- Title
- Community structure and trophic relations in marine tufa stromatolite pools of the Eastern Cape
- Creator
- Rishworth, Gavin Midgley
- Subject
- Bioturbation -- South Africa -- Eastern Cape
- Date Issued
- 2017
- Date
- 2017
- Type
- Thesis
- Type
- Doctoral
- Type
- PhD
- Identifier
- http://hdl.handle.net/10948/7116
- Identifier
- vital:21236
- Description
- Microbialites were the dominant life-form of most shallow oceans during the Precambrian. These structures are formed by the deposition of calcium carbonate by cyanobacteria as well as the binding and trapping of sediment by these and other microalgae. In modern environments they are scarce due to several factors, including grazing pressures by metazoans, altered calcium carbonate saturation states of seawater and competition with macroalgae. The recent discovery of an extensive network of actively accreting layered microbialites (stromatolites) along the South African coastline is potentially informative from this perspective. These stromatolites form within the peritidal zone, at the interface of groundwater seepage and periodic marine incursion, forming pools trapped by the accreting fabric. The aim of this thesis was to characterise the ecosystem dynamics of a representative selection of the South African locations. During a comprehensive monthly assessment over an annual cycle, as well as for additional seasonal collections, physico-chemical measurements were monitored together with biological components such as benthic and pelagic microalgae as well as the invertebrate fauna inhabiting the stromatolite pools. These components were then assessed in terms of the potential physical and biological drivers which might explain patterns of variability. Finally, to link all of the ecosystem components, a food-web analysis was conducted, to determine the trophic linkages and, importantly, the reliance by the various consumer organisms on the stromatolite material as a food resource. Results show that the stromatolite pools are driven by a regular interplay between freshwater and marine salinity states, this being determined by tidal amplitude and ocean storm cycles. Furthermore, marine incursion represents the primary source of phosphorus for the stromatolite pools, while available nitrogen is consistently provided by the freshwater inlet stream at each site. This results in an optimum zone of primary biomass within the main stromatolite pool supported by nutrient conditions, while the shifts in salinity state occurring over a weekly tidal schedule likely exclude organisms and macrophytes that are not halotolerant. This is reflected in the benthic microalgae that form the stromatolite accretions in that they are primarily driven by salinity conditions, in addition to seasonal patterns. Interestingly, the variable nutrient conditions, both between sites and temporally, did not contribute as an important driver of the benthic microalgae but did significantly relate to the pelagic microalgae (phytoplankton). This, together with the higher biomass of benthic microalgae compared to its pelagic counterpart, suggests that the stromatolite pools are a benthic-driven system. The short duration of water retention within the stromatolite pools as a result of the constant freshwater inflow, likely also precludes nutrient build-up and favours the benthic, sessile ecosystem component, especially the stromatolite-forming microalgae. In terms of the metazoan infauna, the South African stromatolite pools support a persistent assemblage. This might be surprising given the apparently destructive influence of grazing and burrowing animals on microbial mats in terms of restricting the formation of layered accretions. However, metazoans that burrow within the stromatolite fabric were observed to coexist with clear, layered accretions. This supports the observations in some other modern microbialite habitats to suggest that metazoan disruption is clearly not the only or primary factor responsible for modern microbialite scarcity. When assessing the possible drivers of the metazoan community occupying the stromatolite matrix, both salinity patterns and resource conditions in terms of nutrient supply and macroalgal cover were consistently best related to infaunal abundance and presence/absence. This further demonstrates the role of salinity conditions in terms of providing a habitat that is restrictive to most metazoan organisms, while also suggesting that the metazoans are responding to macroalgal rather than the stromatolite microalgal conditions. To further develop this observation, the results from the stable isotope work clearly reflect a dominance of pool macroalgae in the diets of invertebrate consumers, with little to no stromatolite material consumed. This suggests that there is limited apparent destructive grazing influence by the metazoans on the stromatolite matrix, in addition to the burrowing bioturbation mentioned previously. Furthermore, the metazoan grazers may be indirectly benefitting the stromatolites by restricting macroalgal biomass, which might otherwise outcompete its microalgal counterpart. This study provides a valuable understanding of benthic-driven peritidal stromatolite ecosystems, and also, from a geological perspective of past stromatolite habitats, suggests some of the mechanisms as to why metazoans may be able to coexist with layered microbialites. Given the threats to similar habitats globally, especially in terms of water resources, management measures necessary to ensure stromatolite persistence in modern environments such as these are proposed. The possible ecological role of peritidal stromatolite habitats within the broader environment, as well as recommendations for future work, is also contextualised.
- Format
- x, 118 leaves
- Format
- Publisher
- Nelson Mandela Metropolitan University
- Publisher
- Faculty of Science
- Language
- English
- Rights
- Nelson Mandela Metropolitan University
- Hits: 896
- Visitors: 893
- Downloads: 160
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | COMMUNITY STRUCTURE AND TROPHIC RELATIONS IN MARINE TUFA STROMATOLITE POOLS OF THE EASTERN CAPE | 3 MB | Adobe Acrobat PDF | View Details Download |