A review of the biocontrol programmes against aquatic weeds in South Africa
- Coetzee, Julie A, Bownes, Angela, Martin, Grant D, Miller, Benjamin E, Smith, Rosali, Weyl, Philip S R, Hill, Martin P
- Authors: Coetzee, Julie A , Bownes, Angela , Martin, Grant D , Miller, Benjamin E , Smith, Rosali , Weyl, Philip S R , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406965 , vital:70326 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a18"
- Description: Biological control (biocontrol) against invasive macrophytes is one of the longest standing programmes in South Africa, initiated in the 1970s against water hyacinth, Pontederia crassipes Mart. (Pontederiaceae). Since then, 15 agent species (13 insects, one mite and one pathogen) have been released against six weeds, most of which are floating macrophytes, with excellent levels of success. The release of the water hyacinth planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae) in particular, has improved biocontrol prospects for water hyacinth since 2018. In the last decade, however, a new suite of submerged and rooted emergent invasive macrophytes has been targeted. The first release against a submerged macrophyte in South Africa, and the first release against Brazilian waterweed, Egeria densa Planch. (Hydrocharitaceae), anywhere in the world, was achieved with the release of a leafmining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae). Yellow flag, Iris pseudacorus L. (Iridaceae) and Mexican waterlily, Nymphaea mexicana Zucc. (Nymphaeaceae), have also been targeted for biocontrol for the first time worldwide, and are in the early stages of agent development. Post-release evaluations, long term monitoring and controlled experiments have highlighted the need for a more holistic approach to managing aquatic invasive plants in South Africa, whose presence is largely driven by eutrophication, resulting in regime shifts between floating and submerged invaded states.
- Full Text:
- Date Issued: 2021
- Authors: Coetzee, Julie A , Bownes, Angela , Martin, Grant D , Miller, Benjamin E , Smith, Rosali , Weyl, Philip S R , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406965 , vital:70326 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a18"
- Description: Biological control (biocontrol) against invasive macrophytes is one of the longest standing programmes in South Africa, initiated in the 1970s against water hyacinth, Pontederia crassipes Mart. (Pontederiaceae). Since then, 15 agent species (13 insects, one mite and one pathogen) have been released against six weeds, most of which are floating macrophytes, with excellent levels of success. The release of the water hyacinth planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae) in particular, has improved biocontrol prospects for water hyacinth since 2018. In the last decade, however, a new suite of submerged and rooted emergent invasive macrophytes has been targeted. The first release against a submerged macrophyte in South Africa, and the first release against Brazilian waterweed, Egeria densa Planch. (Hydrocharitaceae), anywhere in the world, was achieved with the release of a leafmining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae). Yellow flag, Iris pseudacorus L. (Iridaceae) and Mexican waterlily, Nymphaea mexicana Zucc. (Nymphaeaceae), have also been targeted for biocontrol for the first time worldwide, and are in the early stages of agent development. Post-release evaluations, long term monitoring and controlled experiments have highlighted the need for a more holistic approach to managing aquatic invasive plants in South Africa, whose presence is largely driven by eutrophication, resulting in regime shifts between floating and submerged invaded states.
- Full Text:
- Date Issued: 2021
Progress and prospects for the biological control of invasive alien grasses Poaceae) in South Africa
- Sutton, Guy F, Bownes, Angela, Visser, Vernon, Mapaura, Anthony, Canavan, Kim N
- Authors: Sutton, Guy F , Bownes, Angela , Visser, Vernon , Mapaura, Anthony , Canavan, Kim N
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414448 , vital:71147 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a12"
- Description: Historically, invasive alien grasses have not been considered a major threat in South Africa, and as a result, very few resources are allocated to their management. However, there is an increasing awareness of the severe environmental and socio-economic impacts of invasive grasses and the need for appropriate management options for their control. South Africa has a long history of successfully implementing weed biological control (biocontrol) to manage invasive alien plants, however much like the rest of the world, invasive grasses do not feature prominently as targets for biocontrol. The implementation and early indicators of success of the few grass biocontrol programmes globally and the finding that grasses can be suitable targets, suggests that biocontrol could start to play an important role in managing invasive alien grasses in South Africa. In this paper, we evaluated the prospects for implementing novel grass biocontrol projects over the next ten years against 48 grasses that have been determined to represent the highest risk based on their current environmental and economic impacts. The grasses were ranked in order of priority using the Biological Control Target Selection system. Five grasses were prioritised – Arundo donax L., Cortaderia jubata (Lem.) Stapf, Cortaderia selloana (Schult and Schult) Asch. and Graebn., Nassella trichotoma (Hack. ex Arech.), and Glyceria maxima (Hartm.) Holmb., based on attributes that make them suitable biocontrol targets. Arundo donax has already been the target of a biocontrol programme in South Africa. We reviewed the progress made towards the biocontrol of this species and discuss how this programme could be developed going forward. Moreover, we outline how biocontrol could be implemented to manage the remaining four high-priority targets. While biocontrol of grasses is not without its challenges (e.g. unresolved taxonomies, conflicts of interest and a lack of supporting legislation), South Africa has an opportunity to learn from existing global research and begin to invest in biocontrol of high-priority species that are in most need of control.
- Full Text:
- Date Issued: 2021
Progress and prospects for the biological control of invasive alien grasses Poaceae) in South Africa
- Authors: Sutton, Guy F , Bownes, Angela , Visser, Vernon , Mapaura, Anthony , Canavan, Kim N
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414448 , vital:71147 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a12"
- Description: Historically, invasive alien grasses have not been considered a major threat in South Africa, and as a result, very few resources are allocated to their management. However, there is an increasing awareness of the severe environmental and socio-economic impacts of invasive grasses and the need for appropriate management options for their control. South Africa has a long history of successfully implementing weed biological control (biocontrol) to manage invasive alien plants, however much like the rest of the world, invasive grasses do not feature prominently as targets for biocontrol. The implementation and early indicators of success of the few grass biocontrol programmes globally and the finding that grasses can be suitable targets, suggests that biocontrol could start to play an important role in managing invasive alien grasses in South Africa. In this paper, we evaluated the prospects for implementing novel grass biocontrol projects over the next ten years against 48 grasses that have been determined to represent the highest risk based on their current environmental and economic impacts. The grasses were ranked in order of priority using the Biological Control Target Selection system. Five grasses were prioritised – Arundo donax L., Cortaderia jubata (Lem.) Stapf, Cortaderia selloana (Schult and Schult) Asch. and Graebn., Nassella trichotoma (Hack. ex Arech.), and Glyceria maxima (Hartm.) Holmb., based on attributes that make them suitable biocontrol targets. Arundo donax has already been the target of a biocontrol programme in South Africa. We reviewed the progress made towards the biocontrol of this species and discuss how this programme could be developed going forward. Moreover, we outline how biocontrol could be implemented to manage the remaining four high-priority targets. While biocontrol of grasses is not without its challenges (e.g. unresolved taxonomies, conflicts of interest and a lack of supporting legislation), South Africa has an opportunity to learn from existing global research and begin to invest in biocontrol of high-priority species that are in most need of control.
- Full Text:
- Date Issued: 2021
- «
- ‹
- 1
- ›
- »