- Title
- A comparative study of artificial neural networks and physics models as simulators in evolutionary robotics
- Creator
- Pretorius, Christiaan Johannes
- Subject
- Neural networks (Computer science)
- Date Issued
- 2019
- Date
- 2019
- Type
- Thesis
- Type
- Doctoral
- Type
- PhD
- Identifier
- http://hdl.handle.net/10948/30789
- Identifier
- vital:31131
- Description
- The Evolutionary Robotics (ER) process is a technique that applies evolutionary optimization algorithms to the task of automatically developing, or evolving, robotic control programs. These control programs, or simply controllers, are evolved in order to allow a robot to perform a required task. During the ER process, use is often made of robotic simulators to evaluate the performance of candidate controllers that are produced in the course of the controller evolution process. Such simulators accelerate and otherwise simplify the controller evolution process, as opposed to the more arduous process of evaluating controllers in the real world without use of simulation. To date, the vast majority of simulators that have been applied in ER are physics- based models which are constructed by taking into account the underlying physics governing the operation of the robotic system in question. An alternative approach to simulator implementation in ER is the usage of Artificial Neural Networks (ANNs) as simulators in the ER process. Such simulators are referred to as Simulator Neural Networks (SNNs). Previous studies have indicated that SNNs can successfully be used as an alter- native to physics-based simulators in the ER process on various robotic platforms. At the commencement of the current study it was not, however, known how this relatively new method of simulation would compare to traditional physics-based simulation approaches in ER. The study presented in this thesis thus endeavoured to quantitatively compare SNNs and physics-based models as simulators in the ER process. In order to con- duct this comparative study, both SNNs and physics simulators were constructed for the modelling of three different robotic platforms: a differentially-steered robot, a wheeled inverted pendulum robot and a hexapod robot. Each of these two types of simulation was then used in simulation-based evolution processes to evolve con- trollers for each robotic platform. During these controller evolution processes, the SNNs and physics models were compared in terms of their accuracy in making pre- dictions of robotic behaviour, their computational efficiency in arriving at these predictions, the human effort required to construct each simulator and, most im- portantly, the real-world performance of controllers evolved by making use of each simulator. The results obtained in this study illustrated experimentally that SNNs were, in the majority of cases, able to make more accurate predictions than the physics- based models and these SNNs were arguably simpler to construct than the physics simulators. Additionally, SNNs were also shown to be a computationally efficient alternative to physics-based simulators in ER and, again in the majority of cases, these SNNs were able to produce controllers which outperformed those evolved in the physics-based simulators, when these controllers were uploaded to the real-world robots. The results of this thesis thus suggest that SNNs are a viable alternative to more commonly-used physics simulators in ER and further investigation of the potential of this simulation technique appears warranted.
- Format
- x, 246 leaves
- Format
- Publisher
- Nelson Mandela University
- Publisher
- Faculty of Science
- Language
- English
- Rights
- Nelson Mandela University
- Hits: 2129
- Visitors: 2115
- Downloads: 156
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Christiaan Johannes Pretorius.pdf | 5 MB | Adobe Acrobat PDF | View Details Download |