Dose response and kinetic analysis of thermoluminescence of Li–Zn fluoroborate glass
- Thomas, Sunil, Chithambo, Makaiko L
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/116164 , vital:34326 , https://doi.org/10.1080/10420150.2017.1313844
- Description: The intention of this study is to explore the thermoluminescence properties of beta-irradiated Li–Zn fluoroborate glass. The glow-curve corresponding to 10 Gy shows two peaks when measured at 1°C/s. The dose response of the glass to beta irradiation was investigated. The trapping level parameters such as activation energy, frequency factor and order of kinetics associated with the observed glow-peak were determined using different methods. The thermoluminescence is affected by thermal quenching. A possible mechanism for the thermoluminescence is described.
- Full Text:
- Date Issued: 2017
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/116164 , vital:34326 , https://doi.org/10.1080/10420150.2017.1313844
- Description: The intention of this study is to explore the thermoluminescence properties of beta-irradiated Li–Zn fluoroborate glass. The glow-curve corresponding to 10 Gy shows two peaks when measured at 1°C/s. The dose response of the glass to beta irradiation was investigated. The trapping level parameters such as activation energy, frequency factor and order of kinetics associated with the observed glow-peak were determined using different methods. The thermoluminescence is affected by thermal quenching. A possible mechanism for the thermoluminescence is described.
- Full Text:
- Date Issued: 2017
On the sensitivity of thermally and optically stimulated luminescence of α-Al2O3: C and α-Al2O3: C, Mg
- Kalita, Jitumani M, Chithambo, Makaiko L
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/119803 , vital:34784 , https://doi.org/10.1016/j.radmeas.2017.03.006
- Description: The luminescence sensitivity of α-Al2O3:C and α-Al2O3:C, Mg is of interest because of the contemporary use of these materials in dosimetry related applications. We report investigations concerning the change in sensitivity of thermoluminescence (TL) and optically stimulated luminescence (OSL) from α-Al2O3:C and α-Al2O3:C, Mg with re-use. The study was carried out on a set of un-annealed samples and others annealed at 700 and 900 °C. The TL and OSL sensitivity in α-Al2O3:C and α-Al2O3:C, Mg was found to increase with sample re-use whether the intensity was monitored as peak area or peak height for the main TL peak or, in the case of OSL, as the maximum intensity or the area under a decay curve. The fractional increase in area under either the main TL peak or the OSL decay curve exceeds that of the TL peak height or maximum OSL intensity when samples are re-used. However, when un-annealed samples are used, any increase in TL peak height or peak area per measurement is less than observed in annealed samples. It is also interesting to note that the change in maximum OSL intensity or OSL area is minimal for samples annealed at 900 °C. In general, the TL sensitivity in α-Al2O3:C increases more than that in α-Al2O3:C, Mg with re-use. On the other hand, the OSL sensitivity in α-Al2O3:C, Mg increases more than that in α-Al2O3:C with re-use. These findings suggest that it is advisable to take into account the fractional increase in sensitivity per measurement when one uses α-Al2O3:C as a TL dosimeter and α-Al2O3:C, Mg as an OSL dosimeter.
- Full Text: false
- Date Issued: 2017
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/119803 , vital:34784 , https://doi.org/10.1016/j.radmeas.2017.03.006
- Description: The luminescence sensitivity of α-Al2O3:C and α-Al2O3:C, Mg is of interest because of the contemporary use of these materials in dosimetry related applications. We report investigations concerning the change in sensitivity of thermoluminescence (TL) and optically stimulated luminescence (OSL) from α-Al2O3:C and α-Al2O3:C, Mg with re-use. The study was carried out on a set of un-annealed samples and others annealed at 700 and 900 °C. The TL and OSL sensitivity in α-Al2O3:C and α-Al2O3:C, Mg was found to increase with sample re-use whether the intensity was monitored as peak area or peak height for the main TL peak or, in the case of OSL, as the maximum intensity or the area under a decay curve. The fractional increase in area under either the main TL peak or the OSL decay curve exceeds that of the TL peak height or maximum OSL intensity when samples are re-used. However, when un-annealed samples are used, any increase in TL peak height or peak area per measurement is less than observed in annealed samples. It is also interesting to note that the change in maximum OSL intensity or OSL area is minimal for samples annealed at 900 °C. In general, the TL sensitivity in α-Al2O3:C increases more than that in α-Al2O3:C, Mg with re-use. On the other hand, the OSL sensitivity in α-Al2O3:C, Mg increases more than that in α-Al2O3:C with re-use. These findings suggest that it is advisable to take into account the fractional increase in sensitivity per measurement when one uses α-Al2O3:C as a TL dosimeter and α-Al2O3:C, Mg as an OSL dosimeter.
- Full Text: false
- Date Issued: 2017
The influence of radiation-induced defects on thermoluminescence and optically stimulated luminescence of α-Al2O3: C
- Nyirenda, Angel N, Chithambo, Makaiko L
- Authors: Nyirenda, Angel N , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/119818 , vital:34786 , https://doi.org/10.1016/j.nimb.2017.02.077
- Description: It is known that when α-Al2O3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al2O3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450–650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.
- Full Text: false
- Date Issued: 2017
- Authors: Nyirenda, Angel N , Chithambo, Makaiko L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/119818 , vital:34786 , https://doi.org/10.1016/j.nimb.2017.02.077
- Description: It is known that when α-Al2O3:C is exposed to excessive amounts of ionising radiation, defects are induced within its matrix. We report the influence of radiation-induced defects on the thermoluminescence (TL) and optically stimulated luminescence (OSL) measured from α-Al2O3:C after irradiation to 1000 Gy. These radiation-induced defects are thermally unstable in the region 450–650 °C and result in TL peaks in this range when the TL is measured at 1 °C/s. Heating a sample to 700 °C obliterates the radiation-induced defects, that is, the TL peaks corresponding to the radiation induced defects are no longer observed in the subsequent TL measurements when moderate irradiation doses below 10 Gy are used. The charge traps associated with these radiation-induced defects are more stable than the dosimetric trap when the sample is exposed to either sunlight or 470-nm blue light from LEDs. TL glow curves measured following the defect-inducing irradiation produce a dosimetric peak that is broader and positioned at a higher temperature than observed in glow curves obtained before the heavy irradiation. In addition, sample sensitization/desensitization occurs due to the presence of these radiation-induced defects. Furthermore, both the activation energy and the kinetic order of the dosimetric peak evaluated when the radiation-induced defects are present in the sample are significantly lower in value than those obtained when these defects are absent. The radiation-induced defects also affect the shape and total light sum of the OSL signal as well as the position and width of the resultant residual phototransferred thermoluminescence main peak.
- Full Text: false
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »