A novel dimeric exoglucanase (GH5_38)
- Mafa, Mpho S, Dirr, Heinrich W, Malgas, Samkelo, Krause, Rui W M, Pletschke, Brett I
- Authors: Mafa, Mpho S , Dirr, Heinrich W , Malgas, Samkelo , Krause, Rui W M , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193976 , vital:45412 , xlink:href="https://doi.org/10.3390/molecules25030746"
- Description: An exoglucanase (Exg-D) from the glycoside hydrolase family 5 subfamily 38 (GH5_38) was heterologously expressed and structurally and biochemically characterised at a molecular level for its application in alkyl glycoside synthesis. The purified Exg-D existed in both dimeric and monomeric forms in solution, which showed highest activity on mixed-linked β-glucan (88.0 and 86.7 U/mg protein, respectively) and lichenin (24.5 and 23.7 U/mg protein, respectively). They displayed a broad optimum pH range from 5.5 to 7 and a temperature optimum from 40 to 60 °C. Kinetic studies demonstrated that Exg-D had a higher affinity towards β-glucan, with a Km of 7.9 mg/mL and a kcat of 117.2 s−1, compared to lichenin which had a Km of 21.5 mg/mL and a kcat of 70.0 s−1. The circular dichroism profile of Exg-D showed that its secondary structure consisted of 11% α-helices, 36% β-strands and 53% coils. Exg-D performed transglycosylation using p-nitrophenyl cellobioside as a glycosyl donor and several primary alcohols as acceptors to produce methyl-, ethyl- and propyl-cellobiosides. These products were identified and quantified via thin-layer chromatography (TLC) and liquid chromatography–mass spectrometry (LC-MS). We concluded that Exg-D is a novel and promising oligomeric glycoside hydrolase for the one-step synthesis of alkyl glycosides with more than one monosaccharide unit.
- Full Text:
- Date Issued: 2020
- Authors: Mafa, Mpho S , Dirr, Heinrich W , Malgas, Samkelo , Krause, Rui W M , Pletschke, Brett I
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193976 , vital:45412 , xlink:href="https://doi.org/10.3390/molecules25030746"
- Description: An exoglucanase (Exg-D) from the glycoside hydrolase family 5 subfamily 38 (GH5_38) was heterologously expressed and structurally and biochemically characterised at a molecular level for its application in alkyl glycoside synthesis. The purified Exg-D existed in both dimeric and monomeric forms in solution, which showed highest activity on mixed-linked β-glucan (88.0 and 86.7 U/mg protein, respectively) and lichenin (24.5 and 23.7 U/mg protein, respectively). They displayed a broad optimum pH range from 5.5 to 7 and a temperature optimum from 40 to 60 °C. Kinetic studies demonstrated that Exg-D had a higher affinity towards β-glucan, with a Km of 7.9 mg/mL and a kcat of 117.2 s−1, compared to lichenin which had a Km of 21.5 mg/mL and a kcat of 70.0 s−1. The circular dichroism profile of Exg-D showed that its secondary structure consisted of 11% α-helices, 36% β-strands and 53% coils. Exg-D performed transglycosylation using p-nitrophenyl cellobioside as a glycosyl donor and several primary alcohols as acceptors to produce methyl-, ethyl- and propyl-cellobiosides. These products were identified and quantified via thin-layer chromatography (TLC) and liquid chromatography–mass spectrometry (LC-MS). We concluded that Exg-D is a novel and promising oligomeric glycoside hydrolase for the one-step synthesis of alkyl glycosides with more than one monosaccharide unit.
- Full Text:
- Date Issued: 2020
The FOXP2 forkhead domain binds to a variety of DNA sequences with different rates and affinities
- Webb, Helen, Steeb, Olga, Blane, Ashleigh, Rotherham, Lia, Aron, Shaun, Machanick, Philip, Dirr, Heinrich W, Fanucchi, Sylvia
- Authors: Webb, Helen , Steeb, Olga , Blane, Ashleigh , Rotherham, Lia , Aron, Shaun , Machanick, Philip , Dirr, Heinrich W , Fanucchi, Sylvia
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/439326 , vital:73567 , https://doi.org/10.1093/jb/mvx003
- Description: FOXP2 is a member of the P subfamily of FOX transcription factors, the DNA-binding domain of which is the winged helix forkhead domain (FHD). In this work we show that the FOXP2 FHD is able to bind to various DNA sequences, including a novel sequence identified in this work, with different affinities and rates as detected using surface plasmon resonance. Combining the experimental work with molecular docking, we show that high-affinity sequences remain bound to the protein for longer, form a greater number of interactions with the protein and induce a greater structural change in the protein than low-affinity sequences. We propose a binding model for the FOXP2 FHD that involves three types of binding sequence: low affinity sites which allow for rapid scanning of the genome by the protein in a partially unstructured state; moderate affinity sites which serve to locate the protein near target sites and high-affinity sites which secure the protein to the DNA and induce a conformational change necessary for functional binding and the possible initiation of downstream transcriptional events.
- Full Text:
- Date Issued: 2017
- Authors: Webb, Helen , Steeb, Olga , Blane, Ashleigh , Rotherham, Lia , Aron, Shaun , Machanick, Philip , Dirr, Heinrich W , Fanucchi, Sylvia
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/439326 , vital:73567 , https://doi.org/10.1093/jb/mvx003
- Description: FOXP2 is a member of the P subfamily of FOX transcription factors, the DNA-binding domain of which is the winged helix forkhead domain (FHD). In this work we show that the FOXP2 FHD is able to bind to various DNA sequences, including a novel sequence identified in this work, with different affinities and rates as detected using surface plasmon resonance. Combining the experimental work with molecular docking, we show that high-affinity sequences remain bound to the protein for longer, form a greater number of interactions with the protein and induce a greater structural change in the protein than low-affinity sequences. We propose a binding model for the FOXP2 FHD that involves three types of binding sequence: low affinity sites which allow for rapid scanning of the genome by the protein in a partially unstructured state; moderate affinity sites which serve to locate the protein near target sites and high-affinity sites which secure the protein to the DNA and induce a conformational change necessary for functional binding and the possible initiation of downstream transcriptional events.
- Full Text:
- Date Issued: 2017
Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion
- Ziningwa, Tawanda, Achilonu, Ikechukwu, Hoppe, Heinrich C, Prinsloo, Earl, Dirr, Heinrich W, Shonhai, Addmore
- Authors: Ziningwa, Tawanda , Achilonu, Ikechukwu , Hoppe, Heinrich C , Prinsloo, Earl , Dirr, Heinrich W , Shonhai, Addmore
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431765 , vital:72802 , xlink:href="https://doi.org/10.1007/s12192-016-0678-4"
- Description: The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a Cterminal substrate binding domain (SBD). In the ADPbound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s.
- Full Text:
- Date Issued: 2016
- Authors: Ziningwa, Tawanda , Achilonu, Ikechukwu , Hoppe, Heinrich C , Prinsloo, Earl , Dirr, Heinrich W , Shonhai, Addmore
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431765 , vital:72802 , xlink:href="https://doi.org/10.1007/s12192-016-0678-4"
- Description: The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a Cterminal substrate binding domain (SBD). In the ADPbound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s.
- Full Text:
- Date Issued: 2016
Overexpression, Purification and Characterisation of the Plasmodium falciparum Hsp70-z (PfHsp70-z) Protein
- Zininga, Tawanda, Achilonu, Ikechukwu, Hoppe, Heinrich C, Prinsloo, Earl, Dirr, Heinrich W, Shonhai, Addmore
- Authors: Zininga, Tawanda , Achilonu, Ikechukwu , Hoppe, Heinrich C , Prinsloo, Earl , Dirr, Heinrich W , Shonhai, Addmore
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431719 , vital:72799 , xlink:href="https://doi.org/10.1371/journal.pone.0129445"
- Description: Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1. PfHsp70-1 is a well characterised canonical Hsp70 that facilitates protein quality control and is crucial for the development of malaria parasites. There is very little known about PfHsp70-z. However, PfHsp70-z is known to be essential and is implicated in suppressing aggregation of asparagine-rich proteins of P. falciparum. In addition, its expression at the clinical stage of malaria correlates with disease prognosis. Based on structural evidence PfHsp70-z belongs to the Hsp110 family of proteins. Since Hsp110 proteins have been described as nucleotide exchange factors (NEFs) of their canonical Hsp70 counterparts, it has been speculated that PfHsp70-z may serve as a NEF of PfHsp70-1. In the current study, P. falciparum cells cultured in vitro were subjected to heat stress, triggering the enhanced expression of PfHsp70-z. Biochemical assays conducted using recombinant PfHsp70-z protein demonstrated that the protein is heat stable and possesses ATPase activity. Furthermore, we observed that PfHsp70-z is capable of self-association. The structural-functional features of PfHsp70-z provide further evidence for its role as a chaperone and possible nucleotide exchange factor of PfHsp70-1.
- Full Text:
- Date Issued: 2015
- Authors: Zininga, Tawanda , Achilonu, Ikechukwu , Hoppe, Heinrich C , Prinsloo, Earl , Dirr, Heinrich W , Shonhai, Addmore
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431719 , vital:72799 , xlink:href="https://doi.org/10.1371/journal.pone.0129445"
- Description: Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1. PfHsp70-1 is a well characterised canonical Hsp70 that facilitates protein quality control and is crucial for the development of malaria parasites. There is very little known about PfHsp70-z. However, PfHsp70-z is known to be essential and is implicated in suppressing aggregation of asparagine-rich proteins of P. falciparum. In addition, its expression at the clinical stage of malaria correlates with disease prognosis. Based on structural evidence PfHsp70-z belongs to the Hsp110 family of proteins. Since Hsp110 proteins have been described as nucleotide exchange factors (NEFs) of their canonical Hsp70 counterparts, it has been speculated that PfHsp70-z may serve as a NEF of PfHsp70-1. In the current study, P. falciparum cells cultured in vitro were subjected to heat stress, triggering the enhanced expression of PfHsp70-z. Biochemical assays conducted using recombinant PfHsp70-z protein demonstrated that the protein is heat stable and possesses ATPase activity. Furthermore, we observed that PfHsp70-z is capable of self-association. The structural-functional features of PfHsp70-z provide further evidence for its role as a chaperone and possible nucleotide exchange factor of PfHsp70-1.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »