The Effects of Alkaline Pretreatment on Agricultural Biomasses (Corn Cob and Sweet Sorghum Bagasse) and Their Hydrolysis by a Termite-Derived Enzyme Cocktail:
- Mafa, Mpho S, Malgas, Samkelo, Bhattacharya, Abhishek, Rashamuse, Konanani, Pletschke, Brett I
- Authors: Mafa, Mpho S , Malgas, Samkelo , Bhattacharya, Abhishek , Rashamuse, Konanani , Pletschke, Brett I
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/160273 , vital:40430 , https://doi.org/10.3390/agronomy10081211
- Description: Sweet sorghum bagasse (SSB) and corncob (CC) have been identified as promising feedstocks for the production of second-generation biofuels and other value-added chemicals. In this study, lime (Ca(OH)2) and NaOH pretreatment efficacy for decreasing recalcitrance from SSB and CC was investigated, and subsequently, the pretreated biomass was subjected to the hydrolytic action of an in-house formulated holocellulolytic enzyme cocktail (HEC-H). Compositional analysis revealed that SSB contained 29.34% lignin, 17.75% cellulose and 16.28% hemicellulose, while CC consisted of 22.51% lignin, 23.58% cellulose and 33.34% hemicellulose. Alkaline pretreatment was more effective in pretreating CC biomass compared to the SSB biomass.
- Full Text:
- Date Issued: 2020
- Authors: Mafa, Mpho S , Malgas, Samkelo , Bhattacharya, Abhishek , Rashamuse, Konanani , Pletschke, Brett I
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/160273 , vital:40430 , https://doi.org/10.3390/agronomy10081211
- Description: Sweet sorghum bagasse (SSB) and corncob (CC) have been identified as promising feedstocks for the production of second-generation biofuels and other value-added chemicals. In this study, lime (Ca(OH)2) and NaOH pretreatment efficacy for decreasing recalcitrance from SSB and CC was investigated, and subsequently, the pretreated biomass was subjected to the hydrolytic action of an in-house formulated holocellulolytic enzyme cocktail (HEC-H). Compositional analysis revealed that SSB contained 29.34% lignin, 17.75% cellulose and 16.28% hemicellulose, while CC consisted of 22.51% lignin, 23.58% cellulose and 33.34% hemicellulose. Alkaline pretreatment was more effective in pretreating CC biomass compared to the SSB biomass.
- Full Text:
- Date Issued: 2020
Purification and characterization of an amyloglucosidase from an ericoid mycorrhizal fungus (Leohumicola incrustata)
- Adeoyo, Olusegun R, Pletschke, Brett I, Dames, Joanna F
- Authors: Adeoyo, Olusegun R , Pletschke, Brett I , Dames, Joanna F
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/440405 , vital:73780 , https://doi.org/10.1186/s13568-018-0685-1
- Description: This study aimed to purify and characterize amyloglucosidase (AMG) from Leohumicola incrustata. AMG was purified to homogeneity from cell-free culture filtrate of an ERM fungus grown in a modified Melin–Norkrans liquid medium. The molecular mass of the AMG was estimated to be 101 kDa by combining the results of Sephadex G-100 gel filtration, sodium dodecyl sulphate–polyacrylamide gel electrophoresis, and zymography. The Km and kcat values were 0.38 mg mL−1 and 70 s−1, respectively, using soluble starch as a substrate. The enzyme was stable at 45 °C (pH 5.0), retaining over 65% activity after a pre-incubation period of 24 h. The metal inhibition profile of the AMG showed that Mn2+ and Ca2+ enhanced activity, while it was stable to metals ions, except a few (Al3+, Co2+, Hg2+ and Cd2+) that were inhibitory at a concentration higher than 5 mM. Thin layer chromatography revealed that only glucose was produced as the product of starch hydrolysis. The amylase from L. incrustata is a glucoamylase with promising characteristics such as temperature stability over an extended period, high substrate affinity and stability to a range of chemicals. Also, this study reports for the first time the possibility of using some culturable ERM fungi to produce enzymes for the bio-economy.
- Full Text:
- Date Issued: 2018
- Authors: Adeoyo, Olusegun R , Pletschke, Brett I , Dames, Joanna F
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/440405 , vital:73780 , https://doi.org/10.1186/s13568-018-0685-1
- Description: This study aimed to purify and characterize amyloglucosidase (AMG) from Leohumicola incrustata. AMG was purified to homogeneity from cell-free culture filtrate of an ERM fungus grown in a modified Melin–Norkrans liquid medium. The molecular mass of the AMG was estimated to be 101 kDa by combining the results of Sephadex G-100 gel filtration, sodium dodecyl sulphate–polyacrylamide gel electrophoresis, and zymography. The Km and kcat values were 0.38 mg mL−1 and 70 s−1, respectively, using soluble starch as a substrate. The enzyme was stable at 45 °C (pH 5.0), retaining over 65% activity after a pre-incubation period of 24 h. The metal inhibition profile of the AMG showed that Mn2+ and Ca2+ enhanced activity, while it was stable to metals ions, except a few (Al3+, Co2+, Hg2+ and Cd2+) that were inhibitory at a concentration higher than 5 mM. Thin layer chromatography revealed that only glucose was produced as the product of starch hydrolysis. The amylase from L. incrustata is a glucoamylase with promising characteristics such as temperature stability over an extended period, high substrate affinity and stability to a range of chemicals. Also, this study reports for the first time the possibility of using some culturable ERM fungi to produce enzymes for the bio-economy.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »