Design and fabrication of electrochemical sensor based on molecularly imprinted polymer loaded onto silver nanoparticles for the detection of 17-β-Estradiol
- Regasa, Melkamu Biyana, Nyokong, Tebello
- Authors: Regasa, Melkamu Biyana , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300287 , vital:57913 , xlink:href="https://doi.org/10.1002/jmr.2978"
- Description: In this research report, we prepared an electrochemical sensor based on the molecularly imprinted poly(p-aminophenol) supported by silver nanoparticles capped with 2-mercaptobenzoxazole for the selective and sensitive detection of endocrine disrupting 17-β-estradiol (E2). The electropolymerization of the functional monomer prepared the proposed molecularly imprinted polymer (MIP) composite-based sensor in the presence of E2 as a template. The recognition materials were characterized using Fourier transform infrared, cyclic voltammetry (CV), square wave voltammetry (SWV), scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray powder diffraction techniques. The electrochemical measurements were performed by employing both CV and SWV methods. We did the optimization of critical parameters affecting the sensor performances through the experimental design and verification. The developed sensor showed a linear range from 10 pM to 100 nM with the calculated quantification and detection limits of 1.86 and 6.19 pM, respectively. The incorporation of AgNP with high electrical conductivity into the MIP matrix enhanced the sensor's performance. Furthermore, the sensor was applied to determine E2 in real water samples without any sample preconcentration steps to achieve the percent recovery of 91.87% to 98.36% and acceptable reusability and storage stability performances.
- Full Text:
- Date Issued: 2022
- Authors: Regasa, Melkamu Biyana , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300287 , vital:57913 , xlink:href="https://doi.org/10.1002/jmr.2978"
- Description: In this research report, we prepared an electrochemical sensor based on the molecularly imprinted poly(p-aminophenol) supported by silver nanoparticles capped with 2-mercaptobenzoxazole for the selective and sensitive detection of endocrine disrupting 17-β-estradiol (E2). The electropolymerization of the functional monomer prepared the proposed molecularly imprinted polymer (MIP) composite-based sensor in the presence of E2 as a template. The recognition materials were characterized using Fourier transform infrared, cyclic voltammetry (CV), square wave voltammetry (SWV), scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray powder diffraction techniques. The electrochemical measurements were performed by employing both CV and SWV methods. We did the optimization of critical parameters affecting the sensor performances through the experimental design and verification. The developed sensor showed a linear range from 10 pM to 100 nM with the calculated quantification and detection limits of 1.86 and 6.19 pM, respectively. The incorporation of AgNP with high electrical conductivity into the MIP matrix enhanced the sensor's performance. Furthermore, the sensor was applied to determine E2 in real water samples without any sample preconcentration steps to achieve the percent recovery of 91.87% to 98.36% and acceptable reusability and storage stability performances.
- Full Text:
- Date Issued: 2022
Synergistic recognition and electrochemical sensing of 17β-Estradiol using ordered molecularly imprinted polymer-graphene oxide-silver nanoparticles composite films
- Regasa, Melkamu Biyana, Nyokong, Tebello
- Authors: Regasa, Melkamu Biyana , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295829 , vital:57382 , xlink:href="https://doi.org/10.1016/j.jelechem.2022.116713"
- Description: Synthetic molecularly imprinted polymers (MIPs) based functional materials become the best alternatives to alleviate the stability and cost issues related to biological receptors commonly used in biochemical sensors. To address this demand, we report the development of a highly selective and sensitive MIPs-based electrochemical sensor for the detection of 17β-estradiol (E2). The sensor was prepared based on the MIP-graphene oxide (GO)-silver nanoparticle (AgNP) nanocomposite functional materials electrodeposited on the surface of the glassy carbon electrode (GCE). At first, AgNp formation was facilitated by using ascorbic acid to reduce and stabilize it. A very stable MIP-GO-AgNP sensing layer with multifunctional units were formed using imidazole as a functional monomer (p-type-electron acceptor), GO (n-type-electron donor), and AgNP by using the electrodeposition method. The role of GO in the system is providing additional functional units to bind the template and improve materials morphology while that of AgNPs is acting as a catalyst and charge carrier. The characterization of the sensing materials was done by using Fourier transform infrared, scanning electron microscopy, energy dispersive X-ray spectroscopy, and cyclic voltammetry. After optimization of the essential parameters, the sensor was successfully applied to detect the target analyte using the square wave voltammetric technique. The prepared sensor exhibited a wide linear range of 10 fM-250 nM with the limit of detection and limit of quantification of 3.01 fM and 10.03 fM, respectively. The high percentage recoveries, sensitivity, repeatability, and easy fabrication of the MIP-GO-AgNP materials made the proposed sensor promising for environmental monitoring applications in the future.
- Full Text:
- Date Issued: 2022
- Authors: Regasa, Melkamu Biyana , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295829 , vital:57382 , xlink:href="https://doi.org/10.1016/j.jelechem.2022.116713"
- Description: Synthetic molecularly imprinted polymers (MIPs) based functional materials become the best alternatives to alleviate the stability and cost issues related to biological receptors commonly used in biochemical sensors. To address this demand, we report the development of a highly selective and sensitive MIPs-based electrochemical sensor for the detection of 17β-estradiol (E2). The sensor was prepared based on the MIP-graphene oxide (GO)-silver nanoparticle (AgNP) nanocomposite functional materials electrodeposited on the surface of the glassy carbon electrode (GCE). At first, AgNp formation was facilitated by using ascorbic acid to reduce and stabilize it. A very stable MIP-GO-AgNP sensing layer with multifunctional units were formed using imidazole as a functional monomer (p-type-electron acceptor), GO (n-type-electron donor), and AgNP by using the electrodeposition method. The role of GO in the system is providing additional functional units to bind the template and improve materials morphology while that of AgNPs is acting as a catalyst and charge carrier. The characterization of the sensing materials was done by using Fourier transform infrared, scanning electron microscopy, energy dispersive X-ray spectroscopy, and cyclic voltammetry. After optimization of the essential parameters, the sensor was successfully applied to detect the target analyte using the square wave voltammetric technique. The prepared sensor exhibited a wide linear range of 10 fM-250 nM with the limit of detection and limit of quantification of 3.01 fM and 10.03 fM, respectively. The high percentage recoveries, sensitivity, repeatability, and easy fabrication of the MIP-GO-AgNP materials made the proposed sensor promising for environmental monitoring applications in the future.
- Full Text:
- Date Issued: 2022
- «
- ‹
- 1
- ›
- »