Microcystin enhances the fitness of microcystin producing cyanobacteria at high light intensities by either preventing or retarding photoinhibition
- Authors: Phelan, Richard Reginald
- Date: 2013
- Subjects: Microcystins , Microcystis , Cyanobacterial toxins
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10354 , http://hdl.handle.net/10948/d1020957
- Description: Several genera of cyanobacteria produce microcystin, a monocyclic peptide, with a unique chemical structure. To date, there have been over a 100 different structural variants of microcystin which have been identified. Microcystin production is affected by numerous environmental factors. However, the primary modulating factor for intracellular microcystin quota is the intracellular N:C ratio. No clearly defined biological role has been described for microcystin. Proposed roles for microcystin include defence against plankton grazers, metal chelation, an infochemical and a protectant against oxidative stress. There is sufficient evidence to support a biological role for microcystin in photosynthesis: microcystin is predominantly located in the thylakoid membranes, the microcystin gene cluster is differentially expressed as a function of light and a growth advantage for the microcystin producer in saturating light intensities. The purpose of this study is to investigate a possible biological role for microcystin in preventing photoinhibition and thus explaining the growth advantage observed in toxin-producers over non-toxin-producers. The uptake of exogenous microcystin was observed in Synechocystis PCC 6803 which was internalized and located in the thylakoid membranes and caused the inhibition of photosynthesis. Microcystin variants and increasing concentrations of microcystin-LR had no effect on the fluidity of the thylakoid membranes. The exposure of thylakoid membranes from Synechocystis PCC 6803 to physiologically relevant concentrations of different microcystin variants resulted in the inhibition of photosystem II activity but not photosystem I activity. The inhibition of photosystem II was variant dependent and concentration dependent for microcystin-LR and microcystin-RR. Chlorophyll a fluorescence data showed that photosystem II inhibition was caused by the inhibition of the oxygen evolving complex. Furthermore, a completion study revealed that the microcystin-producing Microcystis PCC 7806 had a competitive advantage over the non-microcystin producing ΔmcyA mutant of Microcystis PCC 7806 at high light intensities. The data indicates that microcystin protects the toxin-producer by either retarding or preventing photoinhibition and thus identifying the first data supported function for microcystin in cyanobacteria.
- Full Text:
- Date Issued: 2013
- Authors: Phelan, Richard Reginald
- Date: 2013
- Subjects: Microcystins , Microcystis , Cyanobacterial toxins
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10354 , http://hdl.handle.net/10948/d1020957
- Description: Several genera of cyanobacteria produce microcystin, a monocyclic peptide, with a unique chemical structure. To date, there have been over a 100 different structural variants of microcystin which have been identified. Microcystin production is affected by numerous environmental factors. However, the primary modulating factor for intracellular microcystin quota is the intracellular N:C ratio. No clearly defined biological role has been described for microcystin. Proposed roles for microcystin include defence against plankton grazers, metal chelation, an infochemical and a protectant against oxidative stress. There is sufficient evidence to support a biological role for microcystin in photosynthesis: microcystin is predominantly located in the thylakoid membranes, the microcystin gene cluster is differentially expressed as a function of light and a growth advantage for the microcystin producer in saturating light intensities. The purpose of this study is to investigate a possible biological role for microcystin in preventing photoinhibition and thus explaining the growth advantage observed in toxin-producers over non-toxin-producers. The uptake of exogenous microcystin was observed in Synechocystis PCC 6803 which was internalized and located in the thylakoid membranes and caused the inhibition of photosynthesis. Microcystin variants and increasing concentrations of microcystin-LR had no effect on the fluidity of the thylakoid membranes. The exposure of thylakoid membranes from Synechocystis PCC 6803 to physiologically relevant concentrations of different microcystin variants resulted in the inhibition of photosystem II activity but not photosystem I activity. The inhibition of photosystem II was variant dependent and concentration dependent for microcystin-LR and microcystin-RR. Chlorophyll a fluorescence data showed that photosystem II inhibition was caused by the inhibition of the oxygen evolving complex. Furthermore, a completion study revealed that the microcystin-producing Microcystis PCC 7806 had a competitive advantage over the non-microcystin producing ΔmcyA mutant of Microcystis PCC 7806 at high light intensities. The data indicates that microcystin protects the toxin-producer by either retarding or preventing photoinhibition and thus identifying the first data supported function for microcystin in cyanobacteria.
- Full Text:
- Date Issued: 2013
A potential biological role for microcystin in photosynthesis in Microcystis Aeruginosa
- Authors: Phelan, Richard Reginald
- Date: 2009
- Subjects: Microcystis aeruginosa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10320 , http://hdl.handle.net/10948/1285 , Microcystis aeruginosa
- Description: Neither the ecological role nor the metabolic function of microcystin is known. Cellular microcystin concentrations correlate to cellular nitrogen status for a given environmental phosphorous concentration and specific growth rate. Microcystin production is enhanced when the rate of nitrogen accumulation exceeds the relative specific growth rate and/or when cellular N:C ratios exceed the Redfield ratio as a function of reduced carbon fixation, suggesting enhanced production of microcystin under carbon stress. Additionally, a strong correlation between medium phosphate and carbon fixation, and the negative correlation between medium phosphate and microcystin combined with the cellular localization of microcystin in thylakoids supports a possible role for microcystin in enhancement of photosynthesis. Batch cultures of both Microcystis aeruginosa PCC7806 and a mcyA- knockout mutant of PCC7806 were therefore cultured at different light intensities and media treatments, so as to vary cellular N:C ratios and concentrations, and sampled for analysis of microcystin concentration, cell numbers and residual medium nitrates. Inter-strain differences in photosynthetic electron transfer rates and levels were monitored using a Hansatech PEA fluorometer and compared to cellular microcystin concentrations. An enhanced survival was observed at high light, where the toxic strain survived while the nontoxic strain became chlorotic. A strong correlation (r2 = 0.907, p< 0.001, N=22) between microcystin concentration and growth rate was observed at high light conditions. No such advantage was observed at optimal or low-light conditions and media composition had no significant effect on the relationship between toxicity and survival at high light. PCC7806 showed elevated PI(abs) values compared to the mcyA knockout strain, which indicates an increased stability of PSII. A strong correlation between PI(abs) and microcystin (r = 0.88, p< 0.005, N=15) was observed for cultures grown in modified BG11 containing 25 mM under continuous illumination of 37 μmol of photons m-2.s-1. No correlation was observed between PI(abs) and microcystin for the other treatments. The toxin producer had significantly higher values for density of active reaction centers and ii quantum efficiency compared to the mutant. A decrease in F0 in the mutant suggests degradation of the phycobiliproteins, whereas PCC7806 didn’t show a significant decrease in F0 Data indicate that microcystins play a role in photosynthesis by preventing chlorosis in saturating light conditions either by enhancing the redox stability of the phycobiliproteins or PS II, thus preventing photooxidation.
- Full Text:
- Date Issued: 2009
- Authors: Phelan, Richard Reginald
- Date: 2009
- Subjects: Microcystis aeruginosa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10320 , http://hdl.handle.net/10948/1285 , Microcystis aeruginosa
- Description: Neither the ecological role nor the metabolic function of microcystin is known. Cellular microcystin concentrations correlate to cellular nitrogen status for a given environmental phosphorous concentration and specific growth rate. Microcystin production is enhanced when the rate of nitrogen accumulation exceeds the relative specific growth rate and/or when cellular N:C ratios exceed the Redfield ratio as a function of reduced carbon fixation, suggesting enhanced production of microcystin under carbon stress. Additionally, a strong correlation between medium phosphate and carbon fixation, and the negative correlation between medium phosphate and microcystin combined with the cellular localization of microcystin in thylakoids supports a possible role for microcystin in enhancement of photosynthesis. Batch cultures of both Microcystis aeruginosa PCC7806 and a mcyA- knockout mutant of PCC7806 were therefore cultured at different light intensities and media treatments, so as to vary cellular N:C ratios and concentrations, and sampled for analysis of microcystin concentration, cell numbers and residual medium nitrates. Inter-strain differences in photosynthetic electron transfer rates and levels were monitored using a Hansatech PEA fluorometer and compared to cellular microcystin concentrations. An enhanced survival was observed at high light, where the toxic strain survived while the nontoxic strain became chlorotic. A strong correlation (r2 = 0.907, p< 0.001, N=22) between microcystin concentration and growth rate was observed at high light conditions. No such advantage was observed at optimal or low-light conditions and media composition had no significant effect on the relationship between toxicity and survival at high light. PCC7806 showed elevated PI(abs) values compared to the mcyA knockout strain, which indicates an increased stability of PSII. A strong correlation between PI(abs) and microcystin (r = 0.88, p< 0.005, N=15) was observed for cultures grown in modified BG11 containing 25 mM under continuous illumination of 37 μmol of photons m-2.s-1. No correlation was observed between PI(abs) and microcystin for the other treatments. The toxin producer had significantly higher values for density of active reaction centers and ii quantum efficiency compared to the mutant. A decrease in F0 in the mutant suggests degradation of the phycobiliproteins, whereas PCC7806 didn’t show a significant decrease in F0 Data indicate that microcystins play a role in photosynthesis by preventing chlorosis in saturating light conditions either by enhancing the redox stability of the phycobiliproteins or PS II, thus preventing photooxidation.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »