- Title
- Influence of increased processing speed on the microstructure evolution and mechanical property relationship in friction stir welding of AA5182-H111 (T500)
- Creator
- Bernard, Dreyer
- Subject
- Friction stir welding
- Subject
- Aluminum alloys -- Welding
- Date Issued
- 2016
- Date
- 2016
- Type
- Thesis
- Type
- Doctoral
- Type
- PhD
- Identifier
- http://hdl.handle.net/10948/7322
- Identifier
- vital:21319
- Description
- Friction stir welding of 5xxx series aluminium is generally carried out at low travel speeds, which limits the commercial applications of this process. This manuscript discusses the dynamic eformation characteristics of AA5182-H111 (T500), which allowed a travel speed of 1500 mm/min to be realised. This was achieved by using a spindle speed of 500 rev/min; the same as that required to make a weld of 200 mm/min. The thermal cycles, microstructural evolution due to tool / work-piece interaction, and the local microstructural and mechanical properties of the completed weld are discussed for a travel speed for 200 mm/min and 1500 mm/min. At a rate of 200 mm/min, heat generated due to contact between the shoulder and work-piece surface was transferred ahead of the tool, driving dynamic recrystallization which lowered the flow stress. Hereafter the material entered the stir zone where it was extruded around the pin during a process of continuous dynamic crystallization. At a travel speed of 1500 mm/min, the rate of heat conduction ahead of the tool was not rapid enough, and the material was deformed at low temperatures. A low weld pitch rotations per unit length travelled) was required to ensure that the material was sufficiently strained, to allow the formation of geometric necessary boundaries, which resulted in grain subdivision. The number of high angle grain boundaries was increased through subdivision, thus, increasing the nucleation sites for dynamically recrystallized necklace grains to form. In the absence of heat conduction from the shoulder, the high plastic strain ahead of the tool provided the energy required to drive dynamic recrystallization. Heat was generated from the high plastic strain and during recrystallization, where the stored plastic energy was adiabatically released. Once the material entered the stir zone, the high strain rates associated with the tool rotation which drove dynamic recrystallization that allowed the material to reach high levels of strain, resulted significant grain refinement. The weld zone of the 200 mm/min displayed weld a slight increase in yield strength, with respect to the parent material, due to grain refinement to 10 μm, while the yield strength of the 1500 mm/min weld was significantly increased due to grain refinement to 5 μm. The high weld speed did, however, generate high tensile residual stresses. This work is not only significant for the field of friction stir welding, but also in terms of material processing. The dynamic deformation characteristics associated with Al-5Mg-Mn, alloys which was observed ahead of the tool, is of high value in processes where plastic deformation is applied to improve the mechanical properties of these alloys.
- Format
- xxxiv, 373 leaves
- Format
- Publisher
- Nelson Mandela Metropolitan University
- Publisher
- Faculty of Engineering, the Built Environment and Information Technology
- Language
- English
- Rights
- Nelson Mandela Metropolitan University
- Hits: 1934
- Visitors: 1875
- Downloads: 78
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Influence of increased processing speed on the microstructure evolution | 21 MB | Adobe Acrobat PDF | View Details Download |