Working together for our oceans: a marine spatial plan for Algoa Bay, South Africa
- Dorrington, Rosemary A, Lombard, Amanda T, Bornman, Thomas G, Adams, Janine B, Cawthra, Hayley C, Deyzel, Shaun H P, Goschen, Wayne S, Liu, Kenneth, Mahler-Coetzee, Jacques, Matcher, Gwynneth F, McQuaid, Christopher D, Parker-Nance, Shirley, Paterson, Angus W, Perissinotto, Renzo, Porri, Francesca, Roberts, Michael J, Snow, Bernadette, Vrancken, Patrick
- Authors: Dorrington, Rosemary A , Lombard, Amanda T , Bornman, Thomas G , Adams, Janine B , Cawthra, Hayley C , Deyzel, Shaun H P , Goschen, Wayne S , Liu, Kenneth , Mahler-Coetzee, Jacques , Matcher, Gwynneth F , McQuaid, Christopher D , Parker-Nance, Shirley , Paterson, Angus W , Perissinotto, Renzo , Porri, Francesca , Roberts, Michael J , Snow, Bernadette , Vrancken, Patrick
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/480806 , vital:78478 , https://hdl.handle.net/10520/EJC-df3d267ab
- Description: Southern Africa occupies a critical position within the southern hemisphere for the study of broadscale global change and the three oceans around South Africa (the Atlantic, Indian and Southern Oceans) play a vital role in determining local and regional climate and weather patterns. Oceans and coasts also provide various resources and services (e.g. food and carbon sequestration), but these services are threatened by human activities. Uncertainty of the impact and consequences of these anthropogenic activities makes it problematic to manage marine resources. Given the recent global emphasis on the development of ‘ocean economies’, the exploitation of living (fisheries, aquaculture and tourism) and non-living (oil and gas, minerals, energy) marine resources should be on a scale that is socially and economically justifiable and ecologically sustainable. In 2014, ‘Operation Phakisa’ was launched in South Africa as an initiative to accelerate execution of the National Development Plan. The primary focus of Phakisa is to unlock the economic potential of South Africa’s oceans. This will be achieved through the ‘implementation of an overarching, integrated ocean governance framework for sustainable growth of the ocean economy that will maximise socio-economic benefits while ensuring adequate ocean environmental protection’ by 2019. Marine spatial planning (MSP) is a key component of this integrated governance framework, and the development of MSP legislation during 2016 was prioritised as ‘critical’ to achieving the Operation Phakisa objectives. Accordingly, the Department of Environmental Affairs (DEA) published the Marine Spatial Planning Bill (2017) ‘to provide a framework for marine spatial planning in South Africa’s waters; to provide for the development of the marine spatial plan; to provide for institutional arrangements for the implementation of the marine spatial plan and governance of the use of the ocean by multiple sectors; and to provide for matters connected therewith’.
- Full Text:
- Date Issued: 2018
- Authors: Dorrington, Rosemary A , Lombard, Amanda T , Bornman, Thomas G , Adams, Janine B , Cawthra, Hayley C , Deyzel, Shaun H P , Goschen, Wayne S , Liu, Kenneth , Mahler-Coetzee, Jacques , Matcher, Gwynneth F , McQuaid, Christopher D , Parker-Nance, Shirley , Paterson, Angus W , Perissinotto, Renzo , Porri, Francesca , Roberts, Michael J , Snow, Bernadette , Vrancken, Patrick
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/480806 , vital:78478 , https://hdl.handle.net/10520/EJC-df3d267ab
- Description: Southern Africa occupies a critical position within the southern hemisphere for the study of broadscale global change and the three oceans around South Africa (the Atlantic, Indian and Southern Oceans) play a vital role in determining local and regional climate and weather patterns. Oceans and coasts also provide various resources and services (e.g. food and carbon sequestration), but these services are threatened by human activities. Uncertainty of the impact and consequences of these anthropogenic activities makes it problematic to manage marine resources. Given the recent global emphasis on the development of ‘ocean economies’, the exploitation of living (fisheries, aquaculture and tourism) and non-living (oil and gas, minerals, energy) marine resources should be on a scale that is socially and economically justifiable and ecologically sustainable. In 2014, ‘Operation Phakisa’ was launched in South Africa as an initiative to accelerate execution of the National Development Plan. The primary focus of Phakisa is to unlock the economic potential of South Africa’s oceans. This will be achieved through the ‘implementation of an overarching, integrated ocean governance framework for sustainable growth of the ocean economy that will maximise socio-economic benefits while ensuring adequate ocean environmental protection’ by 2019. Marine spatial planning (MSP) is a key component of this integrated governance framework, and the development of MSP legislation during 2016 was prioritised as ‘critical’ to achieving the Operation Phakisa objectives. Accordingly, the Department of Environmental Affairs (DEA) published the Marine Spatial Planning Bill (2017) ‘to provide a framework for marine spatial planning in South Africa’s waters; to provide for the development of the marine spatial plan; to provide for institutional arrangements for the implementation of the marine spatial plan and governance of the use of the ocean by multiple sectors; and to provide for matters connected therewith’.
- Full Text:
- Date Issued: 2018
South Africa in the Antarctic Circumnavigation Expedition: a multi-institutional and interdisciplinary scientific project
- Halo, Issufo, Dorrington, Rosemary A, Bornman, Thomas G, De Villiers, Stephanie, Fawcett, Sarah
- Authors: Halo, Issufo , Dorrington, Rosemary A , Bornman, Thomas G , De Villiers, Stephanie , Fawcett, Sarah
- Date: 2016
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/65428 , vital:28790 , https://doi.org/10.17159/sajs.2016/a0173
- Description: publisher version , The polar regions are more critically affected by climate change than any other region on our planet.1,2 On the Antarctic continent and in its surrounding oceans, the effects of climate change are likely to be dramatic,3 and include largescale catastrophic ice melt, loss of habitat and biodiversity, and global sea level rise. The ‘Southern Ocean’ refers to the region where Atlantic, Indian and Pacific Ocean waters come together to encircle Antarctica. These waters connect the different ocean basins by linking the shallow and deep limbs of the global ocean current system (‘overturning circulation’) and play a critical role in storing and distributing heat and carbon dioxide (CO2 ). The Southern Ocean thus regulates not only the climate of the Antarctic, but of the entire earth system.1,4 By extension, the capacity of the global ocean to ameliorate earth’s changing climate is strongly controlled by the Southern Ocean. Marine phytoplankton (microscopic plants inhabiting the sunlit upper ocean) convert CO2 (an inorganic form of carbon) dissolved in surface waters into organic carbon through photosynthesis. This organic carbon fuels upper trophic levels such as fish, mammals and birds, and a portion sinks into the deep ocean where it remains stored for hundreds to thousands of years. This mechanism, which lowers the atmospheric concentration of CO2 , is termed the ‘biological pump’.5 The efficiency of the global ocean’s biological pump is currently limited by the Southern Ocean, where the macronutrients (nitrate and phosphate) required for photosynthesis are never fully consumed in surface waters. In theory, increased consumption of these nutrients could drive higher organic carbon removal to the deep ocean, enhancing the oceanic uptake of atmospheric CO2 . Indeed, more complete consumption of Southern Ocean nutrients is a leading hypothesis for the decrease in atmospheric CO2 that characterised the ice ages.6 Despite the global importance of the Southern Ocean, knowledge of the controls on and interactions among the physical, chemical and biological processes operating in Antarctic ecosystems is limited, largely because of a scarcity of in-situ observational data, compounded by the challenge of integrating siloed scientific fields. Given predictions that diverse aspects of Southern Ocean physics and carbon biogeochemistry are likely to change in the coming decades, a transdisciplinary approach to studying Antarctic systems is critical.
- Full Text:
- Date Issued: 2016
- Authors: Halo, Issufo , Dorrington, Rosemary A , Bornman, Thomas G , De Villiers, Stephanie , Fawcett, Sarah
- Date: 2016
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/65428 , vital:28790 , https://doi.org/10.17159/sajs.2016/a0173
- Description: publisher version , The polar regions are more critically affected by climate change than any other region on our planet.1,2 On the Antarctic continent and in its surrounding oceans, the effects of climate change are likely to be dramatic,3 and include largescale catastrophic ice melt, loss of habitat and biodiversity, and global sea level rise. The ‘Southern Ocean’ refers to the region where Atlantic, Indian and Pacific Ocean waters come together to encircle Antarctica. These waters connect the different ocean basins by linking the shallow and deep limbs of the global ocean current system (‘overturning circulation’) and play a critical role in storing and distributing heat and carbon dioxide (CO2 ). The Southern Ocean thus regulates not only the climate of the Antarctic, but of the entire earth system.1,4 By extension, the capacity of the global ocean to ameliorate earth’s changing climate is strongly controlled by the Southern Ocean. Marine phytoplankton (microscopic plants inhabiting the sunlit upper ocean) convert CO2 (an inorganic form of carbon) dissolved in surface waters into organic carbon through photosynthesis. This organic carbon fuels upper trophic levels such as fish, mammals and birds, and a portion sinks into the deep ocean where it remains stored for hundreds to thousands of years. This mechanism, which lowers the atmospheric concentration of CO2 , is termed the ‘biological pump’.5 The efficiency of the global ocean’s biological pump is currently limited by the Southern Ocean, where the macronutrients (nitrate and phosphate) required for photosynthesis are never fully consumed in surface waters. In theory, increased consumption of these nutrients could drive higher organic carbon removal to the deep ocean, enhancing the oceanic uptake of atmospheric CO2 . Indeed, more complete consumption of Southern Ocean nutrients is a leading hypothesis for the decrease in atmospheric CO2 that characterised the ice ages.6 Despite the global importance of the Southern Ocean, knowledge of the controls on and interactions among the physical, chemical and biological processes operating in Antarctic ecosystems is limited, largely because of a scarcity of in-situ observational data, compounded by the challenge of integrating siloed scientific fields. Given predictions that diverse aspects of Southern Ocean physics and carbon biogeochemistry are likely to change in the coming decades, a transdisciplinary approach to studying Antarctic systems is critical.
- Full Text:
- Date Issued: 2016
Tufa stromatolite ecosystems on the South African south coast
- Perissinotto, Renzo, Bornman, Thomas G, Steyn, Paul-Pierre, Miranda, Nelson A F, Dorrington, Rosemary A, Matcher, Gwynneth F, Strydom, Nadine A, Peer, Nasreen
- Authors: Perissinotto, Renzo , Bornman, Thomas G , Steyn, Paul-Pierre , Miranda, Nelson A F , Dorrington, Rosemary A , Matcher, Gwynneth F , Strydom, Nadine A , Peer, Nasreen
- Date: 2014
- Language: English
- Type: Article
- Identifier: vital:6490 , http://hdl.handle.net/10962/d1014585 , http://dx.doi.org/10.1590/sajs.2014/20140011
- Description: Following the first description of living marine stromatolites along the South African east coast, new investigations along the south coast have revealed the occurrence of extensive fields of actively calcifying stromatolites. These stromatolites have been recorded at regular distances along a 200-km stretch of coastline, from Cape Recife in the east to the Storms River mouth in the west, with the highest density found between Schoenmakerskop and the Maitland River mouth. All active stromatolites are associated with freshwater seepage streams flowing from the dune cordon, which form rimstone dams and other accretions capable of retaining water in the supratidal platform. Resulting pools can reach a maximum depth of about 1 m and constitute a unique ecosystem in which freshwater and marine organisms alternate their dominance in response to vertical mixing and the balance between freshwater versus marine inflow. Although the factors controlling stromatolite growth are yet to be determined, nitrogen appears to be supplied mainly via the dune seeps. The epibenthic algal community within stromatolite pools is generally co-dominated by cyanobacteria and chlorophytes, with minimal diatom contribution.
- Full Text:
- Date Issued: 2014
- Authors: Perissinotto, Renzo , Bornman, Thomas G , Steyn, Paul-Pierre , Miranda, Nelson A F , Dorrington, Rosemary A , Matcher, Gwynneth F , Strydom, Nadine A , Peer, Nasreen
- Date: 2014
- Language: English
- Type: Article
- Identifier: vital:6490 , http://hdl.handle.net/10962/d1014585 , http://dx.doi.org/10.1590/sajs.2014/20140011
- Description: Following the first description of living marine stromatolites along the South African east coast, new investigations along the south coast have revealed the occurrence of extensive fields of actively calcifying stromatolites. These stromatolites have been recorded at regular distances along a 200-km stretch of coastline, from Cape Recife in the east to the Storms River mouth in the west, with the highest density found between Schoenmakerskop and the Maitland River mouth. All active stromatolites are associated with freshwater seepage streams flowing from the dune cordon, which form rimstone dams and other accretions capable of retaining water in the supratidal platform. Resulting pools can reach a maximum depth of about 1 m and constitute a unique ecosystem in which freshwater and marine organisms alternate their dominance in response to vertical mixing and the balance between freshwater versus marine inflow. Although the factors controlling stromatolite growth are yet to be determined, nitrogen appears to be supplied mainly via the dune seeps. The epibenthic algal community within stromatolite pools is generally co-dominated by cyanobacteria and chlorophytes, with minimal diatom contribution.
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »