Examining intraspecific multiple predator effects across shifting predator sex ratios:
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Weyl, Olaf L F, Froneman, P William, Callaghan, Amanda, Dick, Jaimie T A
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/150119 , vital:38941 , https://doi.org/10.1016/j.baae.2020.03.002
- Description: Predator-predator interactions, or “multiple predator effects” (MPEs), are pervasive in the structuring of communities and complicate predictive quantifications of ecosystem dynamics. The nature of MPEs is also context-dependent, manifesting differently among species, prey densities and habitat structures. However, there has hitherto been a lack of consideration for the implications of intraspecific demographic variation within populations for the strength of MPEs. The present study extends MPE concepts to examine intraspecific interactions among male and female predators across differences in prey densities using a functional response approach. Focusing on a copepod-mosquito model predator-prey system, interaction strengths of different sex ratio pairs of Lovenula raynerae were quantified towards larval Culex pipiens complex prey, with observations compared to both additive and substitutive model predictions.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/150119 , vital:38941 , https://doi.org/10.1016/j.baae.2020.03.002
- Description: Predator-predator interactions, or “multiple predator effects” (MPEs), are pervasive in the structuring of communities and complicate predictive quantifications of ecosystem dynamics. The nature of MPEs is also context-dependent, manifesting differently among species, prey densities and habitat structures. However, there has hitherto been a lack of consideration for the implications of intraspecific demographic variation within populations for the strength of MPEs. The present study extends MPE concepts to examine intraspecific interactions among male and female predators across differences in prey densities using a functional response approach. Focusing on a copepod-mosquito model predator-prey system, interaction strengths of different sex ratio pairs of Lovenula raynerae were quantified towards larval Culex pipiens complex prey, with observations compared to both additive and substitutive model predictions.
- Full Text:
- Date Issued: 2020
Influence of intra-and interspecific variation in predator–prey body size ratios on trophic interaction strengths:
- Cuthbert, Ross N, Wasserman, Ryan J, Dalu, Tatenda, Kaiser, Horst, Weyl, Olaf L F, Dick, Jaimie T A, Sentis, Arnaud, McCoy, Michael W, Alexander, Mhairi E
- Authors: Cuthbert, Ross N , Wasserman, Ryan J , Dalu, Tatenda , Kaiser, Horst , Weyl, Olaf L F , Dick, Jaimie T A , Sentis, Arnaud , McCoy, Michael W , Alexander, Mhairi E
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149358 , vital:38839 , https://0-doi.org.wam.seals.ac.za/10.1002/ece3.6332
- Description: Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra‐ and interspecific variation in predator–prey body size ratios are lacking. We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra‐ and interspecific predator–prey body mass ratios on the scaling of attack rates and handling times.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Wasserman, Ryan J , Dalu, Tatenda , Kaiser, Horst , Weyl, Olaf L F , Dick, Jaimie T A , Sentis, Arnaud , McCoy, Michael W , Alexander, Mhairi E
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149358 , vital:38839 , https://0-doi.org.wam.seals.ac.za/10.1002/ece3.6332
- Description: Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra‐ and interspecific variation in predator–prey body size ratios are lacking. We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra‐ and interspecific predator–prey body mass ratios on the scaling of attack rates and handling times.
- Full Text:
- Date Issued: 2020
Emergent effects of structural complexity and temperature on predator–prey interactions
- Wasserman, Ryan J, Alexander, Mhairi E, Weyl, Olaf L F, Barrios‐O'Neill, Daniel, Froneman, P William, Dalu, Tatenda
- Authors: Wasserman, Ryan J , Alexander, Mhairi E , Weyl, Olaf L F , Barrios‐O'Neill, Daniel , Froneman, P William , Dalu, Tatenda
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69190 , vital:29444 , https://doi.org/10.1002/ecs2.1239
- Description: Ephemeral aquatic environments are important habitats for a variety of species. They are highly variable with regards to vegetation structure and physico‐chemical features that potentially mediate outcomes of biotic interactions. Multiple environmental variables and their emergent impacts on the relationship between prey consumption rate by a predator and prey density (functional response), however, are rarely assessed. Here, we investigated the combined effects of temperature and habitat complexity on the functional response of the freshwater predatory notonectid Enithares sobria on the cladoceran prey organism Daphnia longispina. A Type II functional response was observed for E. sobria predating on D. longispina and while temperature and habitat complexity had no effect on the response type, these environmental variables interacted with consequences for the magnitude of the functional responses. Overall, structural complexity favored the predator as greater consumption was observed in the most complex habitat treatment. Temperature effects were also evident although these effects were not unidirectional with regard to treatment factor gradients as predators were the most successful at intermediary temperatures. Furthermore, there was a complex interplay between habitat complexity and temperature, with attack rates being greatest at low and high complexities within intermediate temperatures, while at zero complexity attack rates were greatest at the lowest temperature. The effect of habitat on handling times was only evident in the low temperature treatments which decreased steadily with each increase in complexity. Through the application of functional responses the synergistic effects of multiple environmental drivers on predator–prey interaction outcomes have been highlighted, adding insight into how interactions among species may be affected by natural or artificially induced environmental variability.
- Full Text:
- Date Issued: 2016
- Authors: Wasserman, Ryan J , Alexander, Mhairi E , Weyl, Olaf L F , Barrios‐O'Neill, Daniel , Froneman, P William , Dalu, Tatenda
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69190 , vital:29444 , https://doi.org/10.1002/ecs2.1239
- Description: Ephemeral aquatic environments are important habitats for a variety of species. They are highly variable with regards to vegetation structure and physico‐chemical features that potentially mediate outcomes of biotic interactions. Multiple environmental variables and their emergent impacts on the relationship between prey consumption rate by a predator and prey density (functional response), however, are rarely assessed. Here, we investigated the combined effects of temperature and habitat complexity on the functional response of the freshwater predatory notonectid Enithares sobria on the cladoceran prey organism Daphnia longispina. A Type II functional response was observed for E. sobria predating on D. longispina and while temperature and habitat complexity had no effect on the response type, these environmental variables interacted with consequences for the magnitude of the functional responses. Overall, structural complexity favored the predator as greater consumption was observed in the most complex habitat treatment. Temperature effects were also evident although these effects were not unidirectional with regard to treatment factor gradients as predators were the most successful at intermediary temperatures. Furthermore, there was a complex interplay between habitat complexity and temperature, with attack rates being greatest at low and high complexities within intermediate temperatures, while at zero complexity attack rates were greatest at the lowest temperature. The effect of habitat on handling times was only evident in the low temperature treatments which decreased steadily with each increase in complexity. Through the application of functional responses the synergistic effects of multiple environmental drivers on predator–prey interaction outcomes have been highlighted, adding insight into how interactions among species may be affected by natural or artificially induced environmental variability.
- Full Text:
- Date Issued: 2016
Monitoring of invertebrate and fish recovery following river rehabilitation using rotenone in the Rondegat River
- Weyl, Olaf L F, Barrow, S, Bellingan, Terence A, Dalu, Tatenda, Ellender, Bruce R, Esler, K, Impson, D, Gouws, Jeanne, Jordaan, M, Villet, Martin H, Wasserman, Ryan J, Woodford, Darragh J
- Authors: Weyl, Olaf L F , Barrow, S , Bellingan, Terence A , Dalu, Tatenda , Ellender, Bruce R , Esler, K , Impson, D , Gouws, Jeanne , Jordaan, M , Villet, Martin H , Wasserman, Ryan J , Woodford, Darragh J
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/442411 , vital:73982 , https://www.wrc.org.za/wp-content/uploads/mdocs/2261.pdf
- Description: Fish invasions have been cited as a primary threat to imperilled South African fishes and other aquatic fauna. As a result, the management and control of alien invasive species is a legislated priority in South Africa. From a river rehabilitation perspective, eradicating alien fish allows for the rehabilitation of several kilometres of river, with very significant benefits for the endangered fish species present and for the associated aquatic biota. In South Africa, the piscicide rotenone is one of the preferred methods for achieving eradication.
- Full Text:
- Date Issued: 2016
- Authors: Weyl, Olaf L F , Barrow, S , Bellingan, Terence A , Dalu, Tatenda , Ellender, Bruce R , Esler, K , Impson, D , Gouws, Jeanne , Jordaan, M , Villet, Martin H , Wasserman, Ryan J , Woodford, Darragh J
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/442411 , vital:73982 , https://www.wrc.org.za/wp-content/uploads/mdocs/2261.pdf
- Description: Fish invasions have been cited as a primary threat to imperilled South African fishes and other aquatic fauna. As a result, the management and control of alien invasive species is a legislated priority in South Africa. From a river rehabilitation perspective, eradicating alien fish allows for the rehabilitation of several kilometres of river, with very significant benefits for the endangered fish species present and for the associated aquatic biota. In South Africa, the piscicide rotenone is one of the preferred methods for achieving eradication.
- Full Text:
- Date Issued: 2016
Trophic interactions in an austral temperate ephemeral pond inferred using stable isotope analysis
- Dalu, Tatenda, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J
- Authors: Dalu, Tatenda , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68022 , vital:29185 , https://doi.org/10.1007/s10750-015-2533-5
- Description: Publisher version , Ephemeral ponds are vulnerable aquatic habitats which are difficult to protect given their dynamic nature and sensitivity to degradation during dry periods. Little information is available on these habitats in austral regions, with almost no information on food-web structure and complexity. The study aimed to assess trophic interactions among dominant organisms in an ephemeral pond food web, and investigate the importance of autochthonous and allochthonous carbon, using 13C and 15N isotopes. Results of the investigation suggest that the food web comprised four trophic levels, with the top predators being Notonectids (Notonecta sp.) and diving beetles (Cybister tripunctatus (Olivier)). Intermediary trophic levels comprised zooplankton (daphniids and copepodids), macroinvertebrates (e.g. micronectids and molluscs) and tadpoles. Generalist feeders dominated the higher trophic levels (>3) with specialists comprising the lower trophic levels (≤3). The consumers preferred autochthonous fine particulate organic matter, epiphyton and submerged macrophyte organic matter sources over allochthonous sources. Autochthonous organic matter was transferred to the food web via zooplankton and select macroinvertebrates including Micronecta sp. and Physa sp. The food-web structure within the pond appeared to reflect the secondary stage of trophic structural complexity in the evolution of ephemeral ponds over the course of their hydro-period.
- Full Text: false
- Date Issued: 2016
- Authors: Dalu, Tatenda , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68022 , vital:29185 , https://doi.org/10.1007/s10750-015-2533-5
- Description: Publisher version , Ephemeral ponds are vulnerable aquatic habitats which are difficult to protect given their dynamic nature and sensitivity to degradation during dry periods. Little information is available on these habitats in austral regions, with almost no information on food-web structure and complexity. The study aimed to assess trophic interactions among dominant organisms in an ephemeral pond food web, and investigate the importance of autochthonous and allochthonous carbon, using 13C and 15N isotopes. Results of the investigation suggest that the food web comprised four trophic levels, with the top predators being Notonectids (Notonecta sp.) and diving beetles (Cybister tripunctatus (Olivier)). Intermediary trophic levels comprised zooplankton (daphniids and copepodids), macroinvertebrates (e.g. micronectids and molluscs) and tadpoles. Generalist feeders dominated the higher trophic levels (>3) with specialists comprising the lower trophic levels (≤3). The consumers preferred autochthonous fine particulate organic matter, epiphyton and submerged macrophyte organic matter sources over allochthonous sources. Autochthonous organic matter was transferred to the food web via zooplankton and select macroinvertebrates including Micronecta sp. and Physa sp. The food-web structure within the pond appeared to reflect the secondary stage of trophic structural complexity in the evolution of ephemeral ponds over the course of their hydro-period.
- Full Text: false
- Date Issued: 2016
An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna
- Dalu, Tatenda, Wasserman, Ryan J, Jordaan, Martine, Froneman, P William, Weyl, Olaf L F
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124240 , vital:35579 , https://doi.org/10.1371/journal.pone.0142140.g001
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplank- ton would be more susceptible to rote none than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were par- ticularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms.
- Full Text:
- Date Issued: 2015
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124240 , vital:35579 , https://doi.org/10.1371/journal.pone.0142140.g001
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplank- ton would be more susceptible to rote none than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were par- ticularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms.
- Full Text:
- Date Issued: 2015
An assessment of the effect of rotenone on selected non-target aquatic fauna:
- Dalu, Tatenda, Wasserman, Ryan J, Jordaan, Martine, Froneman, P William, Weyl, Olaf L F
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/143247 , vital:38214 , https://doi.org/10.1371/journal.pone.0142140
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails.
- Full Text:
- Date Issued: 2015
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/143247 , vital:38214 , https://doi.org/10.1371/journal.pone.0142140
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »