- Title
- Investigation of the thermo-chemical behaviour of coal-algae agglomerates
- Creator
- Baloyi, Hope
- Subject
- Biomass energy
- Subject
- Coal -- South Africa
- Date Issued
- 2018
- Date
- 2018
- Type
- Thesis
- Type
- Doctoral
- Type
- DPhil
- Identifier
- http://hdl.handle.net/10948/23913
- Identifier
- vital:30642
- Description
- There is a growing research interest in the co-processing of biomass and coal, with the aim of addressing the negative attributes associated with the thermal processing of coal alone. Biomass feedstocks are regarded as a clean, renewable source, and the co-utilization of biomass feedstocks with coal is deemed to have a potential to reduce emission of pollutants (i.e. NOx and SOx) and volatile organic compounds (VOC’s). Moreover, biomass are thermally reactive and thus facilitate the conversion of coal during co-processing. Biomass material and coal are two autonomous fuel materials with different chemical characteristics and have a dissimilar thermal behaviour making it difficult to achieve chemical interaction between the two solid fuels to contribute to the formation of products. Coalgae® Technology developed at the Nelson Mandela University, involves the biological treatment of coal fines by adsorbing live microalgae biomass (in slurry form) onto waste coal fines to form coal-microalgae agglomerates. This new innovative approach seeks to integrate bio-based feedstock into coal thermal processing and to improve the utilization and thermal efficiency of coal fines as well as the interaction between the volatile components of biomass and coal during thermal processing (e.g. devolatilization), thereby overcoming some of the challenges that confront the co-processing of coal and biomass. Coal fines are low-ranked coals, generally characterized by high contents of sulphur, high ash yields, low calorific values and poor thermal reactivity, and these attributes limits the thermo-chemical processing of the coal fines. Therefore, this investigation was undertaken to assess the thermo-chemical behaviour of coal-microalgae agglomerates, formed by adsorbing live microalgae slurry at varying ratios onto coal fines. For this purpose, the effects of adsorbing microalgae at varying ratios on the chemical characteristics and thermal behaviour of coal fines under pyrolytic conditions were investigated. The primary aim was to assess whether the thermo-chemical behaviour of coal-microalgae agglomerates, formed by adsorption of live microalgae onto fine coal, is substantively modified compared to a simple additive model of the original coal and pre-dried microalgae biomass samples. Results obtained from the proximate analyses performed on an Eltra Thermo-gravimetric analyzer (TGA) thermostep, have shown that the adsorption of microalgae slurry onto coal fines does not possess greater influence in improving the yield of volatiles and ash in coal fines than can be expected from a simple additive model of the original raw materials. Based on the ultimate analyses results, it was found that the adsorption of microalgae slurry resulted in a systematic reduction in the sulphur content, a notable increase in the hydrogen and oxygen contents, however, no significant disparities were found between the measured ultimate properties of coal-microalgae agglomerates as compared to the theoretically-expected ultimate properties from a simple linear combination of parental coal and microalgae biomass. Assessment of the thermal behaviour of parental samples and coal-microalgae agglomerates involved the use non-isothermal (40-900ºC, 20 K/min) thermogravimetry under inert conditions. It was found that the adsorption of microalgae slurry onto coal fines resulted in an improved thermal reactivity of coal fines, although, did not affect the overall pyrolysis characteristics of the coal fines. Comparison of the thermal profiles (measured and calculated TG/DTG curves), revealed that the yield of volatile products during the pyrolysis of coal-microalgae blends do not exceed the expected volatile yields from a simple combination of coal and microalgae biomass. These results suggest that there was no positive or accelerative synergistic interaction between volatile components of adsorbed microalgae and coal fines during pyrolysis. Mild pyrolysis of raw coal and coal-microalgae performed in a fixed-bed reactor furnace (450ºC), resulted in improved yields of Fossil-Bio crude (FBC) oil (derived from coal-microalgae pyrolysis), at increased biomass ratio compared to coal tar. FBC Oil was found to contain relatively high contents of oxygen, hydrogen, and low sulphur content than coal tar. GC-MS analyses showed the presence of a heterocyclic compounds (i.e. Indole and 2, 6 dimethyl pyridine) in the FBC oil and these were not identified in the coal tar. Furthermore, high boiling compounds such as Flourene, pyrene and pentacosane were identified in the coal tar, however not identified in the FBC oil. Simulated distillation results showed notable differences between the FBC oil and coal tar in terms of the distribution of boiling point fractions particularly, high boing point components. Semi-devolatilized chars derived from coal-microalgae agglomerates showed substantial degree of decarboxylation and dehydrogenation compared to the coal chars.
- Format
- xvi, 136 leaves
- Format
- Publisher
- Nelson Mandela University
- Publisher
- Faculty of Science
- Language
- English
- Rights
- Nelson Mandela University
- Hits: 1664
- Visitors: 1693
- Downloads: 157
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Investigation of the thermo-chemical behaviour of coal-algae agglomerates | 3 MB | Adobe Acrobat PDF | View Details Download |