Thermally and optically stimulated luminescence of natural red and blue corundum (Al2O3)
- Kalita, Jitumani M, Thomas, Sunil, Chithambo, Makaiko L
- Authors: Kalita, Jitumani M , Thomas, Sunil , Chithambo, Makaiko L
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/105177 , vital:32472 , https://doi.org/10.1016/j.jlumin.2018.09.058
- Description: We report the thermoluminescence (TL) and optically stimulated luminescence (OSL) of natural corundum (Al2O3) of two varieties; one red and the other blue. X-ray fluorescence spectroscopy of the samples show that the concentration of Al2O3 in the red corundum is 43.05% and 46.87% in the blue corundum. TL measurements carried out on un-annealed samples and samples annealed at 700 °C, 900 °C and 1200 °C show that the TL sensitivity increases with annealing. The sensitivity of the red corundum reaches a maximum after annealing at 900 °C whereas that of the blue corundum increases with annealing up to the maximum annealing temperature of 1200 °C used in this study. Both samples have a complex glow curve between 30 °C and 500 °C. The composite nature of the glow curves is deduced to be due to a continuum in the trap distribution in the crystal. The activation energy of the traps vary between 0.70 eV and 1.15 eV. The dose response of the red corundum under TL is linear within 100‒1000 Gy whereas that of the blue corundum is superlinear for the same dose range. The TL of both samples is reproducible but the signal fades with time between irradiation and measurement. Both samples produce OSL under 470 nm blue light stimulation. The dose response of the OSL is superlinear within 100‒1000 Gy. It is found that the samples also produce thermally-assisted OSL (TA-OSL) at elevated temperature. The TA-OSL intensity of the red corundum increases with dose up to 400 Gy and saturates thereafter. On the other hand, the intensity of the blue corundum increases consistently with dose from 100 Gy to 1000 Gy.
- Full Text: false
- Date Issued: 2019
- Authors: Kalita, Jitumani M , Thomas, Sunil , Chithambo, Makaiko L
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/105177 , vital:32472 , https://doi.org/10.1016/j.jlumin.2018.09.058
- Description: We report the thermoluminescence (TL) and optically stimulated luminescence (OSL) of natural corundum (Al2O3) of two varieties; one red and the other blue. X-ray fluorescence spectroscopy of the samples show that the concentration of Al2O3 in the red corundum is 43.05% and 46.87% in the blue corundum. TL measurements carried out on un-annealed samples and samples annealed at 700 °C, 900 °C and 1200 °C show that the TL sensitivity increases with annealing. The sensitivity of the red corundum reaches a maximum after annealing at 900 °C whereas that of the blue corundum increases with annealing up to the maximum annealing temperature of 1200 °C used in this study. Both samples have a complex glow curve between 30 °C and 500 °C. The composite nature of the glow curves is deduced to be due to a continuum in the trap distribution in the crystal. The activation energy of the traps vary between 0.70 eV and 1.15 eV. The dose response of the red corundum under TL is linear within 100‒1000 Gy whereas that of the blue corundum is superlinear for the same dose range. The TL of both samples is reproducible but the signal fades with time between irradiation and measurement. Both samples produce OSL under 470 nm blue light stimulation. The dose response of the OSL is superlinear within 100‒1000 Gy. It is found that the samples also produce thermally-assisted OSL (TA-OSL) at elevated temperature. The TA-OSL intensity of the red corundum increases with dose up to 400 Gy and saturates thereafter. On the other hand, the intensity of the blue corundum increases consistently with dose from 100 Gy to 1000 Gy.
- Full Text: false
- Date Issued: 2019
Phototransferred thermoluminescence and thermally-assisted optically stimulated luminescence dosimetry using α-Al2O3:C,Mg annealed at 1200°C
- Kalita, Jitumani M, Chithambo, Makaiko L
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/105422 , vital:32511 , https://doi.org/10.1016/j.jlumin.2018.08.085
- Description: We report phototransferred thermoluminescence (PTTL) and thermally-assisted optically stimulated luminescence (TA-OSL) of α-Al2O3:C,Mg annealed at 1200 °C. PTTL is TL measured from an irradiated phosphor after its exposure to light. The other theme of this study, TA-OSL is the additional amount of luminescence optically stimulated from a sample over and above the amount that would be measured at room temperature. A sample irradiated to 10 Gy and preheated to 230 °C at 1 °C/s followed by illumination by 470 nm blue light produced four PTTL peaks at 53, 80, 102 and 173 °C. The PTTL peaks occur at the same positions as the corresponding conventional TL peaks. Their kinetic parameters are also similar. The intensity of the PTTL peaks increased with duration of illumination to a maximum within 200 s for doses between 1 Gy and 10 Gy. The dose response of each of the PTTL peaks at 80, 102 and 173 °C is linear within 1–15 Gy. The rate of fading is low and the peaks are reproducible. When the irradiated sample is optically stimulated at temperatures between 30 °C and 300 °C, after preheating to 500 °C, the intensity of its TA-OSL goes through a peak with temperature at 200 °C. Using the rising edge of the plot, activation energy of thermal assistance for a deep electron trap was estimated as (0.21 ± 0.02) eV. The TA-OSL dose response is sublinear from 10–250 Gy and saturates thereafter. The PTTL and TA-OSL analyses signify that the concentration of deep traps in α-Al2O3:C,Mg increased after annealing at 1200 °C. As a result, the sample produced better PTTL and TA-OSL response than when annealed at lower temperature.
- Full Text: false
- Date Issued: 2018
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/105422 , vital:32511 , https://doi.org/10.1016/j.jlumin.2018.08.085
- Description: We report phototransferred thermoluminescence (PTTL) and thermally-assisted optically stimulated luminescence (TA-OSL) of α-Al2O3:C,Mg annealed at 1200 °C. PTTL is TL measured from an irradiated phosphor after its exposure to light. The other theme of this study, TA-OSL is the additional amount of luminescence optically stimulated from a sample over and above the amount that would be measured at room temperature. A sample irradiated to 10 Gy and preheated to 230 °C at 1 °C/s followed by illumination by 470 nm blue light produced four PTTL peaks at 53, 80, 102 and 173 °C. The PTTL peaks occur at the same positions as the corresponding conventional TL peaks. Their kinetic parameters are also similar. The intensity of the PTTL peaks increased with duration of illumination to a maximum within 200 s for doses between 1 Gy and 10 Gy. The dose response of each of the PTTL peaks at 80, 102 and 173 °C is linear within 1–15 Gy. The rate of fading is low and the peaks are reproducible. When the irradiated sample is optically stimulated at temperatures between 30 °C and 300 °C, after preheating to 500 °C, the intensity of its TA-OSL goes through a peak with temperature at 200 °C. Using the rising edge of the plot, activation energy of thermal assistance for a deep electron trap was estimated as (0.21 ± 0.02) eV. The TA-OSL dose response is sublinear from 10–250 Gy and saturates thereafter. The PTTL and TA-OSL analyses signify that the concentration of deep traps in α-Al2O3:C,Mg increased after annealing at 1200 °C. As a result, the sample produced better PTTL and TA-OSL response than when annealed at lower temperature.
- Full Text: false
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »