· 1  E~ = 
µ0k2ωm0 

4π kr  
¸ 

i   
+ sin θe

i(kr−ωt) ψ̂ 
(kr )

2  
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B~ 
and  E

~ 
 are written in spherical polar coordinates as 

µ· 
2i  ¸  · 

1  ¸  ¶ 
B~ = −  k

3m0 cos θr̂ + 
(kr )2 −  2 

kr 
+ 
 i 
(kr )2 −  1 

sin θθ̂ ei(kr−ωt) 
4πε0c

2 
(kr )

3 
(kr )

3  

[174], resulting in the r dependence of the time averaged Poynting vector, with constants omit-

ted, to be 
· 1  ¸  · 

i 
¸ 

E~ × ~B∗ ∝  sin
2 
 θr̂ − 

(kr )2 +  i 
(kr )3 +  i sin 2θ

ˆ
θ 

(kr )
5 

(kr )
5  

As only the real parts contribute to the time averaged flow of energy, the terms proportional to 

(kr)2 represent the spin down torque. These terms describe the far field radiation zone and are 1  

parallel with the radius vector r̂ . The imaginary components contribute to the instantaneous 

value of the Poynting vector and are proportional to the near field radiation zone. As there is no 

mechanism for energy absorption in the near field zone, the net average flow is zero (the zone is 

non-radiative) but the instantaneous form of the terms give rise to near field components that 

oscillate as e−iωt. 

4.3. Spherical Pulsar 

The body frame basis vectors ~ei are chosen such that the magnetic axis m~ is aligned with ~e3, 

making χ = 0 for all cases. Equations 4.2.1 - 4.2.4 and 4.2.5 - 4.2.7, with I1 = I2 = I3, simplify 

to 

ω̇1  = KG(x0)|ω|ω2ω3 − KF (x0)|ω|
2
ω1 

ω̇2  = −KG(x0)|ω|ω1ω3 + KF(x0)|ω|
2
ω2 

ω̇3 = 0 

Consider a generalised ~ω(0) such that ω1(0) =6 ω2(0) =6 ω3(0) =6 0. The solutions for the 

angular velocities are affected by a radiating component (far field torque) and a non-radiating 

component (near field torque). As these torques are orthogonal and will act over different 

timescales, ωi is solved for each torque regime separately. 

4.3.1. General Solution: Near Field. |ω | is shown to be constant

d 
3) = 

d |ω|2 

dt
(ω2 

1 + ω2 
2 + ω2 

dt 
= 0 

This is true for all near field solutions. For ω̇3 = 0 ⇒ ω3 = ω3(0), and ω1 and ω2 display a 

quadrature relation 

ω̈1  = KG(x0)|ω |ω3ω̇2 

= − (KG(x0) |ω |ω3)
2
ω1 

⇒ ω1  = A cos(KG(x0)|ω |ω3t + ξ) 

ω2 = A sin(KG(x0)|ω |ω3t + ξ) 
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where A = IωI sin β is a constant of the motion. Under the action of far field torques, A = A(t) 
and decays with time. 

4.3.2. General Solution: Far Field. With ω̇3 = 0 ==>. ω3 = ω3(0), IωI is determined 

= —2KF(x0)IωI
2
(ω

2

1  + ω
2

2 ) 

let u = ω2 
1 + ω

2

2  

= —2KF(x0)(u + ω
2

3)u 

==>. u = 

==>. IωI = 

ω
2 
3 

 

—1 + C1ω
2

3
e
2KF( x

p )w2
3
t  

ω3 

 

q—1 + C1ω
2

3
e
2KF( x

p )w2
3
t  

Substituting u into ω̇1 and ω̇2 and solving for ω1 and ω2 

dIωI
2 

 

dt 

du ==>. 
dt 

(4.3.1) ω1  = 
C2 

VC1ω
2

3
e
2KF( xp )w2

3
t  — 1 

(4.3.2) ω2  = 
C3 

qC1ω
2

3
e
2KF( xp )w2

3
t  — 1 

where 

C1  = 
Iω(0)I2  

ω
2

3
(0)u(0) 

~C2,3  = ω1,2 (0)  C1ω
2

3
(0) — 1 

4.3.3. General Solution: Dynamics. The orthogonal components of the near field ra-

diation zone cause ω~ to precess about m~ in a manner that is indistinct from that precessional 

motion caused by the axisymmetric mass distribution of a rigid body. The form of solutions 

under the action of both torques are the same as the exact solutions determined by Davis and 

Goldstein (1970) [52]. 

There are radiative mechanisms not predicted by the rotating dipole model, which may 

lead to a solution for an aligned rotator where ω3 =6 ω3(0). Consider the case of an aligned 

rotator with ω~ = ω3 ~e3. No braking torque exists according to standard rotating dipole models. 

However, the action of the magnetic field lines, which twist above the polar caps, form a spiraling 

helix. The twisting helix structure, in the case of a spherical or axisymmetric rotating body, can 

lead to a continuous outflow of energy, angular momentum and magnetic flux [100, 108]. This 

radiation should have consequences on the form of braking law used. The twisting structure 

may cause inflation of the field lines, decreasing the magnitude of the initial magnetic field [1]. 

The inflation, and subsequent deflation, of magnetic field lines causes oscillatory behaviour in 

the braking torque, whilst higher order multi-poles would become more prominent in the dipolar 

magnetic field structure. 



as 
2πC1ω
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3
e

2KF(xo)w23t  
ΔPprec =  

/−1 + C1ω
2

3
e

2KF(xo)w2
3
t  

F (x0)  
G(x0)

Δt 
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The precession period is dependent on |ω | under the action of far field torques, and increases 

The precession angle β, the angle between the vectors ~e3 and ~ω, evolves as 
~ 

ω3  
) ~  

β = arccos = arccos( C1ω
2

3
e

2KF(xo)w2
3
t  − 1) = α |ω| 

where α is the angle between m~ and ~ω. 

As χ = 0 for all cases, α = β → 0 for t → ∞. Thus, given any set of initial conditions, the 

spherical pulsar tends toward an aligned rotator. Whilst it may appear to mimic the behaviour 

of the untorqued axisymmetric system, the characteristic time constant is different. 

4.4. Axisymmetric Pulsar 

Choose the body frame basis vectors ~ez such that ~e3 is aligned with the axis of symmetry. 

With I3 > I1 = I2 ⇒ ε'  = 0, equations 4.2.1 - 4.2.4 and 4.2.5 - 4.2.7 become 

(4.4.3) 

and 

(4.4.4) ω̇1 + εω2ω3 = −KF (x0) |ω|
2 
 cos χ(ω1 cos χ − ω3 sin χ) 

(4.4.5) ω̇2 − εω1ω3 = −KF (x0) |ω|
2
ω2 

(4.4.6) ω̇3 = KF (x0)
1  

1 + ε
|ω|

2 
 sin χ(ω1 cos χ − ω3 sin χ) 

respectively. General solutions to Euler’s equations are solved for χ = 0, χ = π
2 and 0 < χ < π

2 
below. 

4.4.1. General Solution: Near Field (χ = 0). Solutions to Euler’s equations are 

ω1 = A cos([KG(x0) |ω| − ε]ω3t + ξ) 

ω2 = A sin([KG(x0) |ω| − ε]ω3t + ξ) 

ω3 = ω3(0) 

The precession periodicity is dependent on both the magnetic and crustal stresses. 

4.4.2. General Solution: Far Field (χ = 0). Solutions to Euler’s equations are 

ω̇3 = 0 ⇒ ω3 = ω3(0) 

while |ω | is given by 
ω3   

~C1ω
2

3
e

2KF(xo)w2
3
t  − 1 

(4.4.1) ω̇1 + εω2ω3 = KG(x0) |ω |ω2 cos χ(ω1 sin χ + ω3 cos χ) 

(4.4.2) ω̇2 − εω1ω3 = −KG(x0)|ω |(ω1 cos χ − ω3 sin χ)(ω1 sin χ + ω3 cos χ) 

ω̇3 = −KG(x0)
1  

1 + ε
|ω |ω2 sin χ(ω1 sin χ + ω3 cos χ) 

|ω| = 
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where 
ω2 

3
(0) + |ω(0)|

2 
 

C1 = 
ω

2

3
(0)|ω(0)|2 

 

ω1 and ω2 have no analytical solution. The rotational behaviour of the aligned axisymmetric 

pulsar is similar to the spherical pulsar since the magnetic and crustal stresses act in the same 

direction. We can therefore expect similar behaviour in the solutions for the decay of ω1 and ω2 

as described by equations 4.3.1 and 4.3.2, although they will oscillate in quadrature due to the 

action of crustal and magnetic stresses. 

4.4.3. General Solution: Dynamics (χ = 0). The total mechanical energy of the pul-

sar decays as |ω|. With ω3 constant, the precession period is dependent on |ω| and increases 

according to 

q2π C1ω
2

3
e

2KF(xo)w2
3
t  − 1 

q[KG(x0)ω3 − ε C1ω2 
3e

2KF(xo)w
2  
3t − 1]ω3 

The behaviour of the precession angle β (= α for χ = 0 ) indicates that the pulsar becomes an 

aligned rotator 

qβ = α = arccos( C1ω2 
3e

2KF(xo)w
2  
3t − 1) 

with ~ω(t) → ω3(0)~e3 as t → ∞. The effect of the axisymmetric mass distribution and near 

field radiation zone causes ω~ to precess about ~e3 (since m~ = m~e3). Although the precessional 

behaviour is similar to that of the spherical pulsar, the precession period is a function of both 

G(x0) and ε. 

Since Pprec ∝ |w |
1 , in the limit χ → 0 the torqued axisymmetric system would satisfy a test 

for precession of the Crab pulsar where an observed 60 second precession periodicity is said to 

be increasing at the same rate as the rotation period [32, 31]. This would require, however, a 

disproportionally high magnetic field strength for the near field radiation zone. 

4.4.4. General Solution: Near Field (χ = π2 ). The solution for |ω| is 
µ 

ε  
¶  

= 2KG(x0)|ω|ω1ω2ω3 1 + ε 

As ε → 0, |ω| remains a constant of the motion. For ε =6 0, |ω| oscillates, but not necessarily 

with a well defined period. 

ω1, ω2 and ω3 have solutions that exhibit quadrature phase relationships. 

ω̈1  = −ε(ω2ω̇3 + ω̇2ω3) · µ 
= εKG(x0)|ω| 

¶  ¸ 
1 

 ω2 
2 − ω2  − ε2

ω
2 
 ω1 3 3 1 + ε 

The term inside the square bracket varies slowly and, to order ε, can be approximated as constant 
Ãs  ! µ 

 1  ¶ 
⇒ ω1 = A cos εKG(x0)|ω| 

1 + ε ω
2

2 
 − ω2  − ε2

ω
2

3
t + ξ 3 

Pprec = 

d|ω|
2 

 

dt 
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In a similar manner, 
Ãs ( )   

+ 
 1  

W2 = B sin εKG(x0)IWI W
2

3  +  1 
1 + ε

W2 

1 + ε
(KG(x0)IWIW1)

2 
 + ε

2
W

2

3t + S 1 

Ã1/  
ε 

2) +  1 W3 = C sin 
1 + ε

KG(x0)IWI(W
2

1  — W2 
1 + ε

(KG(x0)IWIW1)
2
t + S 

4.4.5. General Solution: Far Field (χ = π2 ). The magnitude of the angular velocity 

1 V
e2KF(x0) 

f 
( 
 1 

 
1+ε

ω
2

3+ω
2

2)dτ 

decays as in previous cases. However, there is no analytical solution because of the indefinite 
integral. Substituting IWI into equations 4.4.4 - 4.4.6 gives 

Ẇ1  = —εW2W3 

Ẇ2 = —KF(x0)e-2KF(x0) 
f 
(ω

2  
2+  1  

1+ε ω
2  
3)dτW2 + εW1W3 

Ẇ3 = —KF(x0)e-2KF(x0) 
f
(ω2

2+
1 

1+ε ω2
3)dτ W3 

4.4.6. General Solution: Dynamics (χ = π
2 and 0 < χ < π

2 ). Euler’s equations are 
coupled in three ways. Crustal stresses couple W1 and W2 to order ε and leads to Eulerian 
precession of the kind seen in a torque free system. Similarly, magnetic stresses in the near 
field radiation zone couple the angular velocity components, leading to radiative precession. IWI, 
which in general is not a constant of the motion, couples all the angular velocity components. 
The two precession mechanisms, under circumstances in which the precessional periods are of 
the same order, couple and lead to a complicated behaviour. 

Figures 4.4.1 and 4.4.2 are numerical simulations of a torqued axisymmetric pulsar with 
ε = 10

-9
, r0 = 10

5 
 [m], B0 = 3 x 10

10 
 [T], R = 10

4 
 [m], W3(0) = 10W1,2(0) [rad.s

-1
] and 

π χ = 2 [rad], ensuring sufficient coupling of the Eulerian and radiative precession. To maintain 
this degree of coupling, any change to the magnetic field is constrained by the proportionality 
relationship Δε2

ε2  a  ΔB0  
B0 

. Using the listed values, K ~ 10
-12

. If 3 x 10
10 

 [T] is to be considered 
the upper limit for B0, then the lower limit for a coupled precession period is of the order of 1000 
days. Several authors have raised the possibility of very strong internal and surface magnetic 
fields > 10

10 
 T [133, 170, 179], and the discovery of the pulsars PSR J1718-37184 and PSR 

J1847-0130, with surface magnetic fields of almost 10
10 

 T, suggests that this magnitude may be 
realistic [118]. Weaker magnetic fields, with the same oblateness ε, would not have sufficient 
effect on the precession period, but would still affect the rotational behaviour of the pulsar 
through the magnetic stresses. 

The decay of W3 has superimposed on it an oscillatory behaviour subject to magnetic stresses. 
The precession period, which in general will increase, is dependent on W3 and given by 

4 
Pprec = 

ε t
uu 
v   v u εK 

u
I ω IG(x0)  

εK W2 
1 — W

2

3  + IWI
2  
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where E (k) is a complete elliptic integral of the first kind [126]. This behaviour is observed in 

figure 4.4.1, which shows the precession period increasing with a slight superimposed oscillation. 

The behaviour of ω~ is characteristic of an asymmetric body, with oscillations in all three angular 

velocity components. 

The nature of the precession angle β, shown in figure 4.4.2, is such that ω~ will precess and 

nutate about a vector p~ in the ~e1 − ~e3 plane. Defining the angles p~ − ~e3 = γ and p~ − m̂ = ζ , 

where m~ = m m̂, the nature of precession (Eulerian, radiative or coupled) is indicated by γ << ζ , 

γ >> ζ or γ ¼ ζ respectively. Since γ = γ (ε, K, G(x0), jω j) and ζ = ζ (ε, K, G(x0), jω j), then for 

K = K (t), ζ ! 0 for dK
dt > 0 and γ ! 0 for dK

dt < 0. 

For χ = 
π

2
, the nature of precession is dominated by the ratio ε   

KG(x0) lω l . For ε   
KG(x0) lω l >> 1, 

Eulerian precession dominates with γ << ζ while for KG(x0) lω l << 1, γ >> ζ and radiative ε   

precession dominates. This does not hold for 0 < χ < 
π

2
, nor does it hold at the birth of the 

pulsar when the nature of precession is sensitive to ~ω(0), with m~ and ~e3 acting as attractors in 

a configuration phase space. 

FIGURE 4.4.1. Numerical solution to Euler’s equations for axisymmetric 
pulsar, χ = π2 . 

In the more general case, 0 < χ < 
π

2
, analytical solutions cannot be obtained for Euler’s 

equations. Figure 4.4.3 shows numerical solutions of ωi for χ =
π

12
, 

π

6
,

π

4
,

π

3
,

5π  
12 . By increasing χ 

from 0 to 
π

2
, the ratio of the Eulerian precession period to that of radiative precession changes, 

as does the coupling angle (that angle at which the two precessional periods are equal for a 

generalised ~ω(0)). 

Numerical solutions show that, for χ =
π
12 

 and 
π

6
, the two precessing actions are coupled, 

with the ratio of the associated periods approaching unity. For χ = π3 and 5π  
12 , the pulsar behaves 
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as an asymmetric body dominated by the mass distribution about ie3. The double maxima in the 
superimposed oscillation of cv3 are a result of the offset magnetic axis in, which cvi couples to every 
half precession period. X = 7r

4 results in a precessional mode change, which is highlighted by a 
dramatic increase in the precession period. This is followed by a slow return to the precession 
period function characteristic of that shown for X = 7r

3 and 
57r

12
.  The mode change is precipitated 

by two factors: the increase in G(x0) (due to a decrease in jcv j) and the pulsar evolving towards 
an aligned rotator. Hence, the pulsar shifts from an Eulerian dominated precession to a coupled, 
or radiative, dominated precession. This change occurs over a single precession period and could 
last between a few minutes to a number of years. 

Figure 4.4.4 shows the behaviour of α and Q for the same set of Euler solutions. Depending 
on whether the Eulerian precession and radiative precession are coupled sufficiently (X = 7r

12 
and 

7r

6
) or not (X = 7r

3 and 57r  
12 ), Q will oscillate between decaying minima and maxima or 

will exhibit two alternating minima as the amplitude of oscillation increases respectively. The 
continued oscillation of α and Q indicates that the system will tend towards a minimal state 
of precession. The progression of the system to become an aligned rotator, α ! 0, has a 
complicated dependency on the initial value icv(0), the angle X, the ratio G(x0)  

F(x0) and K. These 
dependencies are examined by further simulation. 

The rotational behaviour of the pulsar is best described by studying the behaviour of icv, 
shown in figure 4.4.5 for 0 < X < 

7r

2
. The magnetic axis ni is indicated by the red line, which is 

superimposed on a set of body axes iez. For all values of X, cvi precesses about a vector pi at an 
angle -y to ie3, or angle C to in. For X = 7r

12 or 
7r

6
, radiative precession dominates. The behaviour 

FIGURE 4.4.2. Numerical solution of β and α for axisymmetric pulsar, 
7r  χ = 2 . 
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of w~ is characteristic of that of an asymmetric body in an unstable (X = π
12 and X = 

π

6
) or stable 

(X = π3 and 5π  
12 ) rotational state (see figure 4.5.5). For X = π

3 and 5π  
12 , the system is dominated 

by Eulerian, or coupled, precession, with ry << . A dramatic reorientation of p~ occurs for 
π X = 
4
, due to a shift from Eulerian dominated precession to a coupled or radiative dominated 

precession. This results in anomalous behaviour in observed timing residuals, and a decrease in 
the precession period is expected afterwards. 

The dependence of the nature of on ~w(0) is due to the numerous energy eigenstates. For 
5π  X = 
12

, the system can still behave as one dominated by radiative precession, that is ry >> , 
if α(0) is sufficiently small. Figure 4.4.6 shows the behaviour of the pulsar for initial conditions 
described by w1(0) = 10w2,3(0). Radiative precession dominates for all values of X. 

The resultant behaviour due to a change in r0, and thus the ratio G(x0)  
F(x0) , is shown in figure 

4.4.7, with a tendency for the system to be dominated by Eulerian precession with an increase 
in r0. Since the long term behaviour of the pulsar is such that jw j, and so x0, decreases, the 
ratio G(x0)  

F(x0) increases with time. This is to be expected since the near field is non-radiative. 

FIGURE 4.4.3. Numerical solution to Euler’s equations for axisymmetric 
pulsar. From top to bottom χ = π 
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4.5. Asymmetric Pulsar 

The body frame basis vectors ~ei are chosen such that I1 < I2 < I3.  Euler’s equations 

are given by equations 4.2.1 - 4.2.4 and 4.2.5 - 4.2.7. It is convenient to define the quantities 

e1 = e − e
I 
 , e2 = ε  

1+ε, and e3 = ε0

1+ε . Following the solution for an untorqued asymmetric body, 

equations 4.2.1 - 4.2.4 and 4.2.5 - 4.2.7 are solved using the same initial conditions for ~cv(0) as 

in section 3.5. 

The solutions to the untorqued asymmetric pulsar indicate that stable precession can take 

place about the maximum and minimum moments of inertia. The angle ry is therefore redefined 

as the angle between p~ and that axis cv~ would preferentially precess about in an untorqued 

system given the initial condition ~cv(0). 

FIGURE 4.4.4. Numerical solution of 0 and a for axisymmetric pulsar. 
From top to bottom, X = π 
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FIGURE 4.4.5. Numerical solution of ω~ for axisymmetric pulsar, ω3(0) = 
10ω1,2(0). From top to bottom, left to right, χ = 

π

12
, 

π

6
, 

π

4
, π3 , 5π  

12 ( ~m indicated 
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FIGURE 4.4.6. Numerical solution of ω~ for axisymmetric pulsar, ω1(0) = 
10ω2,3(0). From top to bottom, left to right, χ = 

π
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12 ( ~m indicated 
by red line). 
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4.5.1.1. Near Field ( CW(0) ≈ W3(0)Ce3). The approximation W3 ≈ W3(0) reduces Euler’s equa-
tions to 

_W1 + E1W2W3 = 

W2 − E2W1W3 = 

W3 = 

Solving 

KG(x0)|W |W2W3 
1 

1 + E, 
KG(x0)|W |W1W3 

0 

W1  = (KG(x0)|W |W3 − E1W3 ) _W2 
I ( l I  

≈  KG(x0)|W |W2 
 E2 +  E1   

3 1 + E,  
−  1 

1+ E, 
KG(x0)|W | − E1E2 W1 

FIGURE 4.4.7. Numerical solution of ω~ for axisymmetric pulsar. From top 
to bottom, left to right, r0 = 5 km, 10 km, 50 km, 100 km. χ = π

4 ( ~m 
indicated by red line). 



4.5. ASYMMETRIC PULSAR 40 

to order ε. It may be shown that the terms inside the square brackets are almost constant, 
( ) 

ε2 +  ε1   ⇒ ω1 = A sin( KG(x0)|ω|  − ε1ε2ω3t + ξ1) 
1 + ε' 

−  1 
1 + ε' 

KG(x0)|ω| 

ω̇2  = ε2ω1ω3 
1 

1 + ε' 
KG(x0)|ω|ω1ω3 

( ) 
ε2ω3 −  1 

= 
1 + ε' 

KG(x0)|ω|ω3  × 
( ) 

ε2 +  ε1 A sin( KG(x0)|ω |  − ε1ε2ω3t + ξ1) 
1 + ε' 

−  1 
1 + ε' 

KG(x0)|ω | 

⇒ ω2  = 

 
 
  

1+ε1 KG(x0)|ω| − ε2 
1  

 

   
× ~ ( I   

KG(x0)|ω | ε2 +  ε1  
1+ε1 −  1  

1+ε1 KG(x0)|ω| − ε1ε2 

( ) 
ε2 +  ε1 A cos( KG(x0)|ω |  − ε1ε2ω3t + ξ1) 

1 + ε' 
−  1 

1 + ε' 
KG(x0)|ω | 

Relaxing the approximation ω̇3 = 0, ω3 is calculated to oscillate slightly. 
4.5.1.2. Far Field ( ~ω(0) ≈ ω3(0)~e3 ). Solving for |ω | 

( ( ) ) 
= −2 KF(x0)|ω|

2 
 ω

2

1  +  1 
1 + ε' 

ω2  + (ε1 − ε2 + ε3) ω1ω2ω3 2 

The term (ε1 − ε2 + ε3)ω1ω2ω3  causes the pulsar to precess. This motion, like the action of 
the near field torques, is non-radiative and acts orthogonal to the radial component of the far 
field torques. The period of oscillation decays, as well as the amplitude, as a result of terms 
dependent on F(x0) only. To obtain this decay envelope, Euler’s equations are separated into 
short term dynamics due to Eulerian precession, and long term spin down. 

d|ω|
2 

 

⇒ dt 

( ) 
≈ −2KF(x0)|ω|

2 
 ω2

1 
+1 

1 + ε' 
ω2

2 

let u = |ω |
2 

 
µ ) 

≈ −2KF(x0)u(ω
2 

1 +  1 3 − u) 
1 + ε' 

⇒ u = 

 

ω
2 
3 

1 + C1ω
2

3
e 

2KF (x
0

)(2+ε
1
)  t 1+ε

1 
 

⇒ |ω| = 
ω3 

V  
3e− 

2KF (x0)(2+ε1)  t 1+ε
1 

 1 + C1ω
2  

ω2 
3
(0)  − |ω(0)|

2 
 

with C1  = |ω(0)|
2
ω

2

3
(0) 

The solution predicts that |ω | → ω3 as t → ∞, with ω1 and ω2 decaying to zero. Since m~ is 
aligned with ω3~e3, the approximation ω̇3 ≈ 0 is valid. Even with this approximation, Euler’s 
equations still remain intractable. It is possible, however, to obtain qualitative understanding 

d |ω |
2 

 

dt 

du ⇒ 
dt 
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as to the decay functions of the angular velocities. Using the same reasoning of approximation, 
we can obtain the decay envelope of the angular velocity components 

==>- ω1  = C1e—KF(x0) lω l2t 

ω2  = C2e 
KF ( x

0
) ,W ,

2
t  

1+E
1  

with C1,2  = ω1,2(0) 

The solution to the angular velocity components are stretched exponentials and describe the 
decaying envelopes of the near field solutions for ω1 and ω2. 

4.5.1.3. Dynamics ( ~ω(0) Pz~ ω3(0)~e3 ). The approximate solution due to the near field torques 
of the asymmetric pulsar is accurate only for certain values of r0. The rotational behaviour of 
the pulsar is dependent on a net moment of inertia ~Inet  , which takes into account the coupling 
of crustal and magnetic stresses. Wasserman (2003) [175] defines ~Inet  as 

f 
d

3
rρ(~r ) 

~
r

2
δij — r ir j

) 
Iij  = 

ρ(~r )  = ρ0(r ) + ρω(r, ~r. 
~
L) + ρB(r, ~r. 

~
B) 

where ρ0(r ) is the spherical profile of an untorqued star, and ρω(r, ~r.
~
L) and ρB(r, ~r. 

~
B) are 

distortions due to rotation and magnetic fields for a two component star. 
An increase in G(x0) due to a reduction in r0 causes a decrease in the magnitude of 

~
Inet , 

which is illustrated by the behaviour of ω~ in figure 4.5.1 where, from top to bottom, left to 
right, r0 = 5 km, 10 km, 50 km and 100 km. For r0 = 5 km, the magnetic stress due to the 
near field torque is such that I2net > I1net > I3net , while for r0 = 50 km and 100 km, we have 
I3net > I2net > I1net . Both cases mimic that of the stable rotator, with the path of ω~ having a flat 
disk like nature due to the absence of radiation along ~e3. For r0 = 10 km , I2net > I3net > I1net . 
This is a transitory period for the pulsar and as the magnetic field decreases, it will evolve into 
one of two possible stable rotations, or local energy eigenstates. 

Solutions for ~ω(0) Pz~ ω1(0)~e1 show the pulsar to behave similarly, with the shift between 
stable and unstable rotational states dominated by r0. 

The same dependency exists on B0, where an increase in the magnetic field results in an 
increase in the magnetic stresses, and so decrease in the magnitude of 

~
Inet. 

4.5.1.4. Near Field ( ~ω(0) Pz~ ω2(0)~e2 ). Given an initial condition, which should lead to rota-
tional instability, solutions are obtained as for an untorqued body 

ω1 = —C1eω2
-\1

ε3(ε1—KG(x0) l ω l)t + C2e—ω2
-\1

ε3(ε1—KG(x0) lω l)t 
r ε3  

(
C1eω2

-\1
ε3(ε1—KG(x0) l ω l)t + C2e—ω2

-\1
ε3(ε1—KG(x0) lω l)t

l 
ω2  = 

ε1 — KG(x0 )Iω I 

4.5.1.5. Far Field ( ~ω(0) Pz~ ω2(0)~e2 ). There are no analytical solutions for the far field case. 
However, the far field torque has the effect of stabilising the rotation about an extreme moment 
of inertia. Both α and β will tend to a small, non-zero angle and will nutate. 
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4.5.1.6. Dynamics ( ~ω(0) ≈ ω2(0)~e2 ). With the dependency of the rotational behaviour on 
~
Inet , the initial value of ~ω(0) no longer plays such a dominant role in the stability of the pulsar, 
shown by the stable rotation in figure 4.5.2 where the effect of magnetic stresses is such that 
I2net > I3net > I1net . 

4.5.2. General Solutions ( χ = 
π

2
). 

4.5.2.1. Near Field ( ~ω(0) ≈ ω1(0)~e1). The qualitative rotational behaviour is much the same 
as for χ = 0. Using the same approximations as for the case χ = 0, the near field solutions are 

FIGURE 4.5.1. Numerical solution of ω~ for asymmetric pulsar. From top 
to bottom, left to right, r0 = 5 km, 10 km, 50 km, 100 km , χ = 0 ( ~m 
indicated by red line) 



4.5.2.2. Far Field ( ~ω(0) ≈ ω1(0)~e1). Since m~ lies along ω1, the approximation ω̇1 ≈ 0 is 
valid. The solutions are calculated to be 
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given by 

ω1  = ω1(0) 
Ãs  µ

ε2 + ε3 
¶ ! 

1   
ω2 ≈ A sin KG(x0)|ω |  

(1 + ε )(1 + ε') + (1 + ε )(1 + ε') 
KG(x0)|ω |  + ε2ε3ω1t  + ξ 

ω3 ≈ 

 

 
1+ε

KG(x0)|ω | + ε3 
1  

 
 

 × r  3 
ε2+ε3  

´   
1   KG(x0)|ω | 

(1+ε)(1+ε,) 
 + 

(1+ε)(1+ε,)KG(x0) |ω |  + ε2ε3 

Ãs  µ 
 ε2 + ε3  

¶  ! 
1   

A cos KG(x0)|ω |  
(1 + ε )(1 + ε') + (1 + ε )(1 + ε')

KG(x0)|ω |  + ε2ε3ω1t  + ξ 

As in previous solutions, the first term is dependent on the free precession of the pulsar, and acts 
orthogonal to the radial action of the far field torques. With a large difference in time scales, 

FIGURE 4.5.2. Numerical solution to Euler’s equations for asymmetric pul-
sar, ω2(0) = 10ω1,3(0), χ = 0 
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the crustal stresses are ignored. Then 

let u = |ω |
2 

 
µ 

1  
¶ 

≈ −KF (x0)u(u − ω2
1) 
 1 + ε' 

+  1 
1 + ε 

du ⇒ 
dt 

⇒ |ω | = 

with C1  = 
ω1(0)2 |ω(0) |2 

|ω| → ω1 as t → ∞, with ω~ aligning with ~m. Recalling that ω̇1 ≈ 0 and approximating 

1+e ≈  1 1  
1+e' 

ω1 

r 1e
− KF (x0)w

2

1
(2+e+e') 

1 + C1ω2 (1+e)(1+e') t 

ω1(0)
2 
 − |ω(0) |

2  

ω2  ≈ 2C2 

 

cos(
√

ε2ε3ω1t + ξ) 3  
1t

´ 
C1ω2 

1 
 + eKF(x0)w2 

1 
1+e 

r
ε3 2C2 ω3 ≈ −  

1+e 
 sin(

√
ε2ε3ω1t + ξ) 

3 

 ε2 C1ω
2

1 + eKF(x0)w2
1t

´ 1 
 

4.5.2.3. Dynamics (~ω(0) ≈ ω1(0)~e1). ω1 oscillates, resulting in an oscillation in the preces-

sion period, but does not decay since m~ = m~e1. A superimposed oscillation occurs on the decay 

envelope of ω2 and ω3. 

FIGURE 4.5.3. Numerical solution of β and α for asymmetric pulsar, χ = 
π 
2

, ω3(0) = 10ω112(0). 
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The behaviour of α and β, described in figure 4.5.3, indicates that the pulsar tends to become 

an aligned rotator with β → π
2 and α → 0. The amplitude of nutation will decay, as will the 

nutation period. 

4.5.2.4. Near Field (~ω(0) ≈ ω2(0)~e2). Following the method used to solve for the untorqued 

asymmetric pulsar in section 3.5, the solutions for the torqued case are 
V  

ε1(ε3+  1 ε1(ε3+  1 
ω1 ≈ −C1eω2 1+ε KG(x0) Jω Jt 

+ C2e—ω2 1+ε KG(x0) J ω Jt 

s 

	

	
 ~  ~ 	 ~ 	 ε3 +  1  

1+ε
KG(x0)|ω |  

1+ε KG(x0) Jω Jt
~  

ω3 ≈  C1eω2 ε1(ε3+  1 ε1(ε3+  1  
1+εKG(x0) Jω Jt 

+ C2e
—ω2 

 

ε1 

with ω2 ≈ constant. The pulsar behaves as in the untorqued case for suitable values of r0. 

4.5.2.5. Far Field (~ω(0) ≈ ω2(0)~e2). No analytical solutions can be obtained for the far field 

torque. 

4.5.2.6. Dynamics(~ω(0) ≈ ω2(0)~e2). ω3 and ω2 oscillate in quadrature, whilst ω1 oscillates 

about a constant value. |ω | decays exponentially with a superimposed oscillation. The effect 

of α and β depends upon the timescale of the near field torques. If it is shorter than that of 

Eulerian precession (γ >> ζ ), α → 0 and β → 
π

2 , becoming an aligned rotator, both with 

decaying nutational amplitudes and periods. If Eulerian precession dominates (γ << ζ ), then 

α → 0 or 
π

2
, depending on initial conditions. 

4.5.3. General Solutions (0 < χ < π
2 ). 

4.5.3.1. Dynamics (~ω(0) ≈ ω3(0)~e3). Equations 4.2.1 - 4.2.4 and 4.2.7 - 4.2.5 have no analyt-

ical solutions for an arbitrary ~m. Numerical simulations of Euler’s equations are shown in figure 

4.5.4. The solutions have similar characteristic behaviour to that of the axisymmetric pulsar in 

figure 4.4.3. This can be explained by the coupling of the magnetic and crustal stresses, which 

cause the axisymmetric pulsar to behave as an asymmetric body. The vector paths of ω~ are 

shown in figure 4.5.5 for χ = 
π

12
, 

π

6
, π4 , 

π
3  and 5π  

12 . The effect of the asymmetry of the pulsar, in 

comparison to the axisymmetric system, is to ‘squash’ the disk-like nature of the vector path 

along the axis of compression, in this case ~e1. Thus, on average,the angle between p~ and ω~ 
decreases for γ < π

4 and increases for γ > 
π

4
. Comparing the vector path of ω~ for χ = π

4 in 

Figures 4.4.5 and 4.5.5, the initial cone of precession (the cone traced out by ~ω) has a smaller 

half angle in the asymmetric case. This half angle is, however, larger in the asymmetric case 

after the precession mode change as γ increases beyond 
π

4
. 

The mode change for χ = π4 is not observed for the initial condition ~ω(0) ≈ ω1(0)~e1, shown 

in figure 4.5.6. The mode change will occur when ~ω(0) is such that the magnetic axis is not 

constrained within a pseudoperiodic loop or circumscription of the path of ~ω. Thus, the mode 

change will not occur in the case ~ω(0) ≈ ω1(0)~e1 as long as χ < β for all time. 

4.5.3.2. Dynamics (~ω(0) ≈ ω2(0)~e2). The effect of the magnetic axis on ~Inet ,  and subsequent 

rotational stability, is seen in figure 4.5.7. For χ = 
π

12
, the magnetic stresses have sufficiently 

adjusted ~Inet  such that I1net < I3net < I2net , resulting in a stable rotational state. With an 

increase in χ, I3net  increases while I1net  decreases such that I1net < I2net < I3net and the system 

returns to an unstable rotational state for χ = 
π

6
, π4 , 

π
3  and 5π  

12 . 
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The simulations indicate mode jumping in ci , resulting in the pseudo-glitch phenomenon 
discussed by Melatos (2000) [126]. 

Under the action of far field torques, free precession will be damped, and the pulsar becomes 
a stable oscillator with -y >> C. For -y << C, 0 —* x as t —* ∞. For -y >> C, 0 increases such 
that c v tends towards an extreme moment of inertia. α oscillates about a non-zero mean, with 
decaying nutational amplitude and period. 

The dependency on r0 is examined by simulation of the systems for different values of r0 at 
x = 0, 

π
4  and 

π

2
, shown in Figures 4.5.8, 4.5.9 and 4.5.10 respectively. For x = 0, the pulsar has 

a stable rotation for r0 = 5 km and 10 km. With an increase in r0, the ratio G(x0)  
F(x0) decreases and 

so the magnitude of Inet  increases, resulting in unstable rotational behaviour for r0 = 50 km and 
100 km. For x = π4 and 

π

2
, the decrease in G(x0)  

F (x0) results in a more unstable rotation. However, 
this instability is pronounced for x = π4 since the magnetic axis will decrease I1net  substantially 
for x = 

π

2
. The decrease in I1net  results in the compression along ve1 of the vector path of cv and 

effectively flattens the disk-like structure. 

FIGURE 4.5.4. Numerical solution to Euler’s equations for asymmetric pul-
sar, W3(0) = 10W1,2(0). From top to bottom, x = π 

12, 
π  
6 , 

π 
4 , 

π 
3 , 

5π  
12 . 
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FIGURE 4.5.5. Numerical solution of ω~ for asymmetric pulsar, ω3(0) = 
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4.6. Torqued Precession in Pulsars? 

Uncontrovertable evidence of torqued precession in isolated pulsars is best described as ‘thin’. 
However, a number of candidates for free precession, such as PSR 1828-11, can be mimicked 
convincingly by a torqued system model. The coupling of Eulerian and radiative precession in 
many circumstances leads to degenerate solutions in the timing residual solution space. Link 
& Epstein (2001) [103] were able to model PSR 1828-11 with a magnetic dipole consisting of a 
near field and far field radiation zone. By including time dependencies in the magnetic dipole 
torque through the addition of a rotating dipole vector, torqued precession can attribute for 
the 1000 day period, as well as the entire observed Fourier spectrum and pulse shape variations 
[150]. 

The two anomalous X-Ray pulsars 1E 1048.1-5937 and 1E 2259+586, which are known to 
spin down irregularly, can be modeled as isolated axisymmetric neutron stars with magnetic 
dipoles of surface field strength ≥ 10

10
T [125]. The high magnetic field modeled here should 

not be used to exclude most observed radio pulsars since asymmetric modeling of the magnetic 
field can lead to a decrease in the expected field strength. 

FIGURE 4.5.7. Numerical solution to Euler’s equations for asymmetric pul- 
sar, W2(0) = 10W1,3(0). From top to bottom, X = 

7

12
, 

7

6
, 

7

4
, 73 , 57  
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The Crab pulsar, with a reported 60 second precession period [32], has been fitted with a 
simple free precession model. A torqued precessional model, with a very high surface magnetic 
field ≥ 10

14 
 T, could reproduce the observed precession period. 

With the long dataspan available at HartRAO, a number of pulsars are expected to be ideal 
candidates to test against precession models. Although simple fitting has been attempted in 
the past [37], only free precession has been considered. Due to the degenerate timing residual 
solution space, it should be possible to fit a torqued precessional model equally well. This would 
provide a more satisfactory dynamical solution to the behaviour of pulsars. 

4.7. Summary 

The analytic and numerical analysis of torqued precession describes the rotational behaviour 
of braking pulsars, and the dependency of precession on critical physical parameters. The use of 

FIGURE 4.5.8. Numerical solution of W~ for asymmetric pulsar. From top 
to bottom, left to right, r0 = 5 km, 10 km, 50 km and 100 km. X = 0, 
W2(0) = 10W1,3(0). 
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a magnetic dipole model introduces a second point of attraction in the configuration phase space, 
which increases the dependence of precessional behaviour on initial conditions. The coupling of 
magnetic and crustal stresses leads to rotational behaviour characteristic of asymmetric bodies, 
and is not unique for a given set of parameters. 

Using an upper limit of 10
10 

 T for B0 results in coupled precessional periods of the order 
of 1000 days, with ε ≈ 10

−9
. Shorter periods would require arguments for stronger surface 

magnetic fields and near field radiation zones, which do not alter the magnitude of the far field 
torque. 

The torqued spherical system causes a precessional motion indistinct from that of the un-
torqued, axisymmetric pulsar. Clearly defined analytical solutions show that the pulsar becomes 
an aligned rotator for all initial conditions. 

FIGURE 4.5.9. Numerical solution of W~ for asymmetric pulsar. From top 
to bottom, left to right, r0 = 5 km, 10 km, 50 km and 100 km. X = 

π

4
, 

W2(0) = 10W1,3(0). 
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The rotational behaviour for the torqued axisymmetric pulsar is similar to that of the un-
torqued axisymmetric system. For x = 0, the pulsar has a precession period dependent on both 
crustal and magnetic stresses. In general, the energy eigenstate is one of precession. The nature 
of precession, Eulerian or radiative, is dependent on K, r0, x, Ic  and cv(0) in a complicated 
manner. The action of the far field torque causes the rotational behaviour of the pulsar to 
tend towards stability, and to become an aligned rotator. The resultant time dependency in the 
precessional behaviour can cause a change in the nature of precession if the pulsar is not ini-
tially dominated by radiative precession. This modal change causes anomalies in the precession 
period, and can result in the pulsar becoming unobservable. 

The rotational stability of the asymmetric body, and by argument all possible cases of 
torqued precession, is shown to be dependent on the net inertial effect of magnetic and crustal 
stresses. The magnetic field decreases the magnitude of cInet ,  dependent on x, K and r0. In an 

FIGURE 4.5.10. Numerical solution of W~ for asymmetric pulsar. From top 
to bottom, left to right, r0 = 5 km, 10 km, 50 km and 100 km. X = π

2 , 
W2(0) = 10W1,3(0). 
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unstable rotational state, the far field torques act to stabilise the rotation about net maximum 
or minimum moment of inertia. With the decay of the magnetic field, the pulsar may be subject 
to two phases of rotational instability in its lifetime. This instability results in two possible 
phenomenon: the intermittent visibility of the pulsar beam, and observation of both magnetic 
poles, which do not necessarily have the same geometry. 

Much like the axisymmetric case, the precessional mode change is characteristic of the be-
haviour of the torqued asymmetric pulsar. This result is used to best describe the effect of the 
asymmetry on ω~ where the vector path of ω~ is compressed along the axis of crustal and magnetic 
compression. 

Given the degenerate solution space for the fitting of precession models, the availability of 
evidence for torqued precession is minimal. With the long, uninterrupted data spans required, 
the sample of HartRAO pulsars may best provide a candidate to which a torqued precession 
model could be fitted. 



φ̇  = 
sin θ 

ω1 sin ψ + ω2 cos ψ 
(5.1.1) 

CHAPTER 5 

Timing Residuals 

5.1. Introduction 

Pseudo-cyclic modulation in the timing residuals of a subset of the pulsars monitored at Har-

tRAO is speculated to be a result of torqued precessional behaviour. The period of modulation 

would require an oblateness of the order of 10
−9

. With the possibility of crustal deformation 

due to spin down and a magnetic field, precession is expected in a large number of pulsars. 

Calculation of timing residuals requires the use of the Euler angles φ, θ and ψ, which are 

defined by expressing the angular velocity ω~ as the time derivative of the three independent 

rotations 

ω~ = ω1 ~e1 + ω2 ~e2  + ω3 ~e3 = φ
˙  ~
E3 + 

˙
θ~n1 + 

˙
ψ~e3 

where 
~
E3, ~n1 and ~e3 are the relevant basis vectors in an inertial frame, nodal frame and body 

frame respectively. In the body’s frame of reference (see appendix A.2), 

ω1 = φ
˙ 
 sin ψ sin θ + θ

˙ 
 cos ψ 

ω2 = φ̇ cos ψ sin θ — θ
˙ 
 sin ψ 

ω3 = φ
˙

cos θ + ψ̇ 

Solving for φ̇ ,  θ̇  and  ψ
˙ 
 gives 

(5.1.2) θ
˙ 
 = ω1 cos ψ — ω2 sin ψ 

ψ̇ = ω3 — 
ω1  sin ψ + ω2 cos ψ 

(5.1.3) 
tan θ 

where numerical integration produces the Euler angles. To ensure numerical stability, the in-

tegration step size should be a small fraction of the pulsar rotation period. The number of 

rotations per day is of the order of 10
6
. With observed precession periods of the order of 1000 

days, the number of calculated points would exceed 10
9
. The computer processing power to 

perform this calculation is not available. However, since the long term spin down of the pulsar is 

not required for the calculation of timing residuals, which produces an angle —π < Δ4b < π, the 

Euler angles are expressed in terms of trigonometric functions. These could take on a different 

form for the untorqued and torqued cases. 

The measured phase modulation of the pulsar signal for θ > χ is described by 
( 

1  ~ 
 

cos ψ tan  χ   
)) 

π 
(5.1.4) Δ4b = 4b — (φ — 2 ) = arctan cos 

θ tan θ — sin ψ tan χ 

54 
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where 41) describes the azimuthal angle of the magnetic axis m~ [83]. For θ < χ, the timing 
residuals are 

( 
(cos  θ — 1) sin ψ sin χ — sin θ cos χ

¶ 
(5.1.5) Δ41) = 41) — (φ + ψ ) = arctan cos 

ψ sin χ + (cos θ cos ψ sin χ — sin θ cos χ ) tan ψ 

The terms (φ — 
π

2
) and (φ + ψ ) are angular displacements at a time t resulting from two dif-

ferent periods for the pulsar. The pulsar period is dependent on whether the angle of magnetic 
inclination χ is greater than or less than the wobble angle θ. 

5.2. Calculation of Phase Residuals: Untorqued Pulsars 

For torque free motion, we assume that the angular momentum vector J
~ 
 is aligned with 

~
E3. 

The Euler angles for this case are [175] 

(5.2.1) 

(5.2.2) 

(5.2.3) 

J2  cos ψ = 
J sin θ 

J1   sin ψ = 
J cos θ µ

J3 
 ¶ 

θ = arccos 
J 

FIGURE 5.2.1. Calculation of ΔΦanalytical — ΔΦnumerical for an asymmetric 
pulsar. 

Phase residuals Δ41)numerical 
 and 

 Δ41)analytical  were calculated for an untorqued asymmetric 
pulsar, with 0 < χ < 

π

2
, using two different methods. Δ41)numerical  were calculated using Euler 

angles obtained by numerical integration of equations 5.1.1-5.1.3. Δ41)analytical  were calculated 
using the trigonometric expressions of the Euler angles in equations 5.2.1-5.2.3. Figure 5.2.1 
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shows Δ4banalytical − Δ4bnumerical. The residual error is due to the limited degree of accuracy of 

the numerical simulation (10
−4

) and a constant phase offset between the two surfaces. 

5.2.1. Axisymmetric Pulsars. Following the format of published results on pulsar pre-

cession [164, 175], figure 5.2.2 are the phase residuals Δ4b, ΔP = d(Δt)
dt  (where  Δt = ΔΦ  

2π × 
Pulsar Period) and d(ΔP)  

dt  predicted for an axisymmetric, untorqued pulsar, e = 10
−9 

 and 

0(0) = 0.1405 rad. Semi-analytic solutions have been discussed by Jones & Andersson (2001) 

[83].  For the case 0 << x, Δ4b = −  θ  
tan χ cos o, while for 0 >> x, Δ4b =  χ  

sin θ cos o, shown in 

figure 5.2.3. 

The precession period scales linearly with the oblateness parameter e. 

5.2.2. Asymmetric Pulsars. As no analytical solutions exist for the asymmetric case, we 

rely on numerical simulations to provide a generic template from which timing residuals can be 

fitted. Given the inherent similarity in timing residuals of the untorqued asymmetric case and 

torqued case, only two categories are considered: that of the untorqued axisymmetric pulsar, and 

the torqued pulsar (which, due to the coupling of crustal and magnetic stresses, has a rotational 

behaviour characteristic of an asymmetric body). 

5.3. Calculation of Phase Residuals: Torqued Pulsars 

Calculation of timing residuals for the untorqued case required the assumption that J~ is 

aligned with 
~
E3. In the torqued case, this approximation holds provided the spin down timescale 

is far greater than that of the precession and that, given the radial nature of the far field radiation 

torque, J
~ 
 will decrease in magnitude only. Over a single precession period, these approximations 

are valid. 

As discussed in the previous section, calculation of timing residuals is performed for the 

asymmetric pulsar only. The timing residual model takes into account variations in the braking 

torque due to precession, and subsequent variations in P
˙
. 

5.3.1. Asymmetric Pulsars. Calculations have revealed four generic templates from which 

timing residuals can be fitted and explained by a torqued precessional model. Figures 5.3.1, 

5.3.2, 5.3.3, 5.3.4, 5.3.5, 5.3.6, 5.3.7 and 5.3.8 are timing residuals for 0(t) < x, 0(t) > x (stable 

rotation), 0(t) < x and 0(t) > x (unstable rotation). The terms stable and unstable rotation 

are used loosely, and simply imply a value of modulo[0(0), 
π
2  ] ≈ 0 for stable rotation, whilst for 

unstable rotation this does not hold true. Given the degeneracy of the timing residual solution 

space, no automatic algorithms exist to obtain parameters from the data. In general, models 

and simulations predict that the amplitude of phase residual scales with 0(0), the shape of the 

phase residual is determined by x, whilst the precession period is determined by B (including 

the coupling distance between the near field and far field structures) and the oblateness param-

eters e and e
'
. To maintain constant coupling between the Eulerian and radiative precession, 

the period scales as ΔB
B ∝  Δε2 

ε2 . 

The timing residuals for torqued (and untorqued) pulsars have been calculated for an oblate 

body. The characteristic precessional behaviour is reversed in time for a prolate body. 
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FIGURE 5.2.2. Timing residuals for an untorqued, axisymmetric pulsar, 
0(0) = 0.1405 rad. From top to bottom are Phase, AP and d(AdtP). 
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FIGURE 5.3.1. Timing residuals for a torqued, asymmetric pulsar, 0(0) = 

0.1405 rad. Top and bottom figures are Phase and AP respectively. 
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FIGURE 5.3.3. Timing residuals for a torqued, asymmetric pulsar, 0(0) = 
1.4716 rad. Top and bottom figures are Phase and AP respectively. 
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FIGURE 5.3.5. Timing residuals for a torqued, asymmetric pulsar, OM = 
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FIGURE 5.3.8. Timing residuals for a torqued, asymmetric pulsar, OM = 
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0(t) is not constant and, in general, oscillates between two values 01 and 02. For the case 

01 < X < 02, calculation of timing residuals leads to a discontinuous piecewise function, shown 

in figure 5.3.9. As X and 0(t) intersect, there is a sudden change in periodicity of the pulsar, 

from φ
˙ 
 to ψ

˙ 
 + φ

˙ 
 and vice versa. This leads to discontinuous jumps in the phase residual. 
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FIGURE 5.3.9. Phase residual for a torqued, asymmetric pulsar, 0(0) = 
0.4405 rad. Top figure is the phase residual. Bottom figure indicates 0(t) 
and χ. 
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5.4. Calculation of Observed Phase Residuals 

Phase residuals are calculated at HartRAO by subtracting an ephemeris model from mea-
sured times of arrival 

~ ~ 
(5.4.1) Δ4b = 4b — 4b0 + ν0(t — t0 ) + 2 

1 ˙
ν(t — t0)

2 
 + 6 

1 ¨
ν(t — t0)

3 
 = 4b — 4bspindown 

where 4b is the measured phase, 4bspindown  is a third order polynomial describing the spin down 
of the pulsar. This polynomial (ephemeris) is updated after each observation. 

Given that the standard spin down model does not allow for an oscillating P
˙
, the calculation 

of a predicted time of arrival uses a mean value < Ṗ > about which Ṗ
 
 oscillates. This trend would 

appear in the residual data after subtraction of 4bspindown.  Were this trend to be subtracted, 
careful consideration would be needed so as not to remove ‘real’ precessional effects. In general, 
the changes in the period derivative are of the order of 10

−17 
 for a normal pulsar. The effect 

of this varying torque on phase residuals has been studied numerically by Melatos (1999) [125]. 
Using a dipole model, Jones & Andersson (2001) [83] determined the effect of a varying torque 
on the phase residuals of an axisymmetric pulsar, θ < χ, to be 

Δ4b ~ 2κω
3 
 sin χ cos χ sin ψ θ (5.4.2) 

ψ̇ 

where κ is the torque function of the spin down law in equation 2.2.1, and ω the spin angular 
frequency. Using equation 5.4.2 as a simple approximation, the effect of a varying torque on 
timing residuals for a torqued asymmetric pulsar with θ(0) = 0.1405 is shown in figure 5.4.1. 
On average, the magnitude of phase residual is 10% of that of the calculated residual in figure 
5.3.1. It should be taken into account that the observed residuals will include this effect of Ṗ 

modulation. 

5.5. Candidate Precessing Pulsars in the HartRAO Catalogue 

Figures 5.5.1, 5.5.2 and 5.5.3 are the observed phase residuals of 10 candidate precessing 
pulsars in the HartRAO catalogue. 

The residuals diverge for more recent epochs because of the method used to derive the 
ephemeris model. PSRs B0736-40, B0740-28 and B0959-54 in figure 5.5.1 and PSR B1358-63 
in figure 5.5.2 are the most effected by this divergence. For the purposes of this thesis, residual 
data affected by this ‘edge effect’ is excluded from the fitting. 

Offset points from the main locus of points are due to errors in the predicted times of arrival 
and timing noise. 

Care was taken to ensure that the sample of candidates was selected on the basis of intrinsic 
periodicity, rather than a systematic effect resulting from polynomial fitting. 
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5.6. Precession Fits 

Calculated residuals were fitted to data by the adjustment of 6 parameters, namely 

B → magnetic field strength 

P fp → Precession parameter such that ε = 
Pfp 

~
J3 

 ~ 

θ(0) → arccos 
J 

χ → magnetic axis inclination 

z → I(1) = I(2) × (1 − z × ε) 

pro → {−1; 1} = {prolate; oblate} 

In most cases, z = 1 and pro = 1 (oblate pulsar). I(3) is taken to be 1 × 10
38 

 kg.m
2
. 

Due to the multi-variate solution space and limited computer processing power, data fit-

ting was not performed using an automatic least-squares method. Where possible, however, a 

modified least-squares method was used with manual manipulation of certain parameters. Al-

ternately, fitting was performed entirely manually. Using this procedure, full optimisation of 

variables was not possible. A primary goal was set to replicate the phenomenology of observed 

FIGURE 5.4.1. Phase residual of torqued asymmetric pulsar, θ(0) = 0.1405 
rad, due to varying braking torque only. 
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FIGURE 5.5.1. Phase residuals of, from top to bottom, PSRs B0736-40, 
B0740-28, B0835-41 and B0959-54. 
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FIGURE 5.5.2. Phase residuals of, from top to bottom, PSRs B1323-58, 
B1323-62, B1358-63 and B1557-50. 
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precession behaviour (precession profile) rather than to provide an exact fit to timing residual 
data. 

As some precession profiles show evidence of a linearly decreasing trend, a 1st order polyno-
mial fit is included in the precession model to force stationarity. The measured residuals were 
fitted using a piecewise, least-squares cubic spline to determine values for ΔP and d(ΔP )  

dt  . 

5.6.1. B1642-03. The timing residuals exhibit convincing evidence of precession in this 
pulsar, and it has previously been identified by other authors as a precession candidate [156]. 
PSR B1642-03 has been fitted by manual adjustment of parameters, listed in table 5.6.1. Derived 
pulsar parameters are listed in table 5.6.2. The results of the fitted model are shown in Figures 
5.6.1, 5.6.2 and appendix B.1. 

The composite ‘double-hump’ shape in the measured phase residual profile, shown in figure 
5.6.1, implies a certain degree of asymmetry with χ > θ(0) (see figure 5.3.1). The larger 
amplitude of the leading ‘hump’, in comparison to the lagging ‘hump’, is typical of a prolate 
body. The calculated < P

˙ 
 > is an order of magnitude greater than the published value of 

1.7777 × 10
−15 

 (listed in chapter 2). This could be due either to an incorrect coupling distance 
between the near field and far field radiation zones (x0 is kept constant for fitting), or non-dipolar 
magnetic field structures. 
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FIGURE 5.5.3. Phase residuals of, from top to bottom, PSRs B1642-03 and 
B1749-28 
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FIGURE 5.6.2. Manual fit of observed timing residuals of PSR B1642-03. 
From top to bottom are spectrums of Phase Residual, ΔP and d(ΔP )  
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To determine whether the torqued precession model could provide a good fit of timing 
residual data, a Chi-squared surface was calculated. Due to the computing power required, only 
two parameters were fitted at a time, namely [B — Pfp] and [ χ — 0(0)]. While not entirely 
mutually exclusive, the dominant effect of loci in the [B — Pfp] plane is to change the precession 
period, whilst loci in the [ χ — 0(0)] plane change the precession profile shape. This produced 
two surfaces, shown in figure 5.6.3, for constant [χ — 0(0)] and constant [B — Pfp]. The large 
deviations from the moderately flat surfaces are a result of calculated phase residuals for 0(t1) < 
χ < 0(t 2 ).  Simulation of both sets of parameters shows no evidence of an obvious global 
minimum in the Chi-squared surfaces. Given the restricted subspace of parameters used in the 
simulations, it may be that the fit could be improved by a more rigorous search in the entire 
parameter space. Limited computing resources do not allow this. Furthermore, edge effects, an 
inaccurate ephemeris and the effect of P

˙ 
 induced timing residual modulations (see section 5.4) 

could all place a limit on the achievable RMS error. 
The best fit parameters obtained from the simulations were used to attempt a further fit of 

the timing residual data, shown in Figures 5.6.4 and 5.6.5. The fitted parameters and pulsar 
parameters are shown in tables 5.6.3 and 5.6.4. 

TABLE 5.6.1. PSR B1642-03 fitting parameters 

Parameter Value 
B 1.1 x 10

9 
 [T] 

Pfp 2100 [days] 
0(0) 0.937 [rad] 
χ 80.1 [deg] 
z 1 

pro -1 (prolate) 

TABLE 5.6.2. PSR B1642-03 derived pulsar parameters 

Parameter Value 
ε —2.136740298456790 x 10

−9 
 

[
~
I] [1.00000000427348, 1.00000000213674, 1] x 10

38 
 [kg.m

2
] 

[ ~ω(0)] [9.23420107691926, 9.23420107691926, 9.59774907941657] [rad.s
−1

] 
< P˙  > 6.2544 x 10

−14 
 [s.s

−1
] 

TABLE 5.6.3. PSR B1642-03 best fit fitting parameters 

Parameter Value 
B 2.1 x 10

9 
 [T] 

Pfp 1900 [days] 
χ 83.1 [deg] 

0(0) 0.937 [rad] 
z 1 

pro -1 (prolate) 
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The phase residual spectrum, shown in figure 5.6.5, seems to provide a better fit to the 
measured data than the spectrum shown in figure 5.6.2. However, the amplitude of phase 
residual, shown in figure 5.6.4, is significantly smaller than the measured data. The model does 
not allow for a simple increase in the amplitude without considerable alteration to the shape of 

FIGURE 5.6.3. Chi-squared surfaces for fitting of observed timing residuals 
of PSR B1642-03. Top figure is for constant χ = 80.1 [deg], θ(0) = 0.937 
[rad], middle figure is for constant B = 1.1 × 10

9 
 [T], Pfp = 2100 [days] 

with a closeup in the bottom figure. 
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FIGURE 5.6.4. Best fit of observed timing residuals of PSR B1642-03. From 
top to bottom are Phase Residual, ΔP and d(ΔP )  

dt 
 . 
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FIGURE 5.6.5. Best fit of observed timing residuals of PSR B1642-03. From 
top to bottom are spectrums of Phase Residual, ΔP and d(ΔP )  
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the profile. The larger amplitude seen in the measured data could be a result of P˙  modulation 
(see figure showing calculated values for P˙  in appendix B.1). 

5.6.2. B1323-58. Fits of observed timing residuals of PSR B1323-58 using a torqued pre-
cession model are shown in Figures 5.6.6 and 5.6.7, and appendix B.2. Fitted and derived pulsar 
parameters are shown in tables 5.6.5 and 5.6.6. 

The observed phase residuals in figure 5.6.6 show a ‘double-humped’ profile, which implies 
asymmetry in the pulsar, with χ > 0(0) (See figure 5.3.1). The increase in amplitude of the 
observed residuals for the epoch after MJD 50000 is unexplained by the precession model. A 
longer data span will indicate whether this is the result of an inaccurate ephemeris, or a real 
effect. Following the same procedure as used in section 5.6.1, the search for minimums in the 
Chi-squared surfaces for the [B — Pfp] and [χ — 0(0)] parameters resulted in best fits of the 
observed timing residuals, shown in appendix B.2. Compared to tables 5.6.5 and 5.6.6, the best 
fit procedure resulted in the adjustment of the parameters B = 0.6 x 10

8 
 [T], χ = 89.99 [deg] 

and < P
˙ 
 >= 1.835 x 10

-16 
 [s.s

-1
]. 

5.6.3. B0736-40. Figures 5.6.8 and 5.6.9, and appendix B.3, are the results are a best fit 
procedure of observed timing residuals of PSR B0736-40. The Chi-squared surfaces, adjusting 
the parameters [B — Pfp] and [χ — 0(0)], are shown in appendix B.3. 

TABLE 5.6.4. PSR B1642-03 best fit derived pulsar parameters 

Parameter Value 
ε —2.361660329873295 x 10

-9  

[
~I] [1.00000000472332, 1.00000000236166, 1] x 10

38
] [kg.m

2
] 

[ ~ω(0)] [9.23420107582665, 9.23420107582665, 9.59774908151903] [rad.s
-1

] 
< P

˙ 
 > 2.29 x 10

-13 
 [s.s

-1
] 

TABLE 5.6.5. PSR B1323-58 fitting parameters 

Parameter Value 
B 2.6 x 10

8 
 [T] 

Pfp 49000 [days] 
χ 89.89 [deg] 

θ(0) 0.022 [rad] 
z 100 

pro 1 (oblate) 

TABLE 5.6.6. PSR B1323-58 derived pulsar parameters 

Parameter Value 
ε 1.129041877345285 x 10

-10  

[
~I] [0.999999988596677, 0.999999999887096, 1] x 10

38 
 [kg.m

2
] 

[ ~ω(0)] [0.20447143599235, 0.20447143599235, 13.14180102584652] [rad.s
-1

] 
< P

˙ 
 > 3.446 x 10-15[s.s-1] 
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FIGURE 5.6.6. Manual fit of observed timing residuals of PSR B1323-58. 
From top to bottom are Phase Residual, ΔP and d( ΔP )  

dt 
 . 
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FIGURE 5.6.7. Manual fit of observed timing residuals of PSR B1323-58. 
From top to bottom are spectrums of Phase Residual, ΔP and d(ΔP)  
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The amplitude of the observed phase residual, as well as the symmetric properties of the 
precession profile, in figure 5.6.8 cannot be reproduced by either the torqued or untorqued 
precession model. The observed phase residual behaviour is highly likely to be an artefact of 
polynomial fitting. 

The Fourier spectrum of the fitted timing residuals show strong harmonic structure in phase, 
ΔP and d(ΔP)  

dt  , whereas the observed data has wide, sloping spectrums. The fundamental 
frequency is accurately reproduced, but higher harmonics are distorted in the measured data 
due to timing noise. 

TABLE 5.6.7. PSR B0736-40 best fit fitting parameters 

Parameter Value 
B 1.5 × 10

9 
 [T] 

P fp 3800 [days] 
χ 12.00 [deg] 

0(0) 0.096 [rad] 
z 1 

pro 1 (oblate) 

TABLE 5.6.8. PSR B0736-40 best fit derived pulsar parameters 

Parameter Value 
ε 1.084837148677951 × 10

−9 
 

[
~
I] [0.999999997830326, 0.999999998915163, 1] × 10

38 
 [kg.m

2
] 

[~ω(0)] [1.13587499860042, 1.13587499860042, 16.68158357164555] [rad.s
−1

] 
< P

˙ 
 > 1.258 × 10

−14
[s.s

−1
] 

5.6.4. B1557-50. Observed timing residuals of PSR B1557-50 were fitted by the manual 
adjustment of parameters, shown in Figures 5.6.10 and 5.6.11, and appendix B.4. Fitting and 
derived pulsar parameters are shown in tables 5.6.9 and 5.6.10. The ‘triple-humped’ profile in 
the observed timing residual, shown in figure 5.6.10, cannot be explained by the current version 
of the torqued precession model. The use of a shorter data span, which includes data from 
earlier epochs up to MJD 50200, was used for fitting procedures. 

TABLE 5.6.9. PSR B1557-50 fitting parameters 

Parameter Value 
B 2.25 × 10

8 
 [T] 

P fp 4460 [days] 
χ 89.84 [deg] 

0(0) 0.010 [rad] 
z 1 

pro 1 (oblate) 
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FIGURE 5.6.9. Manual fit of observed timing residuals of PSR B0736-40. 
From top to bottom are spectrums of Phase Residual, ΔP and d(ΔP )  

dt 
 . 
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FIGURE 5.6.10. Manual fit of observed timing residuals of PSR B1557-50. 
From top to bottom are Phase Residual, ΔP and d(ΔP )  

dt 
 . 
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FIGURE 5.6.11. Manual fit of observed timing residuals of PSR B1557-50. 
From top to bottom are spectrums of Phase Residual, ΔP and d(ΔP )  
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5.6.5. B0740-28. Observed timing residuals of PSR B0740-28 cannot be fitted with a 
torqued precession model. Both the amplitude, and shape of profile of the observed phase 
residuals (in particular, the concave slope between MJD 49000 and MJD 50000 followed by a 
convex slope between MJD 50000 and MJD 51000), are unexplained by the model. 

5.6.6. B0845-41. Due to large edge effects, the observed timing residuals of PSR B0835-41 
cannot be fitted at this time. 

5.6.7. B0959-54. The shape and amplitude of the observed phase residual time series of 
PSR B0959-54 cannot be explained by the precession model. 

5.6.8. B1323-62. The observed phase residuals of PSR B1323-62 is highly contaminated 
with timing noise. There is evidence of an incorrect ephemeris, and so the data cannot be fitted 
with a precession model. 

5.6.9. B1358-63. While observed timing residuals during the epochs MJD 47000-50000 
and MJD 50000-52000 of PSR B1358-63 can each be explained by the precession model (in both 
amplitude and profile shape), the data span cannot be fitted in its entirety. The apparent edge 
effect could either be real timing residual behaviour, or a result of an inaccurate ephemeris due 
to a shortened dataspan. 

5.6.10. B1749-28. The profile shape of the observed phase residuals of PSR B1749-28 
cannot be explained by the precession model. 

5.7. Conclusion 

Of the candidate pulsars, precession models give plausible fits to the timing residuals of PSRs 
B1642-03, B1323-58, B0736-40 and B1557-50. The observed timing residuals of PSR B1642-03 
were fitted by manual adjustment of the fitting parameters. A least-squares optimisation of 
the parameters [B − Pfp] and [χ − θ(0)] resulted in ‘flat’ Chi-squared surfaces. It is therefore 
arguable whether using an automatic procedure will result in a better fit of the observed timing 
residuals. A comparison of the spectral fits do show better agreement with the measured data. 
The harmonic structure in the fitted precession model is buried in the measured data where 
wide, sloping spectral lines are dominant. This is due to noisy and insufficient dataspans. The 
manual adjustment of fitting parameters produced a better replication of the phenomenology of 
precession in the observed timing residuals. 

TABLE 5.6.10. PSR B1557-50 derived pulsar parameters 

Parameter Value 
ε 4.998153017433773 × 10

−10  

[
~I] [0.999999999000369, 0.999999999500185, 1] × 10

38 
 [kg.m

2
] 

[ ~ω(0)] [0.23067444456833, 0.23067444456833, 32.62120535867313] [rad.s
−1

] 
< P

˙ 
 > 6.404 × 10−15[s.s−1] 
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Although the manual adjustment of parameters for the fitting of observed phase residuals 
of PSR B1323-58 displayed a ‘double-humped’ precession profile, the best fit model produced 
a single frequency modulation. Spectral fits of the best fit model compare more favourably to 
the measured data, but it cannot explain the increasing and decreasing amplitude of observed 
phase residuals. This change in amplitudes could be a result of variations in P˙. 

The fitting of observed timing residuals of PSR B0736-40 was performed using a best fit 
procedure. The precession profile in the observed phase residuals cannot be explained by a 
torqued, or untorqued precession model and is most likely the result of post-observation data 
processing. 

Manual fitting of observed timing residuals of PSR B1557-50 reproduced accurate frequencies 
in the Fourier spectrums for phase, ΔP and d( ΔP)  

dt  . 
PSRs B1642-03, B1323-58 and B1557-50 appear to be good candidates for the fitting of a 

torqued precession model. The continued monitoring of these pulsars will produce more accurate 
ephemeri and increased dataspan, allowing for the observation of long term precession behaviour. 
The use of an HPC (High Performance Computer) cluster allows for multi-variate optimisation 
of the model, which is presently limited by the degree of optimisation possible. 



CHAPTER 6 

Pulsar Timing 

6.1. Introduction 

Due to intermittent technical problems with the current pulsar instrument, and future re-

search requirements highlighted in previous chapters, the continuation of the pulsar monitoring 

program at HartRAO is becoming increasingly dependent on the construction of a new digital 

pulsar processor. This chapter argues for the design of a new instrument, based on the architec-

ture of existing processor designs and operation parameters chosen to optimise the detection of 

pulsars contained in the Australia Telescope National Facility (ATNF) Pulsar Catalogue [81]. 

6.2. Dispersion, Scattering and De-Dispersion 

6.2.1. Interstellar Medium and Receiver Effects. Much of the underlying mathemat-

ical detail of this section can be found in Hankins & Rickett (1975) [76] and Backer et al (1990) 

[15]. 

The tenuous electron plasma between an observer and a distant radio pular source has two 

dominant effects on the received pulsar signal. Firstly, inhomogeneities in the medium cause 

interstellar scattering. The resulting multiple signal paths spread the pulsar signal out in time, 

causing temporal modulations in the power spectrum of the signal as well as a shift in the time 

of arrival. Secondly, the free electrons subject the signal to non-linear dispersion. 

Examining the effect of dispersion in the Fourier domain, the pulsar signal is represented as 

narrow band signal upon which the interstellar medium acts as a dispersive filter with transfer 

function 

H(v) = exp−iκ (")z 

where z is distance and K(v) is obtained from the dispersion relation of a tenuous plasma. 

In the time domain, the spreading of the signal is modeled by convolution of the pulsar signal f +∞ with the impulse response function h(t) =  1  −∞ H(v)e
i2π"t

dv = F
−1

{H(v)J. This results in 2π 
a differential group delay between signals at two frequencies v1 and v2 

DM ~
v−2 (6.2.1) Δt =  1  _ v

−2~ 
[s] 

2.41 x 10−4 2 

where the frequencies v1,2  are in MHz and DM = 
f 

nedl is the dispersion measure [76]. 

Time smearing of the detected pulse signal across a fixed receiver bandwidth B (in MHz) is 

(6.2.2) ΔtDM = 8.3 x 10
3 
 x DMv

−3
B [s] 

where DM is the dispersion measure and v the observing centre frequency in MHz [111]. 

89 
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The receiver sensitivity is a function of pulse smearing, which is dependent on the parameter 
space in which incoherent dedispersion based timers can operate [49, 56, 166]. The effect of 
smearing is minimised by the use of dedispersion techniques [77, 165]. 

6.2.2. Receiver Sensitivity. The minimum detectable pulsar flux density depends on 
the effects of the interstellar medium and the parameters of the receiver instrumentation. For 
P > W, theoretical analysis predicts a sensitivity limit for the receiver 

Tsys  αQ W 
(6.2.3) Smin = , J

NpBT  G P − W 

where Tsys  is the receiver system temperature, G the telescope gain, α the desired signal to noise 
ratio, Q a constant dependent on radiometer type, Np  the number of polarisations, B the total 
receiver bandwidth, T the integration period, W the effective pulse width and P the pulse period 
[56, 166]. Equation 6.2.3 becomes a crude approximation for P ≈ W. This is especially true in 
millisecond pulsar searches where, even though pulse broadening can cause W > P, there is still 
sensitivity to the pulsar. 

The effective pulse width is 

(6.2.4) W
2 
 = W

2

0  + Δt2
samp  + Δt2 

DM 
 + Δt2 

scat 

where W0 = P × A2prB  is the intrinsic pulse width, P the pulsar period and ApB = 13
◦ 
 × P

−
3
1  

the apparent pulsar beamwidth [112]. The expression for apparent beamwidth is not valid for 
millisecond pulsars, but should still allow for the calculation of sensitivity to the majority of 
the known catalogued pulsar population. Δtsamp  is the sampling interval, ΔtDM  is the smearing 

across a single channel due to dispersion and Δtscat = 
( DM  ~ 3.5 ( 400  

4́

is  an approximation of 1000 "MHz 

the pulsar broadening due to interstellar scattering [161]. 

6.2.3. Dedispersion. The removal of dispersion effects to achieve high signal to noise ratio 
is performed using one of two techniques: coherent or incoherent dedispersion. 

The coherent technique removes the dispersion effect of the interstellar medium by passing 
the pre-detection pulsar signal through a filter with a transfer function Hf(v) of the form 
exp

iκ(")z
. Hf (v) is the inverse of the transfer function that characterises the interstellar medium, 

and allows for microsecond resolution at low frequencies and large DM [75, 165]. The sampled 
bandwidth is limited by the substantial processing power required for the high data rates and 
filter complexity. 

Incoherent dedispersion requires the division of the total receiver bandwidth into subchan-
nels, narrow enough such that ΔtDM << W0, where each subchannel adds an appropriate delay 
into the signal path to correct for dispersive delays (see equation 6.2.1) [15]. Implemented as 
a filterbank receiver, the channels are stacked using offline processing or in real time to form a 
composite profile. 
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6.3. Critique of the Current Pulsar Processor 

sys 

bandwidth of the existing pulsar processor means that the minimum detectable pulsar flux den-
sity of 3.2mJy is high by modern standards. At the completion of the current pulsar processor 
design in early 1984, the known pulsar population was approximately 370 pulsars [113]. Most 
pulsar searches in that era were designed to focus at low dispersion measure, relatively long 
period, high flux objects [48]. The HartRAO processor therefore met monitoring observation 
requirements for a large fraction of the known pulsar population at the time of project com-
mencement. Most of the currently catalogued pulsar population in the ATNF Pulsar Catalogue 
[81], however, are undetectable by the HartRAO pulsar processor due to selection effects (high 
dispersion measure, low period, low flux density). 
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FIGURE 6.3.1. Pulsars from the ATNF Pulsar Catalogue [81] represented 
on the P-DM plane. The solid line represents the lower limit of pulse de-
tectability of the HartRAO pulsar processor due to pulse smearing. The 
intrinsic pulse width of pulsars above this line are smeared by less than 
50%. Crosses designate pulsars currently monitored at HartRAO. 

Pulsars in the ATNF Pulsar Catalogue [81] are represented in the P-DM plane in Figure 
6.3.1. Pulsars monitored at HartRAO are designated by crosses. The solid line represents the 
lower limit of detectability due to dispersion, calculated using equation 6.2.2. The intrinsic pulse 
widths of pulsars above this line are smeared by less than 50%. For the 10 MHz receiver channel 
bandwidth used by the HartRAO pulsar processor, a large proportion of high DM, short period 

The pulsar timing program at HartRAO commenced in 1984 using a 10 MHz fixed receiver 
bandwidth centered on one of two frequencies: 1668 MHz and 2273 MHz. The relatively small 
Ae  of the HartRAO 26m dish, where Ae  is the effective aperture, as well as the narrow fixed T 
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pulsars are not observable due to inadequate pulse resolution. This can be improved with a 
reduction in channel bandwidth. 

The surface of minimum detectable flux density for the current pulsar processor is calculated 
using equation 6.2.3 and shown in Figure 6.3.2. For HartRAO, Tsys = 45 K , G = 0.1, α = 1.5 , 
β = 1.3 , Np  = 1 , B = 10 MHz. The number of samples per period is set to 1000 and τ = 600 s. 
While both the number of samples per period and τ are variable parameters that are dependent 
on the pulsar source, it is necessary to fix them at a reasonable value to calculate the surface. 
The same values are used for the analysis of a new pulsar processor to ensure consistency. 

FIGURE 6.3.2. Surface of minimum detectable flux density for current Har-
tRAO pulsar processor in a P − DM − Flux1600MHz parameter space. The 
dots represent pulsars from the ATNF Pulsar Catalogue [81].  Detectable 
pulsars (red) lie above the surface, while undetectable (violet) lie beneath. 

The surface shown in Figure 6.3.2 rises steeply towards the high DM, short period parameter 
space. Pulse smearing leads to an apparent gap in the surface, referred to as the ‘exclusion zone’ 
in this thesis, where the effective pulse width W calculated for the parameter space is greater 
than the pulsar period. Pulsars that lie within this exclusion zone are undetectable. For low 
dispersion measure and long periods, the current pulsar processor has a minimum detectable 
flux density of approximately 2 × 10

−3
Jansky. Pulsars in the ATNF Pulsar Catalogue [81] are 

represented as dots, with detectable pulsars (red) located above the surface, and undetectable 
pulsars (violet) beneath. The published 400 MHz and 1400 MHz fluxes were used to calculate 
spectral indices in order to extrapolate 1600 MHz flux values. In cases where only one of 
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the fluxes were available, an average spectral index of −1.8 was used. This value is valid for 
frequencies greater than 1400 MHz for approximately 90% of the known pulsar population [121]. 
Those that had no published fluxes were excluded. The total number of pulsars represented in 
the diagram is 1038. 

Figure 6.3.3 represents the detectable pulsar subpopulation, which lies above the detectabil-
ity surface in Figure 6.3.2, in a P-DM plane. This subpopulation comprises approximately 15% 
of the total pulsar population represented in Figure 6.3.2. 

10
1  

10
0  

10
−2  

10
−3  

10
0 

10
1 

10
2 

10
3 

10
4  

DM [pc −3] 

FIGURE 6.3.3. Detectable pulsar subpopulation, which lies above the sur-
face of minimum detectable flux density in Figure 6.3.2, represented in a 
P-DM plane. Crosses designate pulsars currently monitored at HartRAO. 

In order to study the spin down behaviour of pulsars, long continuous data spans are re-
quired to avoid ambiguity due to glitches, or microglitches. In recent history, equipment failure 
and subsequent servicing of legacy architecture and components has meant that regular pulsar 
observations at HartRAO have been interrupted for long periods of time, leading to large gaps 
in timing data. Servicing of the existing processor is not expected to be possible much longer, 
with the ever increasing difficulty of obtaining obsolete parts. To avoid further gaps in timing 
data, the design and implementation of a new pulsar processor whilst the current version is still 
in operation would ensure a seamless rollover between old and new instrument. It would also 
provide a window period for cross-calibration of data obtained between the two instruments 
operating concurrently. 

With new generation radio telescopes, multi-beam systems and greater computer processing 
power, modern day surveys are discovering pulsars at higher dispersion measure, weaker flux and 
shorter periods than previously. With such extreme parameters, most newly discovered pulsars 
are not within the detectable region of the current pulsar processor (see Figure 6.3.2). Although 
continued observation of the pulsar subpopulation regularly monitored at HartRAO is a main 
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priority, in order to help strengthen, or disprove, current hypotheses on pulsar precession, timing 
noise, the braking law and glitch monitoring, the HartRAO pulsar sample needs to be extended. 
This extension results from an improvement in the surface of minimum detectable flux density, 
and subsequent increase of the detectable subpopulation of pulsars. Short of constructing a new 
large telescope, this is only possible with the use of a wider total receiver bandwidth and control 
over the subsequent increase in pulsar dispersion and degraded pulse resolution. As the current 
observing bandwidth for the pulsar processor is fixed and has no dedispersion capability, the 
installation of a new instrument is required. 

6.4. Review of Existing Pulsar Processors 

Before adopting a macroscopic architecture for the design of a new pulsar processor, it 
was necessary to review existing timers at other observatories to identify possible pitfalls and 
recommendations. 

6.4.1. Medicina 1.4/1.6 GHz Pulsar Observing System. All technical information 
and figures for the Medicina Pulsar Observing System are obtained from the relevant website 
[117]. 

FIGURE 6.4.1. Medicina Pulsar Observing System. 

The incoherent dedispersion pulsar observing system at Medicina, illustrated in Figure 6.4.1, 
is a 128 channel analogue filterbank receiver, covering 2 × 2 × 32 × 1 MHz of bandwidth (using 
left and right circular polarisation of two 32 MHz IF bands) that is centered at an observing 
frequency of either 1.4 GHz or 1.6 GHz. Each 1 MHz channel is square law detected before 
passing through a programmable anti-aliasing filter. Following this, the signal is quantised by a 
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1 bit digitiser at a maximum speed of 100 KHz. Data is transferred to a computer at a rate of 
12.8 MB/s and stored on 20 GB Direct Linear Tapes. Alignment and stacking of pulse profiles 
is performed offline. 

The use of an analogue filterbank receiver should be avoided at HartRAO. Achieving identi-
cal signal attenuation in each filter channel is unnecessarily difficult, but a necessity to maintain 
a constant gain across the filterbank frequency response. Filter boards would need to be manu-
factured commercially to obtain the required accuracy across the receiver response, an expense 
that cannot be budgeted for. The use of narrowband channels has an advantage in that RFI 
could be restricted to a single channel as opposed to saturating a wideband signal. Each signal 
path, however, needs to be digitised as soon as possible to minimise any RFI. The high replace-
ment cost of a specialised fast data link between the digitiser and computer does not support 
the cost effective and efficient design philosophy for the new pulsar processor at HartRAO. Data 
storage within each narrowband channel would reduce the need for specialised data links. With 
the high turnover rate of modern computers, the compatibility of proprietary cards would cause 
difficulty in future upgrades and maintenance. 

6.4.2. COBRA. All technical information and figures for COBRA are obtained from the 
relevant website [39] and online documentation. 

COBRA is a coherent online baseband receiver for astronomy, primarily used to perform 
coherent dedispersion of pulsar data obtained at Jodrell Bank. Illustrated in Figure 6.4.2, 
the system consists of a hybrid analogue/digital frontend concerned with the signal processing 
of data, while the backend is a Beowulf cluster of approximately 150 computers, which can 
perform real time or off line signal processing. The receiver records both left and right circular 
polarisations, each polarisation having a 100 MHz bandwidth. The complex signal that results 
from baseband sampling passes through a number of direct memory access (DMA) cards in 
parallel, splitting each band into smaller sub-bands of 1.25, 2.5, 5 or 10 MHz in order to avoid 
saturation of the entire bandwidth due to possible sources of RFI. The signal is digitised with 8 
bit precision, producing a datastream with an output data rate of over 400 MB/s, which flows 
into the Beowulf cluster. Each computer has at least 512 MB RAM and 10 GB disk space. 
The data from each channel is coherently dedispersed in real time before individual profiles are 
combined. COBRA can also perform incoherent dedispersion over bandwidths of up to 200 MHz 
wide. 

The advantage of COBRA is that it is a fully digital system after baseband sampling, re-
ducing the impact of RFI. Digitisation of the signal path is a priority at HartRAO given the 
increasingly widespread use of portable communication devices such as cellular phones. Observ-
ing frequencies can be adjacent to one another or spread because of the use of programmable 
local oscillators for individual sampler modules, each of which ranges between 20 MHz and 83.75 
MHz in 250 KHz steps. Although the Beowulf cluster is both powerful and upgradable, the cap-
ital outlay for such a system far exceeds the budget for a new pulsar processor at HartRAO. 
While the COBRA design has moved towards that of a software receiver, the multi-purpose 
system exceeds the design requirements for a pulsar processor at HartRAO. The system relies 
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on a large commercial component, which could be replaced by cheaper and superior alternatives 
such as programmable logic. 

6.4.3. Princeton Mark IV Pulsar Processor. All technical information and figures for 
the Mark IV are obtained from the relevant website [146] and Stairs et al (2000) [165]. 

Operated at Arecibo Observatory, Princeton’s Mark IV system, shown in Figure 6.4.3, is a 
baseband recorder that covers a 5 or 10 MHz bandwidth centered at an observing frequency of 
430 MHz. Left and right polarisations are mixed to baseband, generating a 5 (10) MHz complex 
signal, which is 4 (2) bit digitised. The resulting 10 MB/s data stream is acquired by a SPARC-20 
workstation and stored onto disk or Direct Linear Tapes (DLT) for offline processing. Coherent 
dedispersion takes place on a custom made 1.25 Gflop parallel processor, which is optimised for 
computing fast Fourier transforms. 

FIGURE 6.4.2. Coherent Online Baseband Receiver for Astronomy (COBRA) 
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Together with the large collecting area, the observing frequency of 430 MHz at the Arecibo 
Observatory means that the relatively narrow observing bandwidth of the pulsar processor is 
sufficient to observe weak pulsars. However, with the high observing frequencies of 1.67 GHz and 
2.23 GHz at HartRAO, a much wider observing bandwidth is required to obtain similar signal 
to noise ratios. Coherent dedispersion would result in the need for greater computer processing 
power to handle the high data rates. The data generated by the baseband sampler requires 
sophisticated data links to the processor. Customised circuit boards, parallel processors and 
tape drives for storage are all expensive components in the context of HartRAO. The need for 
a large digital component is highlighted by the proven superiority of the Mark IV to the Mark 
III, an analogue filterbank receiver implementing incoherent dedispersion. 

6.4.4. Coherent Arecibo-Berkeley Pulsar Processor (ABPP) . All technical infor-
mation and figures for the ABPP is obtained from the relevant website [17] and available online 
documentation. 

Illustrated in Figure 6.4.4, the ABPP is a hybrid filterbank receiver, using four analogue 
baseband mixers followed by 8 way digital divisions in order to spread up to 32 channels across 
a 112 MHz bandwidth in total power coherent mode. Each analogue mixer produces a quadrature 
baseband signal, which in turn is distributed to eight digital filter boards (DFBs) where the signal 
is quantised to 4 bits (See Backer et al (1997) [16] for more detail on the digital filter boards). 
Each DFB, shown in Figure 6.4.5, consists of a digital mixer (implemented by look up table), 
Harris digital FIR filter chips, and a 256kB EPROM for data encoding. The signal is passed to 
a dedispersion board, shown in Figure 6.4.6, which is capable of performing both coherent and 
incoherent dedispersion. Data acquisition is performed using a dedicated computer. 

FIGURE 6.4.3. Princeton Mark IV Pulsar Processor 



6.4. REVIEW OF EXISTING PULSAR PROCESSORS 98 

The ABPP is a highly generalised instrument, essentially relying on the replication of two 
modules: an analogue mixer frontend and a digital backend. During the design stage the 
boundary interface, or stage of digitisation, between the analogue and digital components can 
be varied. This movement will have a substantial effect on the cost of implementation, with 
the cost of analogue components generally far cheaper than that of digital components in both 
implementation, processing overhead and currency. Given a suitable stage of digitisation, the 
performance/cost ratio can be maximised. With the use of reprogrammable logic in the digital 
backend, the system could form the basis of a low cost, multi-purpose radio astronomy instru-
ment at HartRAO. However, the use of specialised FIR filter chips represents a large budgetary 
component. As each DFB is replicated a number of times, the expense of these chips is too 
great in the HartRAO context and viable alternatives should be considered. 

6.4.5. Navy-Berkeley Pulsar Processor (NBPP). All technical information for the 
NBPP is obtained from the relevant website [135]. 

Based on the original design for the ABPP, the NBPP is a 96 channel 175 MHz filterbank 
receiver with analogue frontend and digital backend. Both the design implementation and 

FIGURE 6.4.4. Coherent Arecibo-Berkeley Pulsar Processor (ABPP) 

FIGURE 6.4.5. Coherent Arecibo-Berkeley Pulsar Processor (ABPP): Dig-
ital Filter Board 
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components used are the same as those in the ABPP. Improvements over the ABPP include the 
use of Hilbert transforms in the FIR low pass filters [16] in order to retrieve upper and lower 
sideband information in the EPROM encoder. Further modification of the FIR filter coefficients 
have allowed for 192 tap filter implementations. 

The use of the Hilbert transform allows for a halving of digital sample rate, with a digital 
reconstruction of an N × 1 MHz wideband signal possible using an effective half Nyquist data 
rate. 

6.4.6. PuMa. All technical information for the PuMa is obtained from Voute et al (2002) 
[173]. 

Installed at Westerbork Synthesis Radio Telescope, the PuMa, or digital Pulsar Machine, was 
originally designed as a digital filterbank receiver, replacing analogue filters with digital signal 
processors (DSPs) performing fast Fourier transforms. With a variable number of channels in 
the filterbank, as many as 32768 channels can be spread over an 80 MHz receiver bandwidth 
using 192 SHARC DSPs. During the latter stages of development, baseband sampling of two 10 
MHz bands was included. Split into two halves, the system can observe in both observational 
modes, as a filterbank receiver and baseband sampler, simultaneously. The system avoids coarse 
digitisation by use of a 12 bit analogue to digital converter. This circumvents the problems 
associated with adverse signal to noise ratios as a result of RFI, highlighted by Voute et al 
(2002) [173].  Data storage is on hard disks, with both coherent and incoherent dedispersion 
being performed offline. 

PuMa is a versatile instrument. However, the use of 192 DSPs would be a costly design 
component in the HartRAO budgetary context. The use of a 12 bit digitiser highlights the 

FIGURE 6.4.6. Coherent Arecibo-Berkeley Pulsar Processor (ABPP): 
Dedisperser Board 
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problems associated with using coarse inputs signals, and allows good management of saturating 
input signals. High precision digital signals can be implemented at HartRAO with the low cost, 
high precision fast commercial analogue to digital converters that are presently available. 

6.4.7. Caltech Parkes Swinburne Recorder II (CPSR2). All technical information 
for the CPSR2 is obtained from the relevant website [18]. 

Installed at the Parkes radio telescope, the CPSR2 is a baseband recorder, which is used 
for precision timing studies of pulsars. The recorder accepts four baseband converted 64 MHz 
RF signals, each of which is 8 bit sampled by a customised high speed digitiser. Due to the 
four independent IF channel inputs, the digitiser allows for the ability to observe with full 
polarimetry at two different sky frequencies, limited only by the receiver passband and down 
conversion mixer chain settings. The resulting packetised data stream (up to 128 MBPS) is 
fed into two primary processor nodes by means of DMA cards, and then distributed by high 
speed ethernet into a further cluster of 28 dual processor computers. This cluster has enough 
processing power to coherently dedisperse data in real time from most low dispersion measure 
pulsars. 

CPSR2 is the most modern functional baseband processor currently in operation. The 
ability to process four independent IF channels is an important attribute for multi-frequency 
observations. Although this does not form part of the user requirements for a new pulsar 
processor at HartRAO, it could form part of a future enhanced specification. CPSR2 highlights 
the need for a small supercomputer, or computer cluster, to perform coherent dedispersion of 
pulsars. Budgetary constraints at HartRAO do not allow for this, and may limit us to incoherent 
dedispersion techniques. 

6.5. Macroscopic Architecture Justification 

6.5.1. Introduction. Based on the review of existing timers in section 6.4, this section 
details macroscopic design choices for a new pulsar processor. 

6.5.2. Analogue vs. Digital. Modern instrumentation is moving towards highly comput-
erised and digital implementations. Due to the instrumental sensitivity required by the field of 
radio astronomy, and the necessity to mitigate against radio frequency interference, the need to 
digitise the signal path as soon as possible is required. 

A digital implementation requires the choice between two different digital technologies: 
reprogrammable logic, in the guise of field programmable gate arrays (FPGAs), or prepro-
grammable hardware, in the guise of digital signal processors (DSPs). 

Although now covering a broad spectrum of engineering applications, the computational 
requirements of most digital signal processing designs remain the same: a need for real time 
computational performance coupled with the ability to adapt to constantly changing data sets 
and conditions. Cost and power have become important parameters to consider as signal pro-
cessing applications move from a predominantly military orientated market to a commercial 
one. This has led to a desirability for the ability to implement hardware solutions with the 
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flexibility of reprogrammability. This inherent ability in FPGAs has allowed them to become 
viable alternatives to programmable DSPs [72, 73, 144]. 

Since the mid 1980’s, design structures for FPGAs have been developed to perform a variety 
of computational tasks, and in more recent times FPGAs have become a viable alternative to cus-
tom hardware (Application Specific Integrated Circuits, or ASICS), with clock rates approaching 
1 GHz. Current FPGAs outperform custom approaches to real time computation as they provide 
the speed of dedicated circuitry while still containing the flexibility of a programmable system, 
which allows for optimisation of design structures via incremental adjustments. 

The use of pipelined structures, coupled with the parallel nature of many signal processing 
applications, such as filterbanks, has in certain cases led to FPGA based computing outper-
forming DSPs by up to an order of magnitude [72]. High gate densities of today’s FPGAs has 
opened a new era of single chip solutions. Advantages include: less off-chip connections due 
to fewer on-board components and the resolution of signal processing tasks in a single FPGA, 
reducing interconnect timing problems. 

The precision parallelism found in FPGA architectures is suited to high sample rates in 
distributed computation such as that required in speech and image processing [169] and radar 
processing [13]. Multiple MAC (multiply and accumulate) units are implemented on a single 
FPGA, allowing up to 600 billion MAC operations per second, which is two orders of magnitude 
greater than industry standard DSP chips [137]. 

The performance of FPGAs seem to consistently be superior in terms of flexibility, processing 
performance and price/performance ratio [72, 144] and are a natural choice for use in modern 
day signal processing applications. 

6.5.3. Coherent vs. Incoherent Dedispersion. The implementation of a coherent 
dedispersion system requires the design of a single unit solution. Removal of dispersion ef-
fects on target pulsar signals needs unique sets of filter coefficients and reprogrammable filters. 
Wide total receiver bandwidths, necessary at HartRAO to obtain the desired receiver sensitivity, 
requires the use of high cost, specialised DSPs. The pulsar processor bandwidth would therefore 
be restricted by the feasibility of a single unit solution. Subsequent increases in the bandwidth 
will likely require a complete redesign of the system. The single unit solution is compact, with 
little replication of parts. This means that servicing of the instrument is relatively simple. The 
biggest advantage of the coherent dedispersion system is the complete removal of dispersion 
effects, obtaining microsecond resolution in the integrated pulse profile. However, at the high 
observing frequencies at HartRAO, the benefits of a coherent dedispersion system would not be 
fully realised. 

Implementation of a filterbank architecture is required for the use of an incoherent dedis-
persion pulsar observing system. The scalability of the processor means that the wide receiver 
bandwidths required are obtained by the replication of generalised modules. Further units can 
be added to the filterbank in order to increase the bandwidth as the need requires. The narrow-
band filterbank channels reduces the required processing power for the digital filters, and allows 
for a reprogrammable solution. 
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To implement the pulsar processor system in a cost effective way, and to reduce the re-
quired processing power, incoherent dedispersion is the most applicable technique for use in the 
HartRAO observing environment. 

6.6. Parameters for a New Pulsar Processor 

Two critical parameters to be taken into consideration for the design of a new pulsar pro-
cessor are cost effectiveness and the improvement in the surface of detectable flux density (see 
Figure 6.3.2). Cost effectiveness is achieved by appropriate use of the array of COTS (consumer-
off-the-shelf) components that are currently available. The low cost and availability of these 
components is the result of a consumer market, which is driven by the development of cellular 
phone and satellite technology. Specialised components not found in mainstream industries are 
to be avoided to keep within the budget requirements of HartRAO. 

Improvement of the surface in Figure 6.3.2 implies an increase in the overall system sensitivity 
and shrinkage of the exclusion zone. Ideally, the surface of detectable flux density should be 
lowered by an order of magnitude to substantially increase the detectable pulsar subpopulation. 
Channel bandwidth and total bandwidth are the two most important technical parameters to 
be decided on at the early stage of the design process as they directly affect the number of 
observable pulsars (see equation 6.2.3). 

FIGURE 6.6.1. Pulsars from the ATNF Pulsar Catalogue [81] represented 
on a P-DM plane. The solid lines represent the lower limit of pulse de-
tectability for fixed channel bandwidths due to pulse smearing. The intrin-
sic pulse width of pulsars above these lines are smeared by less than 50%. 
Crosses designate pulsars currently monitored at HartRAO. 

Reducing the current channel bandwidth of 10 MHz to 2 MHz significantly increases the 
number of detectable pulsars, as seen in Figure 6.6.1, due to the consequent reduction in pulse 
smearing. 
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Figure 6.6.2 illustrates the dependence of the detectable pulsar subpopulation of the ATNF 
Pulsar Catalogue [81], calculated using equation 6.2.3, on channel bandwidth and total band-
width. The surface shows the increase in the number of detectable pulsars following an increase 
and decrease in the total bandwidth and channel bandwidth respectively. The rapid increase of 
detectable pulsars due to an increase in total bandwidth is a far more dominant effect than the 
reduction of channel bandwidth. This is due mainly to two reasons. Firstly, the relatively high 
observing frequencies at HartRAO reduces the effect of dispersion. Therefore, the undetectable 
pulsar subpopulation that lies within the exclusion zone of Figure 6.6.4 is a small percentage 
of the total pulsar population represented. Secondly, the current galactic pulsar distribution in 
the P-DM plane is not necessarily an accurate reflection of the total galactic population. The 
number of pulsars discovered in the short period, high dispersion measure, low flux parameter 
space (exclusion zone of the current pulsar processor) should increase with time as the region 
becomes targeted by more exhaustive pulsar searches. Therefore, the reduction of channel band-
width should take into account a projected galactic population as opposed to the current ATNF 
Pulsar Catalogue [81]. 

Figure 6.6.3 shows the dependence of the detectable pulsar subpopulation of a simulated 
earth beaming population of 100 000 pulsars

1 
 on channel bandwidth and total bandwidth. The 

1
The author would like to thank Michael Kramer of Jodrell Bank Observatory for use of the simulated 

pulsar population which was produced for use in Square Kilometer Array simulations. 

FIGURE 6.6.2. Dependence of detectable pulsar subpopulation of the 
ATNF Pulse Catalogue [81] on channel bandwidth and total bandwidth. 
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similarity between Figures 6.6.2 and 6.6.3 strongly suggest that any macroscopic design opti-
misations to increase the detectable pulsar subpopulation of the ATNF Pulsar Catalogue [81] 
would result in an increase in the detectable subpopulation of future pulsar catalogues. 

Based on previous arguments on technical parameter values, Figure 6.6.4 represents the 
surface of minimum detectable flux density, calculated using equations 6.2.3 and 6.2.4, with 2 
MHz channel bandwidth and 112 MHz total receiver bandwidth. On average, the improvement ~

112  in sensitivity is of the order of  10 = 3.34. The decrease in minimum flux density results in an 
almost threefold increase in the size of the detectable pulsar subpopulation, plotted in Figure 
6.6.5. 

FIGURE 6.6.3. Dependence of detectable pulsar subpopulation of a 100 
000 simulated earth beaming pulsar population on channel bandwidth and 
total bandwidth. 
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FIGURE 6.6.4. Surface of minimum detectable flux density for proposed 
new pulsar processor in a P − DM − Flux1600MHz parameter space. Channel 
bandwidth is 2 MHz and total bandwidth is 112 MHz. The dots represent 
pulsars from the ATNF Pulsar Catalogue [81]. Detectable pulsars (red) lie 
above the surface, while undetectable (violet) lie beneath. 
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FIGURE 6.6.5. Detectable pulsar subpopulation, which lies above the sur-
face of minimum detectable flux density in Figure 6.6.4, represented in a 
P-DM plane. An almost threefold improvement of the detectable pulsar 
subpopulation size is obtained. Crosses designate pulsars currently moni-
tored at HartRAO. 



CHAPTER 7 

Pulsar Processor Design and Implementation 

7.1. Introduction 

The design and implementation of a new digital pulsar processor for HartRAO is discussed 
in this chapter. The instrument is based on the implementation of a digital filterbank receiver, 
which is used to perform incoherent dedispersion. The system is based largely upon the hybrid 
approach of Backer et al (1997) [16] and subsequent pulsar processors such as the ABPP (see 
section 6.4.4). 

The pulsar processor was initially implemented to satisfy a low frequency specification 
( fs,,mple = 1MHz), before designing a high frequency ( fs,,mple = 32MHz) equivalent (see ap-
pendix D for schematic designs and flowcharts for the Low Frequency Concept). Construction 
of the high frequency pulsar processor resulted in two hardware implementations of the system. 
The first version is designed for installation into a prototype rack, whereas the second version 
was manufactured to standard eurocard specification (incorporating the DIN 41612 and IEC 
603-2 connector standards, IEEE 1101 PC board standards and the DIN 41494 and IEC 297-3 
rack standards). 

The design and implementation of the prototype pulsar processor is discussed in this chapter, 
with a short description of the eurocard implementation given in section 7.17.2. Relevant imple-
mentation decisions, and the selection of hardware, is a compromise between price, performance 
and availability in the local market. 

7.2. High Level Architecture 

7.2.1. Filterbank Architecture for Parallel Digital Signal Processing . The filter-
bank architecture, usually consisting of one or both of an analysis bank (for downsampling) and 
a synthesis bank (for upsampling), is primarily used to exploit parallel architectures in signal 
processing and provide decomposition of wideband signals. The subsequent sub-bands, obtained 
either by bandpass or low pass filtering, are approximately orthogonal' (given sharp rolloffs at 
the filter passband cutoff frequencies). As such, they can be conveniently processed in parallel. 

Following downsampling, the necessary processing of each sub-band signal is decreased by a 
factor N, where N is the number of sub-bands, which synchronously add up to the total wide-
band signal. This allows for high bandwidth, complex signal processing without the difficulties 
associated with high speed digital electronics. 

'The principle of orthogonality states, given optimum conditions for a transversal filter, each element 
of the input vector x [n] and estimation errors e0 [n] are orthogonal. Mathematically, this reduces to 
E[x[n]e

∗

0[n]] = 0 where E is the estimation function [78]. 
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FIGURE 7.2.1. Macroscopic design structure of new pulsar processor 
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This architecture is physically scalable, with a direct correspondence between processed sub-
bands and physical processing units. The option of bypassing certain sub-bands means that any 
narrowband interference can be reduced by disabling the relevant processing units. 

7.2.2. Schematic Design. The processor design, shown in Figure 7.2.1, consists of two 
heirarchial filterbank layers: an analogue frontend and a digital backend. Each layer is imple-
mented by the replication of a generalised module. The analogue frontend module is a quadrature 
mixer that selects a 32 MHz IF slice and converts it to a complex baseband signal. This signal 
is digitised to b bit precision and fanned out to n [0 : 7] digital backend modules, each of which 
processes 2 × 2 MHz channels. Individual channels perform on-board data stacking and are 
connected to a common serial data bus. The processor is configured by a master controller, 
which is accessible via an ethernet network and communicates with the New Computer Control 
Systsm (NCCS) at HartRAO [67]. A starter module is used to initiate pulsar observations. 

7.3. Analogue Frontend Architecture 

7.3.1. Schematic Design. The analogue frontend, shown in Figure 7.3.1, combines a 
quadrature mixer with a high speed dual analogue to digital converter. The mixer has an 
input bandwidth that covers the 90 MHz - 230 MHz IF band at HartRAO. The analogue gain 
control (AGC) has 100 dB dynamic range, adjustable programmatically through the use of the 
communications bus and a digital to analogue converter. Low pass anti-aliasing filters on the 
mixer output limit the baseband signals to 16 MHz. Thus, each analogue frontend module sup-
plies a 32 MHz double sideband signal, tunable within the IF band via suitable choice of local 
oscillator. 
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The complex output signal, consisting of an in-phase (real) component I(t ) and quadrature 
(imaginary) component Q(t ), is digitised by a dual analogue to digital converter, which ensures 
that the phase jitter between real and imaginary signals is minimised. The signals are Nyquist 
sampled at a nominal 32 MHz, sufficient for the double sideband baseband signal. The actual 
sampling frequency is chosen to be commensurate with the pulsar period (see section 7.18). 

7.4. Quadrature Mixing 

A description of quadrature mixing and complex signals is given on pp 297-301 of Lyons 
(1997) [116]. 

Quadrature mixing produces two 90 degree phase separated baseband signals I(t ) and Q(t ), 
with Fourier transforms 

F{I(t )} .#> Yr (ω )  = XL(ω ) + XU(ω ) + X
∗

L(−ω ) + X
∗

U(−ω ) 

F{Q(t )} .#> Yi (ω )  = j [XL(ω ) + XU(ω ) − X
∗

L(−ω ) − X
∗

U(−ω )] 

where the subscripts U and L indicate upper and lower sidebands respectively, X (ω ) the Fourier 
transform of the input signal x(t ) and * the complex conjugate operator (see appendix C.1). 

7.4.1. Hardware: Quadrature Mixer. The AD6121 from Analog Devices is a CDMA 3V 
Receiver IF subsystem. It includes a linear IF amplifier with 94.5 dB dynamic range analogue 
gain control. The quadrature demodulator, including a divide-by-two quadrature generator, 
mixes 32 MHz slices from an IF signal, in the range 50 − 350 MHz, down to baseband with 
a +1 degree accuracy between complex components and produces a differential output signal 
with a maximum 700 mV p-p amplitude. The product datasheet can be found at http://www. 
analog.com/UploadedFiles/Obsolete_Data_Sheets/674735AD6121.pdf. The AD6121 is now 
obsolete, but can be replaced by the AD8348, which has an IF operating frequency in the range 
50 − 1000 MHz. The product datasheet can be downloaded from http://www.analog.com/ 
UploadedFiles/Data_Sheets/53999288331825AD8348_0.pdf. 

7.4.2. Hardware: Differential Amplifier. The AD8130 differential amplifier converts 
the differential output of the quadrature mixer into an unbalanced single-ended signal. It 
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FIGURE 7.3.1. Analogue frontend signal flow diagram 

http://www.analog.com/UploadedFiles/Obsolete_Data_Sheets/674735AD6121.pdf
http://www.analog.com/UploadedFiles/Obsolete_Data_Sheets/674735AD6121.pdf
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has a differential input operating range of +2.5 V p-p and a 270 MHz bandwidth. Using 
an active feedback architecture and multiple differential inputs, the gain response of the am-
plifier is independent of the input signal, which allows for good common-mode rejection. The 
amplifier is implemented with unity gain. The relevant datasheet can be located at http: 
//www.analog.com/UploadedFiles/Data_Sheets/328430154AD8129_30_0.pdf.  

7.5. Analogue to Digital Conversion 

7.5.1. Quantisation Errors and Effects. Sampling of the analogue signal rounds the 
floating point value to the nearest quantised level representable by a fixed binary length data-
word. This discrete signal is 

(7.5.1) Q[x(n)] = x(n) + ε(n) 

where, at times t = nT, T the sampling period, x(n) is the original continuous signal and ε(n) 
is the additive quantisation error signal. ε(n) has a maximum amplitude of +

2

1
LSB (least 

significant bit) for an unsaturated signal. Under the following conditions : 

(1) {ε(n)} is a sampled sequence of a random stationary process 
(2) The error sequence is uncorrelated with the analogue samples 
(3) The random variables of the error signal are uncorrelated 
(4) The probability distribution of the error signal is uniform over the range of quantisation 

error 

the quantisation error signal will have a normal distribution ([138], pp. 415). 
The standard deviation σε  of the quantisation error signal ε[n] is related to the quantisation 

resolution Δ by ([138], pp. 416) 
Δ 

√
12 

The signal to noise ratio (SNR) of the quantised signal is 
~

σ2 ¶ 
x  (7.5.2) SNR = 10 log  = 6.02b + 10.79 + 10 log(σ

2

x ) [dB] 
σ

2
ε  

where b is the number of bits in the quantisation process, and σx  the standard deviation of 
the input signal normalised to the full scale dynamic range of the digitiser ([138], pp. 416). 
The SNR therefore increases approximately 6 dB for every bit added to the fixed point binary 
representation. This assumes, however, that the full dynamic range of the input is optimally 
used. For a reduced input dynamic range Ax[n], A < 1, 

SNR = 6.02b + 10.79 + 10 log(σ
2

x ) + 20 log(A) [dB] 

([138], pp. 417). Reducing the input to less than the full dynamic range of the system reduces 
the SNR. Reduction in the SNR for a fixed bit length b is expected when using an input noise 
signal. 

σε  = 

http://www.analog.com/UploadedFiles/Data_Sheets/328430154AD8129_30_0.pdf.


Normal Distribution 
Signal Power 
Quantised Signal Power 
Error Signal Power 

Quantisation level: -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

1.2 

1 

0 

-0.2 

0.8 

0.6 

0.4 

0.2 

7.5. ANALOGUE TO DIGITAL CONVERSION 111 

7.5.2. Effect of Quantisation on Analogue Input Signals. In calculating the power 
distribution of the analogue signal, quantised signal and the error signal, the effect of root-mean-
squared (RMS) input voltage levels on the SNR is determined. Figure 7.5.1 plots the normalised 
power distribution of these signals as a function of standard deviation σ,,  of the input signal. 
The analogue input signal level is normalised by the ratio RMS  

FSD = 0.2, where FSD is the full 
scale dynamic range of a 4 bit analogue to digital converter. The value of RMS  

FSD was obtained 
using Monte-Carlo simulations, which produced a graph of SNR plotted as a function of RMS  

FSD for 
4 bit quantisation, shown in Figure 7.5.2. While a reduced input of less than 0.2 results in a 
rapid decline in the SNR due to inefficient use of the full scale dynamic range, the long ‘roll off’ 
for a saturating signal is caused by the inability of the quantised signal to carry the full power 
of the input signal, with the maximum amplitude of the error signal growing beyond ±

2

1
Δ. 

Plot of Signal Powers 
for RMS/FSD = 0.20 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

Standard Deviation (σx) 

FIGURE 7.5.1. Power of analogue signal, quantised signal and error signal 
plotted as a function of standard deviation σ,,  of the input signal for RMS  

FSD = 
0.2. 

Table 7.5.1 is a list of RMS  
FSD and maximum SNR values for different bit lengths b.  The 

calculated SNR is approximately 4 dB less than expected using equation 7.5.2, a result of 
using a Gaussian distributed input noise signal. Fitting a 5th order polynomial gives RMS  

FSD = 
£−7.8409b

5 
 + 13.199b

4 
 − 8.401b

3 
 + 24.04b

2 
 − 51.846b + 169.57] × 10−3

. 
Quantisation of the input signal introduces a degree of non-linearity in the power response 

of the system. The need for the system to have a linear response to small power fluctuations is 
critical. Figure 7.5.3 is a graph of  Input signal power  

Quantised signal power as a function of RMS  
FSD . In agreement with 
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Backer et al 1997 [16], setting RMS  
FSD to slightly less than the optimal SNR value of 0.2 results in 

the least non-linearity for small power fluctuations at the input of the system. 
The results of this analysis agree with Kouwenhoven and Voute (2001) [89], who have cal-

culated optimal input signals for 1, 1.5, 2, 4 and 8 bit digitisers. 

7.5.3. Hardware: Analogue to Digital Converter. The AD9066 is a dual, 6 bit, 60 
MSPS analogue to digital converter employing a patented interpolated flash architecture and is 
optimised for use with quadrature demodulators. The full scale input range of 500 mV is auto-
matically DC biased about a fixed internal reference voltage, producing an offset binary format 

SNR for Input Levels to Analogue to Digital Converter 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

RMS/FSD 

FIGURE 7.5.2. SNR of a 4 bit quantised signal as a function of the nor- 
malised analogue input signal level RMS  

FSD . 

TABLE 7.5.1. RMS  
FSD and maximum SNR values for different values of b 

No. of Bits (b) RMS SNR [dB] FSD 
2 0.4 7.2 
3 0.26 13.29 
4 0.2 18.9 
5 0.17 24.32 
6 0.15 29.73 
7 0.14 35.12 
8 0.13 40.56 
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output. The relevant datasheet can be obtained at http://www.analog.com/UploadedFiles/  
Data_Sheets/120851866AD9066_a.pdf. 

7.6. Analogue Frontend Assembly 

7.6.1. Schematic Design. Figure 7.6.1 is the schematic design for the analogue frontend 
module, illustrating separated functional blocks and labelled components. 

All input RF signals are impedance matched and AC coupled. The OFF-BOARD POWER 
CONNECTIONS employ transient suppression on the unregulated input voltage connections. 
Separate power supplies are used for the analogue and digital sections of the board to reduce 
‘ground bounce’. This phenomenon occurs when a number of pins drive a current in the same 
direction simultaneously, causing a sudden drop in the ground plane potential. 

The complex output signal of the differential amplifiers have off board connections to anti-
aliasing low pass filters. The signals return to the ANALOGUE DIGITAL CONVERSION 
where they are sampled and quantised with 6 bit precision. This signal is truncated to 4 bits 
(see section 7.6.3). 

Linearity of Power Signals for Input Levels to Analogue to Digital Converter 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

RMS/FSD 

FIGURE 7.5.3. Input signal power  
Quantised signal power as a function of RMS  

FSD for 4 bit quantisa- 
tion. Choosing an input value of marginally less than 0.2 results in the least 
degree of non-linearity. 

http://www.analog.com/UploadedFiles/
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FIGURE 7.6.1. Schematic design for analogue frontend module 
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7.6.2. Manufacturing. The printed circuit board design guidelines provided by S.A. Sig-
nal Electronics [168] were followed in the manufacture of the analogue frontend module. Stan-
dard practice was followed to maintain signal integrity. Silkscreens for the analogue frontend 
printed circuit board are found in appendix F. 

7.6.3. Signal Levels and Analysis. With an output range of 700 mV, the quadrature 
mixer makes optimal use of the dynamic range of the analogue to digital converter. However, by 
using only bits [1 : 4], the most significant bit can be used to check for saturation of the input 
signal. Setting the peak amplitude of the input signal to fill the full scale dynamic range of bits 
[0 : 4] results in an optimum SNR and linearity of the quantised signal. 

7.7. Digital Backend Architecture 

FIGURE 7.7.1. Schematic of the digital backend module. Each module 
accepts a 6 bit complex signal, which is truncated to 4 bits. Upper and lower 
sidebands are separated within the FPGA and 20 bit accumulated values, 
corresponding to 1 bin period, are read and stored by microcontrollers. 

7.7.1. Schematic Design. Figure 7.7.1 is a high level schematic for the digital backend 
module. This unit consists of an FPGA for high speed digital signal processing and two micro-
controllers, used for data stacking, temporary data storage and communication with the master 
controller. The FPGA accepts a 6 bit binary offset complex signal, which is truncated to a 
two’s complement 4 bit signal, using bits [1 : 4]. The most significant bit [5] is used to monitor 
saturation of the input signal, which is adjusted by setting the analogue gain control of the 
frontend module. The FPGA produces sideband separated signals that are accumulated for a 
single bin period. 

The accumulated 20 bit value is read by a microcontroller, which performs data stacking 
during an observation to produce an integrated pulse profile with a maximum of 1000 bins. 
Communication with a master controller is via an RS232 serial bus, using a unique ID tag for 
identification. Once the observation is complete, the master controller retrieves accumulated 
pulse profiles from each microcontroller, after which incoherent dedispersion takes place and a 
composite profile obtained. 
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7.7.2. Hardware: FPGA. The Xilinx Spartan-II XC2S200 is well suited to the imple-

mentation of FIR filters [3], with selectable I/O standards that reduce the need for off-chip 

impedance matching, on-board RAM and low skew clock distribution nets. Compatible printed 

circuit board footprints allow easy replacement and upgrades within the Spartan family. The 

required nominal operating frequency of approximately 32 MHz is well within the FPGA’s clock 

specification. 

Full documentation of the XC2S200 can be found at http://direct.xilinx.com/bvdocs/  

publications/ds001.pdf. 

7.7.3. Hardware: Microcontroller. The Atmel ATmega128 is a low power AVR 8 bit 

microcontroller that uses RISC architecture, running at a clock rate of 16 MHz. There is 128 

kBytes of programmable flash and 4 kBytes of internal SRAM. 

Full documentation of the ATmega128 can be found at http://www.atmel.com/dyn/resources/  

prod_documents/doc2476.pdf. 

The Atmel AT90S8535 microcontroller is used in the implementation of the starter module. 

Full documentation can be found at http://www.atmel.com/dyn/resources/prod_documents/  

DOC1041.pdf. 

7.8. FPGA Design Architecture 

b 4 USB 20 
I[n] Complex FIR LP Filter Adder Squarer Accumulator 

Digital 
b Mixer 4 LSB 20 FIR LP Filter  Subtracter Accumulator Q[n] & Hilbert Trans. Squarer 

FIGURE 7.8.1. Internal schematic of FPGA 

7.8.1. Signal Flow. Signal flow within the FPGA is illustrated in Figure 7.8.1, which 

consists of a digital complex mixer, FIR low pass filters, adder and subtracter for sideband 

separation, and squarer and accumulator for detection and post-detection integration. The 

Xilinx Foundation F3.1i Build 3.1.181 software was used for development and implementation 

of the FPGA design. 

Figure 7.8.2 is the top heirarchial schematic design for the FPGA. The signal flows from left 

to right,using a parallel structure to ensure a new output per clock cycle. The design consists 

of seven functional components: clock, input interface, complex mixer, FIR filters, adder and 

subtracter, squarer and accumulator and the microcontroller interface. 

The LOC tag is used on the schematics to indicate input/output pin assignments. 

7.8.2. Clock. One of four delay locked loops in the XC2S200 is used. With global low skew 

clock distribution nets, this component ensures that signals at each clock input are synchronous, 

reducing timing delays between registers. All external clocked components ie. the analogue to 

digital converter, are driven by the FPGA. 

http://direct.xilinx.com/bvdocs/
http://www.atmel.com/dyn/resources/
http://www.atmel.com/dyn/resources/prod_documents/
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7.8.3. Microcontroller Interface. The microcontroller interface connects all external 
communication signals used to initialise the FPGA, namely N[0:13], the Clear FPGA signal 
and the Enable FPGA signal. 

7.8.4. FPGA Implementation Constraints. The implementation of constraints in the 
floormapping of FPGA designs is critical for such operations as signal processing. Net  lengths 
are kept to a minimum or, where this is not possible, latches are used on longer nets. By 
using relationally placed macros, optimal structures are obtained for each individual module. 
With the use of these fixed structures, the FPGA resources used for the implemented design is 
approximately 52 % (calculated by the number of slices used). 

7.9. Input Interface 

The input interface is designed to latch the 6 bit complex input signals before removing a DC 
offset of 2

5
, due to the output format of the analogue to digital converter, in order to turn the 

signal into a two’s complement format. The signal is truncated, using bits [1 : 4], and adjusted 

FIGURE 7.8.2. Top heirarchial structure for FPGA design 
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for truncation errors. These errors result from quantised data that is linearly scaled down by 
m bits, and are adjusted for by adding 

2

1
LSB of the 4 bit truncated signal to the untruncated 6 

bit signal. 

7.9.1. FPGA Input Interface Implementation. The schematic design for the input 
interface is shown in appendix H.1. Subtraction of the DC offset, the two’s complement format 
conversion and truncation of the signal (including error correction) is performed by the use of 
lookup tables. The initialisation files input_dc_subtract.coe, twos_comp_da_rom.coe and 
input_interface_mid4bits_LUT.coe can be found in appendix L. 

7.10. Digital Complex Mixing 

Generalisation of the digital backend module to use a single set of filter coefficients requires 
the use of a complex mixer to perform the required eight way digital division of the 32 MHz 
baseband signal. Each narrowband channel is shifted into the FIR filter passband, which allows 
each digital backend module to employ identical bandpass filters. 

Consider the baseband signal x [n] with discrete time Fourier transform (DTFT) X (Ω). The 
DTFT 

˜
X (Ω) of the shifted signal x̃[n] is 

x̃ [n]  = expo kπ
4 [n] x[n] 

~  µ
kπ  ¶ ~

kπ 
 ¶¶ 

= cos  
4  [

n]  + j sin  
4  [

n] x [n] 

⇒ 
˜
X (Ω) = X (Ω) ∗ δ(Ω − 

kπ
4 

) 

kπ 
= X (Ω −  4 ) 

expo kπ  
4 [n]  is a discrete rotating phasor. By choosing an integer k , −4 < k < 4, the baseband 

signal X (Ω) is shifted about 0 rad in multiples of 
π

4
.  Considering the z plane, the signal is 

rotated by 
kπ
4  radians about the unit circle. Figure 7.10.1 shows a 

π
4  rotation of X (Ω) where 

the 
π
4  subband has been shifted into the digital low pass filter passband. 

|X (Ω)| 

 

 �  

 

 �  
−π −3π/4 −π/2 −π/4  π/4 π/2 3π/4 π 

FIGURE 7.10.1. 
π
4  rotation of the z plane unit circle by the complex mixer 

Implementation of the complex mixer limits k to −3 < k < 3 in order to make use of the 
outer channels X (Ω ± π ) as guard bands between adjacent 32 MHz analogue IF slices. 
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7.10.1. FPGA Complex Mixer Implementation. The schematic design for the digital 
complex mixer is found in appendix H.1. While the schematic shows the mixer for k = 0, for k =6 
0 the three ground signals connected to I SIG LUT INPUT[0:2] and Q SIG LUT INPUT[0:2] are 
replaced by a 3 bit counter incrementing by k. The set of lookup tables uses the 7 bit input signals 
(4 bit input signal, 3 bit phasor) to produce the correct 4 bit complex products concatenated onto 
an 8 bit output bus. The initialisation files digital_mixer45_lut_i_signal.coe and digital_ 
mixer45_lut_q_signal.coe can be found in appendix L. The relevant real and imaginary 
components are added together to form digitally mixed complex signals. 

7.11. FIR Filters 

7.11.1. Considerations in Fixed Point Arithmetic Filter Design . Following Yates 
(2002) [178], the difference equation for an N tap FIR filter is 

y[n] = 
N
E
−1 

i=0 
Wix[n — i] 

where Wi are the filter coefficients, and x[n] is the input signal. This relation holds for an 
idealised, floating point system where the mathematical operations of addition, subtraction, 
multiplication and division are strictly defined over the rational numbers. In a digital system, 
however, both the input and output data are constrained by a fixed point binary representation. 
Quantisation of the idealised filter coefficients is performed for use in a digital system. 

The quantised coefficient W
i

' 
 is 

i 
= round(Wi  x 2

b
w) 

W
, 

2bw 

where bW is the length of dataword representing Wi and the function round() maps the rational 
numbers Wi to the closest quantised level represented by a bW bit dataword. The quantisation 
error is 

εi = Wi 
0
— Wi =

round(Wi  x 2bw)  
— Wi 2bw 

where the maximum value for εi is 21  x 2bw
1  = 2−bw−1

.  The maximum two’s complement value 
that can be represented by a dataword of bit length b is 2

b−1 
 — 1 . Therefore 

(
2bw −1 — 1 

) 
bW... = log2   b Wi Wi 

The filter gain for a white noise input signal is 
V  

(7.11.1) White Noise Gain (WNG) = Σ
N −1 
i=0 Wi

2 

If the result of each coefficient-input product fills M bits, the accumulated result for an N tap 
filter fills a maximum bx  + log2  M bits where bx  is the bit length of the input dataword. To avoid 
overflows in the filter, the scaling factor bW is determined by 

bW = bacc — bx  — log2(WNG) 
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where bacc  and bx  are the accumulator and input signal bit lengths respectively [178]. Consider-
ation of fixed point arithmatic enables optimisation of the FPGA implemented filter floorplan, 
trimming unnecessary logic. 

7.11.2. FIR Filter Design. The 4 bit output signals of the complex mixer are input to 
two 40 tap FIR filters, each of which uses 10 bit fixed point two’s complement filter coefficients. 
Simulation of floating point and quantised filter coefficients indicate a 1% discrepancy in the 
cutoff frequencies of the two cases (see Figure 7.11.3). 

Both sets of filter coefficients are based on a discrete Hamming weighted sinc(x ) function 
~ 

2πn  
/  

(7.11.2) w[n] = 0.54 — 0.46 cos  , 0 < n < N — 1 
N — 1 

where N is the total number of samples across w [n] ([138], pp. 242). 
Consider a complex signal x [n] = xr [n] + jx i [n], where the components xr [n] and xi [n] are 

processed by a ‘real’ and ‘imaginary’ filter respectively. To obtain sideband separation (See 
section 7.12 and Backer et al (1997) [16]), the imaginary filter transfer function is multiplied by 
a Hilbert transform, defined as ([138], pp. 358-359) 

( 
j  —π < Ω < 0 

H(Ω) = — j  0 < Ω < π 

Consider the signal x
'
[n] = g[n] * x[n], where g[n] is the impulse response of a low pass filter, 

and ‘* ’ the convolution operator. The signal x̃[n] is defined as 

x̃ [n]  = h[n] * x'[n] 

= (h[n] * g[n]) * x[n] 

⇒ ˜X (Ω) = H(Ω) x G(Ω) x X (Ω) 

where H(Ω) is a Hilbert transform. h[n] * g[n] is anti-symmetric. In other words, the DC gain 
of the imaginary filter 

XGainDC = Wi = 0 
i 

where Wi are the filter coefficients. 
Efficient sideband separation is required in order to reduce noise leakage between sidebands. 

To achieve this, a first approximation is made to match the white noise gain of the real and 
imaginary filters 

sX
sX   

W 2 
i(real) = W 2 

i(imaginary) 
i i 

This approximation, however, leads to very low noise rejection. With the absence of a DC block 
in the real filter, the integration of the squared coefficients is taken underneath a larger area. 
This implies that the peak frequency response of the imaginary filter will be greater than that 
of the real filter. In order to rectify this, a change in the initial approximation is required. 
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A second approximation to match frequency responses is done by introducing a DC block 
into the real filter such that 

GainDC (real ) = 0 

Simple multiplication by a constant can be used to match white noise gains, although this does 
not achieve a satisfactory solution. Introducing a single channel DC block into the real filter 
would alter the shape of the passband in such a way that the real and imaginary responses would 
not match. 

A DC block is introduced into the real filter coefficients by subtracting a hamming weighted 
constant from the original filter coefficients 

Wi

. 

 = Wi — (Hamming Window)i * κ 

where κ is chosen to match bandpasses above a —3 dB threshold. Figure 7.11.1 shows the 
impulse response for the real and imaginary FIR filters. The term (Hamming Window)i * κ 
introduces a -5 dB gain in the real filter coefficients. 

Using equation 7.11.1, 

White Noise Gainreal  = 1283 Pz~ 0.88 x 210.5 

White Noise Gainimaginary = 1218 Pz~ 0.85 x 210.5 

resulting in an output signal with dynamic range of approximately 
210.5 

 + 2
4 
 = 214.5. This is 

done to ensure that the output of the adder and subtracter, which have a -/2 white noise digital 
gain, will fill the full scale dynamic range of a fixed bit length dataword. 

Figure 7.11.2 is the frequency response of the real and imaginary FIR filters. The bottom 
diagram is an increased resolution of the filter passbands, showing matching passbands above 
the —3 dB threshold. 

7.11.3. Filter Implementations and Techniques. DSP applications in FPGAs are 
structured on one of two different architectures: serialism or parallelism. Whilst serialism has 
the advantage of comparatively much smaller area-time products, which grow linearly with their 
operands, it manages only 1 output per N clock cycles, where N is the bit length of the function 
operands. Parallelism manages up to a sample per clock cycle, yet takes up considerably more 
real estate within the FPGA and grows exponentially with the amount of functionality required. 
Most FPGA filter implementations adopt a hybrid combination of the two, with digit-serial and 
distributed arithmetic being popular. 

More specialised DSP structures include the use of customised lookup tables to perform 
addition and multiplication [2], specialised DSP operator arrays [14] and augmented cells for 
lookup table based FPGAs, allowing tighter inter-block communication [136]. 

7.11.3.1. Digit Serial Approach. Given their pipelined nature, bit serial multipliers imple-
mented in FPGAs typically possess excellent time-area products. A bit serial design typically 
requires 1/n

th 
 of the real estate needed for the equivalent n bit parallel implementation [13]. 

The drawback, however, is the need for n clock cycles to process an n bit data word. 
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A common bit serial approach used is digit serial processing, a combination of a bit serial 
and parallel implementation in which a data word is split into 2 bit words and processed dig-
itwise serially. This technique provides a 17% reduction in area-time product of the bit serial 

FIGURE 7.11.1. Filter coefficients for the real (top) and imaginary (bot-
tom) FIR filters 
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implementation [97], offering a flexible tradeoff between data throughput and FPGA real estate 
size of operators. 

Figure 7.11.4 is an unsigned digit serial multiplier. The multiplier requires a parallel input 
value, where all the bits are input simultaneously, and a serial value (split into N bit datawords), 
where all the bits are input sequentially. Different implementations of bit serial and digit serial 
structures are discussed by Lee and Sobelman (1997, 1998) [97, 98]. 

7.11.3.2. Distributed Arithmetic Approach. Distributed arithmetic delivers the performance 
of a parallel circuit within the space of a serial circuit, making it a highly efficient structure. It 
has been shown to produce efficient filter designs [128] with the successful implementation of 
complex digital filters for the purpose of radar signal processing [13, 129]. 

The array of configurable logic blocks (CLBs) within the FPGA is well suited to the use 
of distributed arithmetic. By viewing the CLB as a two bit functional block, they can be 
interconnected to perform any core DSP function. 

Consider a linear, time-invariant system ie. an FIR filter. The response y[n] of this system 
is 

(7.11.3) y[n] = E
N 

Wix [n − i] 
i=0 

To obtain a single output y[n], an accumulation of N products is required. This process 
would usually require a number of clock cycles in conventional, serial structured architectures. 

Normalised Angular Frequency (x π rads/sample) 

FIGURE 7.11.2. Frequency response of the real and imaginary FIR filters 
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In distributed arithmetic, this process is replaced by the use of a CLB look-up table (LUT) 

architecture. Dropping the variable n and rewriting x [n − i] = x i , the binary representation of 

xi is 

xi = −xi0 + E
M 

j=1 
xij 2

−j 

Normalised Angular Frequency (x π rads/sample) 

FIGURE 7.11.3. Comparison of frequency responses for floating point and 
10 bit quantised filter coefficients. 

InputP[0] InputP[1] InputP[i] InputP[N−1] 

FIGURE 7.11.4. Unsigned digit-serial multiplier 
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where x ij  is a binary variable between 0 and 1, and −xi0  represents a sign bit. Substituting into 
equation 7.11.3 

(7.11.4) y = 
N 

Wi [−xi0 + 
EM 

xij2
-j ] 

i=0 j=1 

(7.11.5) E
N 

Wixi0 + 
EN 

E
M 

Wixij2
-j  

i=0 i=0 j=1 

(7.11.6) = −[W0x00 + W1x10  + ... + W(N-1)x(N-1)0  + WN xN0] 

+[W0x01 + W1x11  + ... + W(N-1)x(N-1)1  + WN xN1]2
-1  

. 

. 

. 

+[W0x0M + W1x1M  + ... + W(N-1)x(N-1)M  + WN xNM ]2
-M  

Equation 7.11.6 represents the distributed arithmetic algorithm. Each bit of the input sample is 
ANDed with all the bits of the particular scaled coefficients and then summed. By constructing 
LUTs addressed by the same scaled bit of the input samples, the sum of products within each 
pair of brackets can be obtained. The exponential factors of each bracket are scaling factors. 

The LUTs can be implemented serially or in parallel. Highest speeds would be maintained 
in parallel, while maximum gate efficiency is achieved using a single LUT with parallel adder. 
It is possible to implement structures between these two extremes. Due to their reduced area of 
implementation, serial architectures have been attractive in the past. However, with the increase 
in gate density and size of reconfigurable logic, more parallel implementations of functional units 
has occurred to take advantage of data parallelism. 

In the context of an FIR filter, equation 7.11.6 can be represented graphically as in Figure 
7.11.5. The LUT is addressed by input samples a bit at a time. For a large number of taps, 
multiple LUTs can be used and their results added. In a complete parallel implementation, all 
inputs would be computed in parallel and then combined in a shifting adder tree [12]. 

7.11.4. FPGA Filter Implementation. The Xilinx Distributed Arithmetic FIR Filter 
V5.0 LogiCORE was used for the implementation of the FIR filters. This core is structured to 
produce area efficient FPGA implementations. For more information on the design structure 
of the DA FIR Filter V5.0, the datasheet can be downloaded from http://www.xilinx.com/ 
ipcenter/catalog/logicore/dpcs/da_fir.pdf. The parallel structure reduces the 4 bit input 
samples to single bit data subwords, generating an 18 bit output sample every clock cycle. The 
use of symmetric and anti-symmetric filter coefficients (see Figure 7.11.1) reduces the number of 
hardware multiplications by one half. The initialisation files fir_filter_0125_version2.coe 
and fir_hilbert_filter_0125_version2.coe can be found in appendix L. 
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7.12. Sideband Separation 

Upper and lower sidebands are obtained by adding or subtracting the complex components 

Upper sideband (USB) = Yr (Ω) +
˜
Yi(Ω) = XU(Ω) + X

∗

U  (—Ω) 

Lower sideband (LSB) = Yr (Ω) — 
˜Yi(Ω) = XL(Ω) + X

∗

L(—Ω) 

where Yr (Ω) is the real filter output, 
˜
Yi (Ω) the imaginary filter output, and XU(Ω) = X

∗

U  (—Ω) 
(see appendix C.1 for mathematical detail). Following the implementation of a -5 dB block in 
the real filter, leakage between adjacent sidebands is reduced to —8 dB. 

7.12.1. FPGA Sideband Separation Implementation. The adder and subtracter are 
18 bit input, 18 bit output core generated modules, which separate the complex signal into an 
upper and lower sideband. With a white noise digital gain of 

-,/
2, the output signals have a 

dynamic range of approximately 2
15

. Adjusting for truncation errors, the signal is truncated to 
6 bits using a VHDL (VHSIC Hardware Description Language) implemented module, the code 
for which can be found in 20BIT_CLIPPER.vhd in appendix L. 

7.13. Detection and Post-Detection Integration 

The radiometer equation 
Tsys  (7.13.1) ΔTsys =  -,/
B  x τ 

describes the statistics of the detection process of noise signals, where Tsys  is the system tem-
perature, B the receiver bandwidth and τ an integration time constant [57]. 

Each sideband signal is square law detected and the 6 bit output signal is accumulated for 
1 bin period, the length of which is a user defined parameter. 

7.13.1. FPGA Squarer Implementation. The squarer is implemented as a 6 bit input, 
6 bit truncated output lookup table. The initialisation file square4_distrib_mem.coe can be 
found in appendix L. 

Address Data 

0000 0 
0001 W[0] 
0010 W[1] 

. . 

. . 

. . 

1110 W[1]+W[2]+W[3] 
1111 W[0]+W[1]+W[2]+W[3] 

FIGURE 7.11.5. Adder tree implemented as a LUT addressed by input 
samples 
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7.13.2. FPGA Accumulator Implementation. The accumulator consists of a counter 
controlled by the microcontroller interface, accumulator and output interface (see appendix H.1 
for schematic designs). The accumulated data is latched onto the output interface before the 
accumulator is cleared by the counter. This occurs when the counter matches a predefined 
number N[0:13]. The cleared signal initiates the read data routines on the microcontrollers. 

7.14. Data Stacking 

The data stacking performed within the microcontrollers requires knowledge of the exact 
period of the pulsar during the integration process. 

By the Central Limit theorem [162], the amplitude distribution of the squared and integrated 
noise signal approaches a Gaussian distribution if sufficient samples are accumulated during a 
single bin period. The variance of the Gaussian distributed bin samples in the integrated pulse 
profile decreases with the number of integration periods N. 

By the propagation of errors [22], for large N the standard deviation σµ  of the averaged 
signal µ is 

σE  σµ  = √ 
N 

where σE  is the standard deviation of the additive noise signal [51, 142]. The SNR of the input 
signal is 

x 
SNRin = 

σE  
whilst for the averaged signal 

x 
SNRavg =  

σµ  √ 
= NSNRin  

The gain in SNR for an averaged signal is therefore directly proportional to the square root of 
the number of averaged samples N. 

1000 samples across a pulse profile results in 32 bits of dynamic range per bin. Using the 
full scale dynamic range of the FPGA implemented accumulator, a maximum value for the total 
number of samples per bin is 2

12
. Given that the FPGA accumulates 6 bit values, the maximum √ 

value for N = 2
26

, corresponding to a maximum increase in SNR of N = 2
13 

 per accumulated 
bin, or an increase of 2

7 
 for the integrated pulse profile. 

7.14.1. Microcontroller Algorithm: ATmega128L (Data Capture). Figure 7.14.1 is 
a simplified flowchart indicating the upper sideband microcontroller algorithms. A more detailed 
flowchart is located in appendix G. Assembler code is located in FPGADataReaderUSB.txt 
in appendix L. The lower sideband microcontroller performs the same algorithm, but does 
not perform FPGA initialisation procedures ie. setting the number of samples per bin and 
clearing the FPGA. A detailed flowchart is located in appendix G. Assembler code is located in 
FPGADataReaderLSB.txt in appendix L. 

The processor can exist in one of three states: ready, enabled or disabled. The ready state 
indicates when the processor can begin an observation at a predefined time. An observation will 
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TCCC = Timing Complete 
Control Character 

Yes 

• Set timer disabled state 
• Enabled UART and send 

TCCC 
Reset s 

Disable External Interrupt 

FIGURE 7.14.1. Simplified flowchart for upper sideband data capture, im-
plemented on the ATmega128L 
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only begin in this state, during which it will be in an enabled state. All serial communication 
is ignored when the processor is enabled, apart from the timing abort signal. Upon completion 
of an observation, the processor is disabled. To place in a ready state, all variables, interrupts 
and data arrays are re-initialised. 

The startup routine initialises interrupts, variables and input and output ports. The system 
is interrupt driven, and so executes a no operation procedure until one of two interrupt flags 
change state: the external interrupt, which is triggered by the FPGA to indicate latched data, 
or the Universal Asynchronous Receiver Transmitter (UART) Receive Complete interrupt. 

The external interrupt algorithm has a maximum runtime of 4 µs, limiting the resolution 
across a pulse profile to a minimum of 4 µs. During the enabled state, the external interrupt is 
triggered by the FPGA, indicating that a new 20 bit accumulated bin value has been latched. 
The data is read and added to the correct bin number. A counter τ indicates the number of 
pulse period integrations to be performed. Once τ = 0, the processor moves into the disabled 
state and a Timing Complete Control Character is sent to the master controller. τ is reset and 
the external interrupt is disabled to ensure no more data is read. 

The UART Receive Complete Interrupt is triggered when data is received. The characters 
sent instruct the microcontroller to perform one of six different procedures. These are: change 
total number of pulse period integrations (τ), change number of bins (BinCount), instruct the 
microcontroller to send the data in each bin, reset the processor and FPGA, abort the current 
observation and change the number of samples per bin to be accumulated (N). Aborting the 
observation will put the processor into a disabled state and require a reset of the processor to 
begin an observation. 

7.15. Starter Module 

The starter module is a standalone unit that initiates pulsar observing experiments, com-
mensurate with a precision 1 pulse per second (1 PPS) station signal. 

7.15.1. Microcontroller Algorithm: AT90S8535 (Starter Module). Figure 7.15.1 is 
a simplified flowchart of the starter module algorithm. Assembler code is located in StarterModule. 
txt in appendix L. A user defined start time for an observation is sent to the starter module 
by the master controller. Immediately prior to the start of an observation, the starter module 
enables an external flip-flop. The output of the flip-flop, connected to the ENABLE FPGA 
connector, is toggled by the 1 PPS signal and the observation begins. Once the processor is 
enabled, the flip-flop is disabled. The ENABLE FPGA signal is cleared by the user once the 
processor is in the disabled state. 

7.16. Digital Backend Assembly 

7.16.1. Schematic Design. To reduce development cost of the prototype, the starter 
module and digital backend module were implemented on the same printed circuit board. 
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Figure 7.16.1 is the schematic design for the digital backend and starter modules, showing 
labelled components and separate functional blocks. Both upper and lower sideband microcon-
trollers read data from the FPGA, whilst the upper sideband also performs initialisation of the 
FPGA via the communications bus. The STARTER MODULE uses an AT90S8535 microcon-
troller. The station signals that are input into the starter module are the 1 PPS, NASA time 
code and an emergency reset button. 

7.16.2. Digital Testpoints. The AD7303 was used at digital signal testpoints. It is 
a serial input, dual voltage output 8 bit digital to analogue converter. The full product 
datasheet can be downloaded from http://www.analog.com/UploadedFiles/Data_Sheets/  
48853020AD7303_0.pdf. 

7.16.3. Manufacture. The printed circuit board design guidelines provided by S.A. Signal 
Electronics [168] were followed in the manufacture of the digital backend module. Standard 

FIGURE 7.15.1. Simplified flowchart for starter module, implemented on 
the AT90S8535 

http://www.analog.com/UploadedFiles/Data_Sheets/
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practice was followed to maintain signal integrity. Printed circuit board silkscreens for the 
digital backend are in appendix F. 

7.17. Pulsar Processor Assembly 

7.17.1. Prototype Specification. The prototype was assembled in a standalone rack with 
single analogue frontend module, digital backend module and an XC2S200 evaluation board. The 
front panel connections included inputs for unregulated analogue and digital power supplies, 
regulated power outputs, a vernier potentiometer for analogue gain control, clock inputs and 
outputs, local oscillator input, quadrature mixer outputs (for anti-aliasing filters), ADC inputs, 
NASA time code input, 1 PPS input, digital to analogue output, an RS232 serial interface, 
signal LEDs and an LCD display. The digital to analogue output was used as an indicator to 
determine the level of saturation at the input of the FPGA. 

7.17.2. Eurocard Specification. The final implementation of the pulsar processor uses 
the eurocard specification, incorporating the DIN 41612 and IEC 603-2 connector standards, 
IEEE 1101 PC board standards and the DIN 41494 and IEC 297-3 rack standards. The imple-
mentation of the eurocard specification makes use of a motherboard into which digital backend 
modules are slotted. The hardware implementation has been redesigned for the use of both 
polarisations. Schematics for the analogue frontend, digital backend, motherboard and starter 
modules are shown in appendix J.1, J.2, J.3 and J.4 respectively. Silkscreens for the printed 
circuit boards are shown in appendix K. 

7.18. Operation 

A general outline of proposed operation of the pulsar processor is given. 

(1) An observation is initiated by the master controller. The user input start time is sent 
to the starter module, which, while not observing, holds the FPGA and microcontroller 
accumulators in a disabled state. 

(2) The master controller initiates a setup control sequence. This sequence clears the 
accumulators in the FPGA and microcontrollers, and enables microcontroller interrupts 
connected to data ready latches on the FPGA. The latches initiate an interrupt routine 
at the end of each bin period, causing the microcontrollers to read the accumulated 
data from the FPGA and store in SRAM. 

(3) The master controller is given three user defined parameters: the number of bins per 
pulse period, the number of accumulated samples per bin and the length of integration. 
To ensure that the period of the total number of accumulated samples is an integer 
multiple of the pulse period, the programmable sampling clock is adjusted about a 
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nominal 32 MHz. The algorithm performed is: 

Nominal sampling period P =  
32 × 106 = 3.125 × 10

−8  1 

Pulsar period 
Pulse period per bin =  

Number of bins 
Pulse period per bin 

Nominal total samples per bin =  
Nominal sampling period P 

Total samples per bin = round(Nominal total samples per bin) 

Total samples per bin × Number of bins 
⇒ Sampling clock frequency =  

Pulsar period 

The sampling clock is set by the master controller. The microcontrollers, after obtain- 

ing observation parameters, will set the FPGA accumulator to the correct number of 

samples per bin. 

(4) Using the NASA timecode, the start of observation is commensurate with the 1 PPS 

station signal. The starter module enables the FPGA and microcontroller accumula-

tors. 

(5) The FPGA accumulates N samples, then flags the microcontrollers to read the accu-

mulated value, which is latched whilst the FPGA continues to accumulate the next 

bin. The microcontrollers have 1 bin period to read and store the accumulated value. 

(6) After a set number of pulse period integrations, the microcontrollers disable themselves 

until they have been reset by the master controller. Once identified and requested to 

do so, the microcontrollers will send data to the master controller. 



1 
σx  = √ 

N 

CHAPTER 8 

Diagnostic Tests and Field Trials 

Testing of the pulsar processor was performed in a laboratory, using an artificial noise source, 
before final installation of the prototype instrument at HartRAO. Test results, together with 
‘first light’ pulsar observations, are presented in this chapter. 

8.1. Statistical Analysis and Diagnostic Tests 

The statistical distribution of an input noise source at each stage of the FPGA signal flow 
was determined and measured. A standard Elsat satellite television receiver was used, bandpass 
filtered (B = 50−100 MHz) and mixed to baseband using an 80 MHz (160 MHz) local oscillator. 
Datastreams were sampled using an Agilent LogicWave E9340A logic analyser. With a maximum 
clock rate of 250 MHz, this instrument performs 32 bit sampling with a 32768 sample buffer 
size. 

8.1.1. Signal Distribution Statistics. The empirical characterisation of a signal in terms 
of a random process model falls within a branch of statistics known as estimation theory. 

The gaussian probability mass function, used to describe the distribution of a discrete white 
noise signal, is 

( x−µx )
2  1 − 

(8.1.1) P(x) =  x √
2πσx 

exp  2σ2 

where v u  u XN 

t i=1 
is the standard deviation of a sample population of N samples, and 

µx  = 
1 
N X

N 

i=1 
xi 

is the population mean ([116], pp. 476-484). 
A white noise model of the quantisation error can be reasonably assumed for a small quan-

tisation step ([138], pp. 415). However, for a small number of bits this approximation is crude 
and departures can be expected from the theoretically predicted statistics (σx  and µx ), caused 
by convolution of a Gaussian quantised signal with a non-Gaussian quantisation error signal. 

The error between the means of a sampled and unsampled stationary stochastic process is 
σx  

x
2

i  

(8.1.2) εµ  = √ 
N 
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For large N, εµ  —* 0. The theoretical values of σx  and µx, calculated for each stage of the signal 

flow, are determined for N = ∞. 

The cumulative distribution function is 

4b(m) = 
Em 

xidx 
i=−∞ 

For a normalised distribution, 4b(∞) —* 1. The histogram, theoretical and measured values for 

4b(m) are referred to as 4b(m)h, 4b(m)Th and 4b(m)M respectively. Dropping the subscript x, the 

theoretical and measured values for the standard deviation and mean are defined as σTh,  σM, 

µTh and µM respectively. 

8.1.2. Artificial Input Noise Source. Figure 8.1.1 is the histogram, theoretical and 

measured probability mass distribution of the 6 bit noisy input signal, which is dominated 

by the Gaussian distribution of a white noise source. For large N = 32768, the histogram 

Normalised Histogram and Probability Mass Function (6 Bit Input Signal) 
(PMF calculated using measured and theoretical σ and µ) 

Bin Value 

FIGURE 8.1.1. Normalised histogram and probability mass distributions 
of the 6 bit noisy input signal x [n].  σTh = σM = 5.48, µTh = 0 and 
µM = 0.076 

closely matches the theoretical probability mass distribution. Normalisation of the histogram is 

performed by 
zi yi = 

N × dx 
where yi is the normalised probability, zi is the original summation, N the total number of 

samples and dx the bin width. 

The choice of bin width seems natural here, with only 63 possible values for a 6 bit input. 

In later stages of the signal flow, however, this choice is based on a compromise between high 
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statistical noise, resulting from too small a value for dx, and low x axis resolution, as a result of 

large dx. 

The error in µM is 

εµ  = 
σTh 

 

= 0.0303 ,/
N  

(see equation 8.1.2), which accounts for 40% of the calculated error µM − µx.  Instrumental 

errors may account for further discrepancies between µM and µTh. 

Normalised Histogram and Probability Mass Functions (4 bit Mixer Input) 
(PMF calculated using measured and theoretical σ and µ) 
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FIGURE 8.1.2. Normalised histogram and probability mass distributions 
of the 4 bit mixer input signal. σTh = 2.740, σM = 2.735, µTh = 0 and 
µM = −0.437 

8.1.3. Input Interface. Figures 8.1.2 and 8.1.3 are the probability mass distributions and 

cumulative distributions of the 4 bit input signal to the complex mixer. Differences between mea- 

sured and theoretical distributions result from a truncation error, which introduces a constant 

offset of f 21  LSB = f0.5 ≈ µM = −0.437 f εµ. 

σTh is calculated as 

σTh = σ
0

Th  x G 

where G is the digital gain of the relevant stage and σ
0

Th 
 the standard deviation of the input 

signal to the relevant stage. For 1 bit truncation, G = 
2

1
. Hence 

1 
σTh = 5.480 x = 2.740 

2 

8.1.4. Digital Complex Mixer. Figure 8.1.4 is the histogram and probability mass dis-

tributions of the 4 bit mixer output signal. With a digital gain of unity, there is little change in 

the signal distribution relative to the input signal. 
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Integration of 4 Bit Input Signal 
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FIGURE 8.1.3. Cumulative distribution of 4 bit mixer input signal. 
(D(oo)h = 1 , (D(oo)Th = 0.9940 and (D(oo)M = 0.9935 
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FIGURE 8.1.4. Normalised histogram and probability mass distributions 
of the 4 bit mixer output signal. σTh = 2.740, σM = 2.709, µTh = 0 and 
µM = −0.457 
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8.1.5. FIR Filters. The digital gain of the real filter for a white noise input is 

G = 

v u  u XM 

t i=1 
Wi

2 
 = 1282 

~ σTh = G x σ
0

Th  = 1282 x 2.740 = 3513 

Normalised Histogram and Probability Mass Functions (18 Bit Real Filter Output) 
(PMF calculated using measured and theoretical σ and µ) 
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FIGURE 8.1.5. Normalised histogram and probability mass distributions 
for the 18 bit real filter output signal. σTh = 3513, σM = 3030, µTh = 0 
and µM = 121 

Figure 8.1.5 is the histogram and probability mass distributions of the 18 bit real filter 
output signal. The filter output is a narrowband signal and correlated due to the filter operation 
y[n] = 

~M−1 
i=0 Wix[n — i], where y[n] is the filter output. It is therefore not strictly a Gaussian 

process, and its probability distribution law will not be preserved through the linear system, 
resulting in larger discrepancies between theoretical and measured distributions. 

Choosing dx = 1000 allows sufficient x axis resolution and a reduction in statistical noise by 
a factor 31.6. The limiting values for 4D(oc) —* 1, with the slope of 4D(m)M steeper than 4D(m)Th 

since to σTh > σM. 
The power spectrum of the real filter output, shown in figure 8.1.6, is obtained by the 

summation of 8x 4096 point Discrete Time Fourier Transforms (DTFT). Smoothing is performed 
using an eight point moving average. Using a flat frequency spectrum for the noisy input signal, 
the filter response 

Y (Ω)  
H(Ω) = 

X (Ω) = 
Y (Ω) 

confirms the theoretical filter response in figure 7.11.2. 
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The white noise digital gain of the imaginary filter is G = 1218. Therefore 

σTh = G × σ
0

Th  = 1218 × 2.740 = 3337 

8 Point Moving Average of Fourier Transform 
Real Filter Output 

Angle [rad] 

FIGURE 8.1.6. Smoothed 8 × 4096 point DTFT of real filter output 

Normalised Histogram and Probability Mass Functions (18 Bit Imaginary Filter Output) 
(PMF calculated using measured and theoretical σ and µ) 

Bin Values 

FIGURE 8.1.7. Normalised histogram and probability mass distributions 
of 18 bit imaginary filter output signal. σTh = 3337, σM = 3072, µTh = 0 
and µM = 1.77 
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Figure 8.1.7 is the histogram and probability mass distributions of the imaginary filter output 
signal. Figure 8.1.8 is the smoothed 8 x 4096 point DTFT of the imaginary filter output Y (Ω), 
which is used to confirm the theoretical response of the imaginary filter in figure 7.11.2. 

8 Point Moving Average of Fourier Transform 
Imaginary Filter Output 

Angle [rad] 

FIGURE 8.1.8. Smoothed 8 x 4096 point DTFT of imaginary filter output 

8.1.6. Sideband Separation. The sideband separation (adder and subtractor) has a dig- 
ital gain G = 

-\/
2 . Therefore 

-\/ 
σTh = G x σ 0 

avg = 2 x 3425 = 4844 

where σ 0
avg  is the linear average of σTh  for the real and imaginary filters. The linear average is 

used since there is no loss of total signal power ie. where two signals undergo total construction 
in the adder, they will undergo total destruction in the subtracter. Hence 

Powerin  = Powerout 

==)~ σTotalin 
 = σTotalout 

Figure 8.1.9 is the histogram and probability mass distributions of the 18 bit adder output. The 
upper sideband separation is shown in the smoothed 8 x 4096 point DTFT of the adder output 
in figure 8.1.10. There is a —8 dB noise rejection between adjacent channels as a result of the 3 
dB increase in peak power in the adder and —5 dB DC block in the real filter. 

Figure 8.1.11 is the histogram and probability mass distributions of the 18 bit subtracter 
output signal. The 5% difference in σM between the subtracter and adder stage, and approximate 
anti-symmetry in values for µM , is the result of a small DC offset in the analogue real input 
signal. The lower sideband separation is shown in figure 8.1.12. 
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Normalised Histogram and Probability Mass Functions (18 Bit Adder Output) 
(PMF calculated using measured and theoretical σ and µ) 

Bin Values 

FIGURE 8.1.9. Normalised histogram and probability mass distributions of 
18 bit adder output signal. σTh = 4844, σM = 4111, µTh = 0 and µM = 110 

8 Point Moving Average of Fourier Transform 
Adder Output 

Angle [rad] 

FIGURE 8.1.10. Smoothed 8 × 4096 point DTFT of adder output 
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Normalised Histogram and Probability Mass Functions (18 Bit Subtracter Output) 
(PMF calculated using measured and theoretical σ and µ) 
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FIGURE 8.1.11. Normalised histogram and probability mass distributions 
of 18 bit subtracter output signal. σTh = 4844, σM = 4319, µTh = 0 and 
µM = −109 
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FIGURE 8.1.12. Smoothed 8 × 4096 point DTFT of subtracter output 
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8.1.7. Detection. Bits [9:14] of the upper and lower sidebands are used as input to the 

squarer, resulting in G = 
29
1  

1 
⇒ σTh = G × σ I 

T h = 
29 × 4111.08 = 8.03 

where σTh  is the theoretical standard deviation of the input signal to the squarer. σ
I

M 
 of the 

adder output is used as opposed to σ
I

Th 
 in order to adjust for the cascaded accumulation of offset 

errors. 

The squared signal distribution is determined by making the substitution y = x
2 
 in the 

distribution 

P(x) =  √  202x 

2πσx  

1 — 
exp 

x
2  

So 

2P (x) 
P

I
(y)  =  dy  

√
2πyσx  

which describes a Chi squared distribution with σy  = σTh = 
√

2σ
2

x  [132]. 

The squarer implements a linear scaling of 1 bit due to the unsigned output. Therefore ~ 
 1 G = 
25 × 2, and so 

√ 
σTh = 2 × (G × σ I 

Th)2 

Figure 8.1.13 is the histogram and probability mass distributions of the squarer output where 

σ I 
Th = σ

I

M 
 and µ

I

Th 
 = µ

I

M
. 

8.1.8. Post-Detection Integration. Writing the accumulated output as z = 
EN

i=1 xi , 

then by the Central Limit Theorem, for N >> 1 

where 

1 
P(z) =  √

2πσTh(z) 
exp 

( z−µT h( z ))2  

20
2  
T h( z ) 

µT h(z) = N × σ2 
T h(x) 

and √ 
σTh(z) = 2N × ασ2

Th(x) 

The constant α is determined by the number of channels in the total bandwidth. σTh(x) = G × 
σ I
Th(x) 

where  σ I
Th(x) = 8.029 is the standard deviation of the squarer input signal. Accumulation 

for N = 2
14 

 − 9, with α = 8, gives 
√   

σTh(z) = 2M × ασ2
Th(x) = 206 × 10 

and 

µTh(z) = 660 × 102 

⇒ P
I
(y)  = 

dx 
1 — y 

exp 202x 
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Normalised Histogram and Probability Mass Functions (6 Bit Squarer Output) 
(PMF calculated using measured and theoretical σ and µ) 
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FIGURE 8.1.13. Normalised histogram and probability mass distributions 
of the 6 bit squarer output signal. σTh = 5.70, σM = 6.13, µTh = 4.03 and 
µM = 4.24 

Normalised Histogram and Probability Mass Functions (20 Bit Accumulated Output) 
(PMF calculated using measured and theoretical σ and µ) 

Normalised 20 Bit 
Accumulated Output 

Fitted Distribution 
(Measured) 

Fitted Distribution 
(Theoretical) 

FIGURE 8.1.14. Normalised histogram and probability mass distributions 
of the accumulated squarer output signal. σTh( z )  = 206 × 10, σM( z )  = 
232 × 10, µTh(z ) = 660 × 10

2 
 and µM( z ) = 687 × 102 
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Figure 8.1.14 is the histogram and probability mass distributions of the accumulated squarer 
output signal. The 10% difference between aTh(z) 

 and 
 am(z)  is a result of non-Gaussian processes 

in the quantisation error signal, a narrowband digital filter response and uneven frequency 
response of the bandpass filter used at IF. Values for pm(z )  do not extend into bit 17 of the 
accumulator, allowing for a 3 bit overflow. 

8.2. Bandpass Separation 

Period integrations were performed using an injected CW signal from a sweep oscillator 
(HP 8690B) to measure the bandpass and sideband separation of the processor. Triggering the 
sweep oscillator at the beginning of each period, the CW signal is swept through the IF signal 
bandwidth at a rate 

B
t  , where B is the signal bandwidth and t the pulse period. The resultant 

integration produces the frequency response of the associated sideband channel as each bin is 
linearly mapped with frequency 

v = Bin
Total 

B 
x Bin — DC„ 

where B is the total bandwidth swept through, BinTotal  is the total number of bins, Bin is the 
bin number to be mapped and DC„ is the offset frequency. 

Using an integration period of 10 seconds, with 200 bins across a pulse period of 100 ms, the 
upper and lower sidebands were measured for a 0 radian complex mixer, shown in figure 8.2.1. 
The bin offset is due to an incorrect integration start time. 

Setting k = —3, —2, —1, 0, 1, 2, 3 for the 
kπ
4  complex mixer (see section 7.10.1), repetition of 

the test allowed for the measurement of upper and lower sidebands of all narrowband channels. 
The composite passband is shown in figure 8.2.2, artificially rotated in order to shift 0 radians to 
bin 100. The narrowband channels do not spread across the entire composite bandpass since a 
f ir radian digital mixer was not implemented, due to the use of the two outer channels as guard 
bands. There is sufficient separation between the upper and lower sidebands, approaching the 
theoretical -8 dB limit for the f 

3π
4  radian mixer. The inner sidebands fall short of this theoretical 

limit by approximately 2 dB. This could be due to measurement errors and the effect of the 
guard bands. 

Separation between narrowband channels is approximately 3 dB. The inconsistency in sep-
aration between channels is a result of an uneven frequency response in the IF bandpass filter. 
Furthermore, the sweep oscillator was in need of service, with irregular amplitude modulations 
of the CW signal occurring during measurement. 

8.3. Field Trials 

The prototype processor with a 2 x 2 MHz bandwidth, consisting of a starter module, ana-
logue frontend and digital backend, was installed at HartRAO for a period of two weeks for final 
adjustments and observations. 

De-noising of the received pulse integration is performed using wavelet analysis, where thresh-
olds are set using a heuristic variant of Stein’s Unbiased Risk principle [59]. Each sideband is 
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normalised before a full passband is compiled. The parameter τ corresponds to the number of 

pulse integrations. 

8.3.1. ‘First Light’ Observations. Figures 8.3.1 to 8.3.11 are observations of a sub-

population of pulsars regularly monitored at HartRAO. Figure 8.3.1 shows the upper and lower 

USB Straight Through Mixer 
(200 Bins, N = 0x1F40, 100 Period Integration) 

Bins 

LSB Straight Through Mixer 
(200 Bins, N = 0x1F40, 100 Period Integration) 

Bins 

FIGURE 8.2.1. Frequency response of upper and lower sidebands, ob-
tained using the 0 degree mixer and swept oscillator. Integration period = 
10 seconds, oscillator sweep period = 0.1 second, 200 bins. 
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sidebands before integration into a single profile. The rest of the figures show integrated profiles 
only. 

Since the pulsars PSR B0740-28 and PSR B1054-62 are at the limit of the test instrument’s 
sensitivity, their integrated pulse profiles, shown in Figures 8.3.2 and 8.3.4, are severely affected 
by stochastic fluctuations. 

8.3.2. Calibration Measurements. Multiple observations of PSR 0833-45 and PSR 1641-
45 were made for noise performance and individual channel bandwidth tests. 

8.3.2.1. Noise Performance. Figure 8.3.12 shows integrated pulse profiles of PSR 0833-45 
for different integration periods. Increases in the SNR are within 15% of those predicted by the 
radiometer equation. 

8.3.2.2. Individual Channel Bandwidths. Figure 8.3.13 shows individual channel bandwidth 
tests, based on observations of PSR 1641-45, using different complex mixers. The integrated 
pulse profile for the 

3π
4  mixer shows a decrease in SNR, as well as a double peak. This is due 

to an erroneous update of the sampling frequency during the observation. Time constraints did 
not allow for this observation to be repeated. 

8.4. Conclusion 

Statistical analysis of each stage of the pulsar processor, using an artificial input noise 
source, seemed to agree with simulator predictions. This has allowed for accurate predictions 
of bit growth in the signal processing chain, thereby ensuring that the system will not saturate 
under normal operation. 

All Passbands 
(200 Bins, N = 0x1F40, 100 Period Integration) 

LSB 
-135 Mixer 

USB LSB 
-90 Mixer 

USB 
LSB 

-45 Mixer 
USB 

LSB 
Straight Mixer 

USB LSB 
45 Mixer 

USB LSB 
90 Mixer 

USB USB 
135 Mixer 

LSB 

Bins 

FIGURE 8.2.2. Composite bandpass of pulsar processor. 0 radians has been 
artificially shifted to Bin 100. 
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Complex digital mixers were shown to efficiently shift the receiver passband by units of π
4 

with little or no adverse effects. 
Field trials, using a prototype pulsar processor with 2 × 2MHz channels, took place at 

HartRAO over a period of two weeks. While a number of pulsars were at the sensitivity limit of 

Time [s] 

FIGURE 8.3.1. Compiled profile of PSR B0736-40 integration with τ = 
3000, Bins = 993 and SNR = 0.471 dB. Top figure is the upper sideband, the 
middle figure is the lower sideband, and the bottom figure is an integrated 
pulse profile. Thick line is the de-noised integrated profile. 
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0.1 0.12 0.14 0.16 0.18 
Time  [s] 

FIGURE 8.3.2. Integrated profile of PSR B0740-28. τ = 5000, Bins = 1000 
and SNR = 0.321 dB. Thick line is the de-noised integrated profile. 
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FIGURE 8.3.3. Integrated profile of PSR B0833-45. τ = 1000, Bins = 200 
and SNR = 1.738 dB. Thick line is the de-noised integrated profile. 
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
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FIGURE 8.3.4. Integrated profile of PSR B1054-62. τ = 3500, Bins = 1000 
and SNR = 0.234 dB. Thick line is the de-noised integrated profile. 
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FIGURE 8.3.5. Integrated profile of PSR B1240-64. τ = 4000, Bins = 1000 
and SNR = 0.622 dB. Thick line is the de-noised integrated profile. 
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Time  [s] 

FIGURE 8.3.6. Integrated profile of PSR B1323-58. τ = 3000, Bins = 1000 
and SNR = 0.520 dB. Thick line is the de-noised integrated profile. 
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FIGURE 8.3.7. Integrated profile of PSR B1557-50. τ = 8000, Bins = 1000 
and SNR = 0.486 dB. Thick line is the de-noised integrated profile. 
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FIGURE 8.3.8. Integrated profile of PSR B1642-03. τ = 3600, Bins = 1000 
and SNR = 0.722 dB. Thick line is the de-noised integrated profile. 
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FIGURE 8.3.9. Integrated profile of PSR B1641-45. τ = 200, Bins = 1000 
and SNR = 0.925 dB. Thick line is the de-noised integrated profile. 
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FIGURE 8.3.10. Integrated profile of PSR B1929+10. -r = 5000, Bins = 
1000 and SNR = 0.598 dB. Thick line is the de-noised integrated profile. 
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FIGURE 8.3.11. Integrated profile of PSR B1939+16. -r = 3200, Bins = 
1000 and SNR = 0.891 dB. Thick line is the de-noised integrated profile. 
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Time [s] 

FIGURE 8.3.12. Noise performance test, based on integrated pulse profiles 
for PSR 0833-45. From top to bottom, τ = 100, 500, 1000 and 5000, Bins 
= 1000 and SNR = 1.139 dB, 1.266 dB, 1.560 dB and 1.802 dB respectively. 
The increases in SNR are within 15% of those predicted by the radiometer 
equation. 
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FIGURE 8.3.13. Individual channel bandwidth tests, based on multiple 
observations of PSR 1641-45 using different complex mixers. τ = 200, Bins 
= 1000. Mixers used are, from top to bottom, left to right: 0, 
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the prototype, namely PSRs B0740-28 and B1054-62, measurements of pulsars in the HartRAO 
catalogue confirmed and proved the correct operation of the new pulsar processor. 



CHAPTER 9 

Conclusion and Recommendations 

This project aimed to consolidate and extend what we know about the dynamical behaviour 
of isolated pulsars. The long term pulsar monitoring program at HartRAO has produced timing 
residual data that has resulted in the selection and fitting of candidate pulsars with a torqued 
precession model. The extension of the monitoring program is used as motivation for the design 
and development of a new digital pulsar processor for HartRAO. The design methodology and 
implementation of the processor, using COTS components and reprogrammable logic to ensure 
sufficient generality in the instrument and to complement the HartRAO observing procedure, 
has resulted in a multi-purpose digital frontend receiver that could be used for future large scale 
array telescope designs. 

9.1. Braking Pulsars 

A literature survey found the current understanding of braking pulsars was incomplete, with 
various inconsistencies in the concept of a braking law being revealed. A distinction between an 
observable and theoretical braking index provides an understanding to the discrepancy between 
theoretically expected and measured values. Measurements of the braking index for pulsars 
monitored at HartRAO were found to be heavily contaminated with timing noise. As a result, 
measured braking indices ranged between large positive and negative values, with only two 
pulsars having physically realistic values in the range 0 < nobs < 10. The existence of a braking 
mechanism, in the form of an internal or external viscous torque, that could result in extreme 
values is improbable. The effects of a viscous torque may be better analysed by the introduction 
of a dynamic frictional coefficient in a precession model, which may lead to phenomenological 
changes in the observed timing residuals. 

The dynamical behaviour of precessing torqued pulsars was analysed analytically and nu-
merically. The characteristic effects of magnetic field strength, inclination of the magnetic axis, 
mass distribution, initial angular momentum and vacuum radius on the rotational behaviour of 
pulsars were determined. The introduction of torques due to a magnetic field adds a second point 
of attraction in the configuration phase space upon which the nature of precession, Eulerian or 
radiative or coupled, is dependent. Given the effect of coupled magnetic and crustal stresses 
on the rotational behaviour of pulsars, it was determined that the observed timing residual be-
haviour of precessing torqued pulsars would be characteristic of precessing asymmetric bodies. 

Using the long dataspans available at HartRAO, previously identified cyclic behaviour in 
the observed timing residuals of certain pulsars led to the selection of candidate pulsars to be 
used to test a torqued precession model. It was found that, whilst the quality of timing data 

157 
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is dependent on the accuracy of the fitted ephemeris, the observed timing residuals of PSRs 
B1642-03, B1323-58 and B1557-50 could be fitted by a torqued precession model. The physical 
parameters derived from a manual fitting of the model to the observed timing residuals are listed 
in table 9.1.1. 

TABLE 9.1.1. Fitted pulsar parameters 

PSR B1642-03 PSR B1323-58 PSR B1557-50 
I(3)-I(2) [10

-10
] —21.3674029845679 1.129041877345285 4.99815017433773 61 = I(3) 

I(2)-I(1) [10
-10

] 61 100 x 61 61 62 = I(2) 
B [T] 1.1 x 10

9  2.6 x 10
8  2.25 x 10

8  

χ [deg] 80.1
0 

 89.89
0 

 89.84
0 

 

θ(0) [rad] 0.937 0.022 0.010 

PSR B1642-03 was modeled as a prolate rigid body. It is unlikely that this is the original 
configuration of the pulsar, since the crust is partially elastic at birth and would yield to recon-
figurations due to the minimisation of elastic energy. It is most likely to have resulted, after 
sufficient cooling, from a discrete structural event such as a starquake. PSRs B1323-58 and 
B1557-50 are both modeled as oblate rigid bodies, which is the generally expected configuration 
for self gravitating, rotating bodies. The magnitude of the fitted B fields for these two pulsars 
are, in general, the same order of magnitude as those values listed in the ATNF Pulsar Cata-
logue [81]. The fitted value of B for PSR B1642-03 is an order of magnitude greater than the 
catalogued value. Including the effect of the fitted values for χ in the model results in calculated 
pulse period derivatives that are comparable with catalogued values for all three pulsars (see 
table 2.6.1). The large wobble angle 0(0) for PSR B1642-03 would need to have resulted from 
either a massive structural event, such as a collision, or the original configuration of the pulsar 
at birth. Speculation on the large wobble angle is not likely to be confirmed any time soon. 

It is probable that, with further monitoring, the nature of cyclic variations in the timing 
residuals may change due to more accurate ephemeri describing the spin down. 

The implementation and fitting of the torqued model is limited by available computer pro-
cessing power. Although only six parameters were adjustable for data fitting (magnetic field B, 
precession parameter P fp, magnetic inclination angle χ, initial wobble angle 0(0), oblateness 
pro and z), and two for a minimum Chi squared approximation ([B — P fp] and [χ — 0(0)]), the 
number of explicit variables is 10 for a torqued model with a braking index of 3. The use of a 
high performance computing cluster would allow for multi-variate optimisation. Using such a 
facility, in the future further braking mechanisms could be included into the model for the study 
of spin down behaviour. 

9.2. Remarks on Modeling Precession 

Nonlinear multi-variate optimisation is required for the fitting of timing residuals with a 
torqued precession model. The Levenberg-Marquadt algorithm is shown to be an effective 
strategy for a broad spectrum of optimisation problems [130]. With an automatic method 
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of parameter optimisation, the precession model provides a method for the identification of 
braking mechanisms. The standard dipole torque has been adopted for the purposes of this 
thesis. This could be adapted to accept different forms of the braking mechanism, including a 
dynamic frictional torque, which would result not only in changes in the spin down of the pulsar, 
but also the characteristic timing residual behaviour of precession. 

Discontinuities in timing residuals, resulting from a discontinuous piecewise function cal-
culated for 01 < χ < 02, could be misinterpreted as regular glitches in current observing pro-
grammes. Damped precession has previously been identified as a result of starquake induced 
glitches [65], resulting in inter-glitch precessional behaviour. However, for certain time inter-
vals between discontinuities for 01 < χ < 02, the observed timing residuals may not show any 
evidence of precession. Because of the doubling of processing power required in order to fit a 
piecewise discontinuous function, this has not been explored in depth in this thesis. Further-
more, the detection of a change in precession mode (radiative to Eulerian), which would result 
in either discontinuous or long term changes in the pulsar period, is left for future work. 

For the purposes of this thesis, an isolated neutron star was considered, rotating in vacuo 
with a fixed vacuum radius. This radius was chosen with limited knowledge and evidence of 
the actual length of interaction between the near field and far field radiation zones. Magneto-
spheric effects may strongly alter the precessional behaviour, including temporal distortions in 
the radiative torque, an effect that has not been taken into account. The effect on precession 
due to variations in the pulsar period derivative, although not significantly altering the observed 
precessional behaviour, was removed from the fitted timing residuals, but should be included in 
future modeling. 

9.3. Future Pulsar Processor Implementation 

The original pulsar processor described in chapter 6 is implemented as a hybrid filterbank 
receiver, with digital backend and analogue frontend. Digital backend modules perform an 
eight way digital division of each 32 MHz IF slice mixed to baseband by the analogue frontend 
modules. The overall sensitivity of the new processor is a factor 3 improvement of the current 
HartRAO pulsar processor, which results in a threefold increase in the detectable pulsar sub-
population. A large fraction of the total capital outlay for the new processor is dependent on 
the number of digital backend modules used. 

Cost effectiveness and efficiency of the pulsar processor improves almost sevenfold with the 
implementation of a polyphase filtering system in place of the eight FIR digital filters. However, 
implementation of the polyphase system was stalled by problems encountered with the Xilinx 
ISE 4.2i Development System, which was used for the initial development of the polyphase 
filter. Whilst simulation of the design performed to specification, including verification of the 
design with the Xilinx company, the automatic bit file generation, intended for uploading to 
the FPGA, contained errors and caused the system to be unusable. This section describes 
the design of a polyphase filter system that is to be implemented using the Xilinx ISE 6.3i 
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Development System. This software is free of the errors experienced while using the Xilinx ISE 
4.2i Development System. 

9.3.1. Polyphase Filtering System. A comprehensive analysis of polyphase and multi-
rate 1  filtering is given by Vaidyanathan (1992) [172]. 2 3 4 

GND 

FIGURE 9.3.1. FPGA schematic design for top heirarchy of polyphase fil-
tering system. The design is split into three functional blocks: input inter-
face, polyphase filters and a Fast Fourier transform. The input interface 
removes DC offsets and outputs a 5 bit, two’s complement signal. The

2 4 5 
polyphase filter system includes eight subfilters, each with a 5 bit output 
signal. The radix8 FFT performs a 4 × 2 = 8 point FFT with eight complex 
output signals. 

Figure 9.3.1 is the schematic design for a polyphase filter system and 8 point complex FFT, 
which produces the complex components of each narrowband channel in the receiver’s composite 
passband. The design is split into three functional blocks: an input interface, polyphase filter 
and a 4 × 2 = 8 point FFT. 

The polyphase filter system, shown in figure 9.3.2, comprises eight serial distributed arith-
matic FIR subfilters. These are area efficient filters, which need only produce an output word 
every eight clock cycles. The input signal is multiplexed across the filters by a 3 bit selector. 
The coefficients of each subfilter, n = 1...8, are 

W
0

n[i] = W [8 × i + n] 

where i = 0...4, i an integer and W are the filter coefficients used in the original FIR low pass 
filter design (see figure 7.11.1). 
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The 8 point FFT is partitioned into a 4 point and 2 point FFT (see appendix I.1), based 

on the Cooley Tukey algorithm for N = r1r2 = 4 × 2 = 8 [30], with calculated weights listed 

in table I.2.1. Figure 9.3.3 is the schematic design for the 4 point FFT subsystem, which is 

composed of three functional blocks: the input interface, 4 point FFT weight multipliers and 

the output interface (see appendix I.1 for the 2 point FFT subsystem). The eight complex input 

signals are fanned out to four signal paths, each of which is multiplied by a 2 bit rotating phasor. 

Similarily, the 2 point FFT uses two signal paths with multiplication by a 3 bit phasor. Phasor 

weights for the FFT subsystems are listed in table 9.3.2. 

Repetition of weights in each branch increases the scope for optimisation. Schematic designs 

of the weight multipliers for both the 4 point (sets 1 to 4) and 2 point (sets 1 and 2) FFT 

subsystems are shown in appendix I.1. Whilst the 4 point FFT phasor requires the swapping of 

complex components and simple addition and subtraction, the 2 point FFT makes use of lookup 

table based multiplication. 

1 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 

FIGURE 9.3.2. FPGA schematic design of polyphase filter. The phased 
clock signal, connected to the new data (ND) pins of each filter, effectively 
multiplexes the input signal across the polyphase subfilters. The 15 bit 
output signal is truncated to 5 bits and latched. 
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FIGURE 9.3.3. FPGA schematic design of 4 point FFT. The system is 
separated into three functional blocks: the input interface, the 4 point FFT 
weight multipliers and the output signal interface. The eight complex input 
signals are multiplexed between four signal paths. The signal is multiplied 
by a rotating weighted phasor, and demultiplexed by the output interface, 
where the signal is latched. Data flip-flops are used to insert serial delays 
on the clock phasor. 
TABLE 9.3.2. Weights for each signal branch of 4 point and 2 point FFTs 

Phasor Values 
4 Point FFT 

Branch 1 +1,+1,+1,+1 
Branch 2 +1,-j,-1,+j 
Branch 3 +1,-1,+1,-1 
Branch 4 +1,+j,-1,-j 

2 Point FFT 
Branch1+1,+1,+1, 1 1 1 1 − j √2,+1,-j,+1,−  √

2 
√

2 − j √2 
Branch2 1 1 1 1 +1,-1,+1,− √

2
+ j √2,+1,+j,+1,  √

2
+ j √2 
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9.3.2. Concluding Remarks. The future implementation of a polyphase based pulsar 
processor will place high emphasis on its performance as a multi-purpose radio astronomy dig-
ital radiometer. The ability to produce low cost scientific instrumentation is important to the 
construction of large scale array telescope designs such as the Square Kilometer Array (Interna-
tional, http://www.skatelescope.org) and associated concept designs, where multiple beam 
forming will require high speed, reprogrammable digital instrumentation. 

The South African Square Kilometer Array team (http://www.ska.ac.za) have recently 
embarked on a program to design, develop and build an SKA science demonstrator, known as 
the Karoo Array Telescope (KAT), to be commissioned by the end of 2008. The polyphase 
based pulsar processor is to form the basis of a fully digital frontend receiver for KAT, with 
a total bandwidth of 500 MHz, maximum configurable frequency resolution of 125 KHz per 
channel (for up to 4000 channels) and time resolution of 0.1µs. Vivaldi elements will receive 
dual polarisation, from which full Stokes parameters will be produced by the frontend receiver. 
A costing analysis for the system forms part of a risk reduction project currently being defined. 

http://www.skatelescope.org
http://www.ska.ac.za


APPENDIX A 

Pulsar Mechanics 

A.1. Determination of Euler Equations 

The motion of a rigid body about a fixed point O is considered. The angular momentum in 
tensor form is written as 

J~ = Iγµωγ  eµ  

where eµ  is any set of basis vectors for a given reference frame. Using a body frame removes 
time dependencies in the moment of inertia Iγµ . The equation of motion is then found to be 

d J~ 
dt 

τ~ 

= 
dr

(I
γµ

ωγeµ)
d  

= Iγµ ˙ωγeµ + Iγµωγ ėµ  

= Iγµω̇γeµ  + Iγµωγω
α

µ eα  

= Iγα
ω̇γeα  + Iγµωγω

α

µeα  

⇒ τ
α 
 = Iγµ ω̇γ  + Iγµωγω

α

µ  

which is the tensor form of Euler’s equations. 

A.2. Co-ordinate Transformations 

In an attempt to describe the motion of a rigid body, three independent parameters are 
required to describe the orientation of the body. The most commonly used are known as the 
Euler angles. 

It is possible to move from a cartesian coordinate system to another, such as from an inertial 
space frame of reference to an body based frame of reference, by means of three sets of rotations 
in a given sequence. Each transformation matrix describes a rotation by a fixed angle, called 
an Euler angle. The first rotation consists of a counterclockwise rotation of the space axes, 
described by the basis Ei , about E3 by a fixed angle φ. The new set of axes ẽi , is obtained by 
a transformation matrix a

j

i 
 such that 

 

 ˜ei = a
j

i  E j a
j

i  =  

cos φ sin φ 0 
− sin φ cos φ 0 

0  0 1 
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A second rotation consists of a counterclockwise rotation of ẽi about ẽ1 by a fixed angle θ. The 
new set of axes ni is known as the nodal axes which describe the nodal frame. Thus 

 

 ni = b
j

i akjEk b
j

i 
 =  

1 0 0 
0 cos θ  sin θ 
0 — sin θ cos θ 

 

 

The third rotation consists of a counterclockwise rotation of the nodal axes ni about n3 by a 
fixed angle ψ. The new set of axes ei describes the body frame. 



cosψ sin ψ 0 
 ei = c j 

i b
k 
j  a

l 
kEl  c j 

i =  — sinψ cosψ 0 
0  0 1 

The matrix c
j

i  b
k

j  a
l

k 
 to transform the system from an inertial space from to a body frame is then 

 

c
j   
i b

k

j  a
l

k  =  

cos ψ cos φ — sin ψ sin φ cos θ cos ψ sin φ + sin ψ cos φ cos θ  sin ψ sin θ 
— sin ψ cos φ — cos ψ sin φ cos θ — sin ψ sin φ + cos ψ cos φ cos θ cos ψ sin θ 

sin φ sin θ — cos φ sin θ cos θ 
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Figure B.1.1: Calculated period derivative of PSR B1642-03 
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Figure B.1.3: Calculated path of ~ω(t ) for PSR B1642-03 
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Figure B.2.1: Calculated period derivative of PSR B1323-58 
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Figure B.2.4: Chi squared surface for constant B = 2.6 × 10
8 
 [T], Pfp = 49000 [days] 

Figure B.2.5: Chi squared surface for constant χ = 89.89 [deg] and θ(0) = 0.022 [rad] 
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Figure B.2.6: Calculated phase residual for best fit of PSR B1323-58 
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Figure B.2.7: Calculated ΔP for best fit of PSR B1323-58 timing residuals 
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Figure B.2.8: Calculated d( ΔP)  
dt  for best fit of PSR B1323-58 timing residuals 
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Figure B.2.10: Spectrum of ΔP calculated for best fit of PSR B1323-58 timing residuals 
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Figure B.3.4: Chi squared surface for fitting of PSR B0736-40, constant B = 1.6 × 10
9 
 [T] and 

P fp = 3800 [days] 
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Figure B.3.5: Chi squared surface for fitting of PSR B0736-40, constant χ = 12.00 [deg] and 

θ(0) = 0.096 [rad] 
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APPENDIX C 

Signal Processing 

C.1. Quadrature Mixing and Sideband Separation 

The Fourier transform of x(t ) is 

(C.1.1) X (ω) = XL(ω ) + XU (ω ) 

where XL(ω) and XU(ω) are the lower and upper sidebands. The input signal is 

(C.1.2) 
˜
X (ω) = X (ω + ωc ) + X

*
(−ω − ωc) 

in terms of standard signal theory. 
The Fourier components for cos(ωct) are 

δ(ω + ωc ) + δ(ω − ωc ) 

and for sin(ωct ) are 
j [δ(ω + ωc) − δ(ω − ωc)] 

The real and imaginary outputs are 

Yr (ω )  = 
˜
X (ω ) ∗ [δ(ω + ωc) + δ(ω − ωc)] ... convolution with cos(ωct ) 

Yi (ω )  = 
˜
X (ω ) ∗ j [δ(ω + ωc) − δ(ω − ωc)] ... convolution with sin(ωct ) 

By substituting in equations C.1.1 and C.1.2, the real output is 

(C.1.3) Yr (ω )  = [X (ω + ωc) + X
*
(−ω − ωc )] ∗ [δ(ω + ωc) + δ(ω − ωc)] 

(C.1.4) = X (ω + 2ωc) + X
*
(−ω) + X (ω ) + X

*
(−ω − 2ωc ) 

(C.1.5) = X (ω ) + X
*
(−ω ) post anti aliasing filter 

(C.1.6) = XL(ω ) + XU (ω ) + X
*

L(−ω ) + X
*

U(−ω ) 

while for the imaginary output is 

(C.1.7) Yi (ω)  = [X (ω + ωc) + X
*
(−ω − ωc)] ∗ j [δ(ω + ωc) − δ(ω − ωc)] 

(C.1.8) = j [X (ω ) − X
*
(−ω ) − X (ω + 2ωc) + X

*
(−ω − 2ωc)] 

(C.1.9) = j [X (ω ) − X
*
(−ω )] post anti aliasing filter 

(C.1.10) = j [XL(ω ) + XU(ω ) − X
*

L
(−ω ) − X

*

U
(−ω )] 
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The Hilbert transform of Yi (ω) is 
˜
Yi (ω )  = j [( j ) XL(ω) + (-j ) XU(ω ) - (-j ) X

∗

L(-ω ) - ( j ) X
∗

U(-ω )] 

= -XL(ω) + XU(ω ) - X ∗

L(-ω) + X
∗

U(-ω ) 

C.2. FIR Filter Coefficients 
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TABLE C.2.1. Quantised filter coefficients for real and imaginary filters 

Real Filter Coefficient Index Imaginary Filter 

-4 1 1 

-5 2 3 

-8 3 5 

-14 4 8 

-25 5 9 

-42 6 7 

-63 7 -2 

-86 8 -21 

-108 9 -52 

-123 10 -97 

-123 11 -154 

-103 12 -217 

-59 13 -279 

8 14 -329 

96 15 -360 

197 16 -361 

300 17 -330 

392 18 -265 

461 19 -172 

498 20 -60 

498 21 60 

461 22 172 

392 23 265 

300 24 330 

197 25 361 

96 26 360 

8 27 329 

-59 28 279 

-103 29 217 

-123 30 154 

-123 31 97 

-108 32 52 

-86 33 21 

-63 34 2 

-42 35 -7 

-25 36 -9 

-14 37 -8 

-8 38 -5 

-5 39 -3 

-4 40 -1 



APPENDIX D 

Low Frequency Concept Design 

180 



Return to Main Loop 

External Interrupt II. 

Out PORTB, Ox00 
Out PORTC, y[n] 
Set ADC Interrupt 
Flag 

( SRAM  
x[0] . x[N] 

VV[0] .VV[N/2] 
y[n] 

Startup Routine  
Initialise SRAM 
Set Timer=Tsamp=0.5ms 
Initialise Interrupts 

• Out PORTB, Oxff 

Return to Main Loop 

Timer Interrupt 

Return from 
Interrupt 

SRAM 
y[n] • Se y[n]=yin] 

• 

•   
/Shift Loop Start\  
• Set 1=0 

Yes 

Shift Loop End  
• Set x[n]=x'[n] 

•   
/MAC Loop Start  

Set 1=0 

SRAM 
x[n-i] 
VV[i] 

No 

Yes 
•   

MAC Loop End  
y'[0:MS13]->y[MSB-8:MSB] / 

D.2. FLOWCHARTS 184 

D.2. Flowcharts 
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Figure D.2.1: Flowchart for real filter implemented on an AT90S8535 microcontroller 
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