- Title
- Development of a small production platform for citronellal processing
- Creator
- Mafu, Lubabalo Rowan
- Creator
- Zeelie, Ben
- Subject
- Organic compounds -- Synthesis
- Subject
- Plasticizers
- Date Issued
- 2016
- Date
- 2016
- Type
- Thesis
- Type
- Doctoral
- Type
- PhD
- Identifier
- http://hdl.handle.net/10948/8488
- Identifier
- vital:26370
- Description
- The aim of the project was to develop a small production platform for citronellal processing. The objective of the study was to develop a single continuous flow reactor system for the synthesis of novel derivatives of citronellal and isopulegol. The first step was to develop a continuous flow reactor system for the isopulegol synthesis. The stainless steel tubular fixed-bed reactor equipped with a reaction column (I.D: 9.53 mm and length: 120 mm) was used for the study. The reactor column was packed with H-ZMS-5 zeolite extrusion catalyst. The solvent-free cyclisation reaction of citronellal was investigated and at optimum conditions, 100% of citronellal conversion and almost 100% selectivity towards isopulegol was achieved. A good catalytic performance was observed from the H-ZSM-5 catalyst and proved to be stable for a prolonged reaction time. The second reaction step was to develop a continuous flow reactor system for the synthesis of isopulegyl-ether derivatives. A UniQsis FlowSyn reactor system equipped with a stainless steel reactor column was used for the study. The reactor column was packed with amberlyst-15 dry catalyst. Wherein, n-propanol was employed as a model etherifying agent and as a reaction solvent. At optimum reaction condition, only 30% selectivity of isopulegyl propoxy-ether was achieved. The reaction was found to depend highly on temperature and residence time. The increase of these parameters was found to increase the side reactions and reduced the selectivity of the desired product. Other heterogeneous catalysts such as H-beta zeolite, aluminium pillared clay, Aluminium oxide and H-ZSM-5 were also evaluated in the reaction. Among these catalysts, a catalytic activity was observed with H-beta zeolite (19%) and aluminium pillared clay (5%). Based on these results, none of the evaluated catalysts provided the desired selectivity (greater than 70%) towards the isopulegyl propoxy-ether, therefore the process was not investigated further. In light of this, the isopulegol etherification synthetic route was terminated. Consequently, another analogue of citronellal was used as an alternative intermediate in place of isopulegol, namely para-menthane-3,8-diol (PMD). The initial studies for the synthesis of the novel PMD di-esters from isopulegol were performed in the batch-scale reactor. In a solvent-free reaction, acetic anhydride was initially used as a model acetylating agent. The reaction was performed using polymer-bound scandium triflate (PS-Sc(OTf)3) catalyst. The effect of reaction parameters such as temperature, molar ratio, and reaction time were studied towards the PMD conversion and di-esters selectivity. At optimum reaction conditions, PMD conversion of 70% and di-acetate selectivity of 67% were observed. The reaction was found to follow the zeroth-order kinetics with respect to PMD conversion and obeyed the Arrhenius equation. Other types of di-ester derivatives were synthesized from PMD by varying the carbon chain length of the acetylating agent. The prepared compounds were separated from the product mixtures by vacuum distillation, purified on a column chromatography and characterised by FT-IR, GC-MS, and 1H-NMR, 13C-NMR. The developed methodology was optimised in flow by using an ArrheniumOne microwave-assisted continuous-flow fixed-bed reactor system. A detailed experimental design was used to carry-out the reactions. The reaction parameters such as temperature and flow-rate were studied towards the PMD conversion and di-ester selectivity. From the experimental design analysis, the di-ester selectivity was found to depend highly on the residence time (flow-rate) and significantly on temperature. The PMD conversion and di-ester selectivity were found to increase with decrease in the flow-rate. The conversion and selectivity achieved in the continuous flow process were significantly higher than the achieved in the batch-scale process with respect to the residence time.
- Format
- xiii, 163 leaves
- Format
- Publisher
- Nelson Mandela Metropolitan University
- Publisher
- Faculty of Science
- Language
- English
- Rights
- Nelson Mandela Metropolitan University
- Hits: 1695
- Visitors: 1707
- Downloads: 199
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Development of a small production platform for citronellal processing | 5 MB | Adobe Acrobat PDF | View Details Download |