- Title
- Design, formulation and evaluation of liposomes co-loaded with human serum albumin and rifampicin
- Creator
- Bapolisi, Alain Murhimalika
- Subject
- Liposomes
- Subject
- Rifampin
- Subject
- Antitubercular agents
- Subject
- Serum albumin
- Subject
- Albumins
- Subject
- Tuberculosis -- Treatment
- Date Issued
- 2020
- Date
- 2020
- Type
- text
- Type
- Thesis
- Type
- Masters
- Type
- MSc
- Identifier
- http://hdl.handle.net/10962/163179
- Identifier
- vital:41016
- Description
- Tuberculosis (TB) is a devastating infectious disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious agent. The high morbidity and mortality rates of TB are partly due to factors such as the lengthy regimen (of 6–24 months), the development of drug resistance, and the pathogen location within the macrophages. These, with poor physiochemical properties of existing drugs hamper the effectiveness of the treatment despite the existence of potent antibiotics such as Rifampicin (Rif). Hydrophobicity plagues many drugs, including Rif, which are then particularly affected due to inherently poor intracellular availability. Novel drug delivery approaches are therefore needed in order to optimize the cytotoxic potential of said antitubercular drugs. To improve the bioavailability of hydrophobic drugs, numerous delivery strategies have been developed. Amongst these, the coordination of cytotoxic drugs to therapeutic proteins have shown some success for improved efficacy in the management of illnesses including infectious diseases. Of therapeutic proteins, Human Serum Albumin (HSA) is an attractive drug carrier with interesting benefits such as low immunogenicity, antioxidant properties and improving cellular uptake of drugs through HSA-specific binding sites which are expressed on most cells including macrophages, where M. tuberculosis often resides. Hence, combination of Rif to HSA (Rif-HSA) seems a promising approach for improved intracellular delivery of Rif. However, the in vivo stability of colloidal protein-based therapeutics is mostly challenging and an effective vehicle is needed to control the biological fate of such conjugates. Liposomes seem to be appropriate carriers for the Rif-HSA complex due to their reputable applicability for encapsulating diverse materials (i.e., hydrophobic and hydrophilic compounds or small and complex molecules) and preventing chemical and biological degradation of the cargo. Therefore, the main objective of this study was to simultaneously encapsulate Rif and HSA in liposomes, which, to the best of our knowledge, has not been done before. The dual liposomes (Rif-HSA-lip) were made by a modified “Reverse Phase Evaporation” method (REV), following a Design of Experiments (DOE) approach to determine which factors impact the formulation. In addition, liposomes were made from crude soybean lecithin (CSL), rather than expensive and highly purified lipids. iv The liposomes were fully characterised, and the encapsulation efficiency (î) was monitored using high-performance liquid chromatography (HPLC). The results were correlated with factors such as organic and aqueous phase composition, as well as the in vitro release profile of Rif. Transmission electron microscopy (TEM) results confirmed the formation of spherical dual liposomes nanoparticles of roughly 200 nm. Dynamic light scattering (DLS) and Zeta potential measurements showed a negative charge (<–45 mV) and with satisfactory polydispersity (PDI<0.5). HSA dramatically improved the aqueous solubility of Rif (from1.9 mg/ml in water to around 4.3 mg/ml in HSA 10% solution) mainly due to Rif-HSA hydrophobic interactions. This resulted in a good î of almost 60% for Rif, despite the presence of bulky HSA in the lipid bilayer. These details were confirmed using proton nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FTIR). Furthermore, energy dispersive X-ray (EDX) and DLS data suggested the presence of HSA poking out on the surface of liposomes, which is encouraging for potential targeted delivery in the future. The in vitro release studies also depicted a substantial improvement in the diffusion of Rif in dual liposomes versus free Rif, from 65% after 12 hours for free Rif to 95% after only 5 hours for Rif- HSA-lip. Finally, stability studies conducted over 30 days at room temperature, showed that the freeze-dried formulations of Rif-HSA-lip exhibited good shelf stability over liposomes with no HSA. This study represents an illustrative example of co-loading of antibiotics and proteins into liposomes, which could encourage further development of novel nanoparticulate tools for the effective management of both drug-susceptible and -resistant infectious diseases such as TB.
- Format
- 128 pages
- Format
- Publisher
- Rhodes University
- Publisher
- Faculty of Science, Chemistry
- Language
- English
- Rights
- Bapolisi, Alain Murhimalika
- Hits: 6246
- Visitors: 6820
- Downloads: 757
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | BAPOLISI-MSC-TR20-430.pdf | 2 MB | Adobe Acrobat PDF | View Details Download |