Ga III triarylcorroles with push–pull substitutions
- Niu, Yingjie, Wang, Lin, Guo, Yingxin, Zhu, Weihua, Soy, Rodah C, Babu, Balaji, Mack, John, Nyokong, Tebello, Xu, Haijun, Liang, Xu
- Authors: Niu, Yingjie , Wang, Lin , Guo, Yingxin , Zhu, Weihua , Soy, Rodah C , Babu, Balaji , Mack, John , Nyokong, Tebello , Xu, Haijun , Liang, Xu
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300079 , vital:57890 , xlink:href="https://doi.org/10.1039/D2DT01262F"
- Description: Two A2B type H3corroles and two GaIIItriarylcorroles with carbazole substitutions at 10-positions were synthesized and characterized. An analysis of structure–property relationships of the corroles has been carried out by investigating the optical spectroscopy of the dyes to trends predicted in DFT and TD-DFT calculations. Interestingly, the photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) activity properties of the GaIIItriarylcorroles were determined against the MCF-7 breast cancer line, and Staphyloccocus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The cationic G-2Q species exhibited the most favorable properties with an IC50 value of 7.8 μM against MCF-7 cells, and Log reduction values of 7.78 and 3.26 against planktonic S. aureus and E. coli at 0.5 and 10 μM, respectively.
- Full Text:
- Date Issued: 2022
- Authors: Niu, Yingjie , Wang, Lin , Guo, Yingxin , Zhu, Weihua , Soy, Rodah C , Babu, Balaji , Mack, John , Nyokong, Tebello , Xu, Haijun , Liang, Xu
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300079 , vital:57890 , xlink:href="https://doi.org/10.1039/D2DT01262F"
- Description: Two A2B type H3corroles and two GaIIItriarylcorroles with carbazole substitutions at 10-positions were synthesized and characterized. An analysis of structure–property relationships of the corroles has been carried out by investigating the optical spectroscopy of the dyes to trends predicted in DFT and TD-DFT calculations. Interestingly, the photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) activity properties of the GaIIItriarylcorroles were determined against the MCF-7 breast cancer line, and Staphyloccocus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The cationic G-2Q species exhibited the most favorable properties with an IC50 value of 7.8 μM against MCF-7 cells, and Log reduction values of 7.78 and 3.26 against planktonic S. aureus and E. coli at 0.5 and 10 μM, respectively.
- Full Text:
- Date Issued: 2022
Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties
- Sen, Pinar, Soy, Rodah C, Mgidlana, Sithi, Mack, John, Nyokong, Tebello
- Authors: Sen, Pinar , Soy, Rodah C , Mgidlana, Sithi , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300112 , vital:57894 , xlink:href="https://doi.org/10.1016/j.dyepig.2022.110313"
- Description: The emergence of antimicrobial resistance has made the development of photodynamic therapy (PDT) related applications essential, since microorganisms can not form resistance to this method. Porphyrins are well-known photosensitizers for PDT related applications. Thus, the present study outlines the synthesis, characterization and evaluation of the utility of palladium porphyrins and their chitosan inclusion complexes as photosensitizer dye in photodynamic antimicrobial therapy (PACT). Before in vitro cell studies, the photophysical-chemical studies of all obtained structures were performed in solution. It was observed that the immobilization of the porphyrins into the chitosan influenced the photophysical-chemical and PACT activity properties. The determined fluorescence quantum yield was very low, in the range of 0.007–0.028 for all samples indicating the efficient triplet state population to cause high singlet oxygen quantum yield (ΦΔ). The measured ΦΔ values were in the range of 0.51–0.61 for the porphyrins and 0.53–0.66 for porphyrin chitosan immobilization complexes. Our results demonstrate that the PACT activity of cationic porphyrin (P3) and its chitosan immobilization form (P3-Ct) were more efficient in decreasing the number of viable cells up to 100% in vitro.
- Full Text:
- Date Issued: 2022
- Authors: Sen, Pinar , Soy, Rodah C , Mgidlana, Sithi , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300112 , vital:57894 , xlink:href="https://doi.org/10.1016/j.dyepig.2022.110313"
- Description: The emergence of antimicrobial resistance has made the development of photodynamic therapy (PDT) related applications essential, since microorganisms can not form resistance to this method. Porphyrins are well-known photosensitizers for PDT related applications. Thus, the present study outlines the synthesis, characterization and evaluation of the utility of palladium porphyrins and their chitosan inclusion complexes as photosensitizer dye in photodynamic antimicrobial therapy (PACT). Before in vitro cell studies, the photophysical-chemical studies of all obtained structures were performed in solution. It was observed that the immobilization of the porphyrins into the chitosan influenced the photophysical-chemical and PACT activity properties. The determined fluorescence quantum yield was very low, in the range of 0.007–0.028 for all samples indicating the efficient triplet state population to cause high singlet oxygen quantum yield (ΦΔ). The measured ΦΔ values were in the range of 0.51–0.61 for the porphyrins and 0.53–0.66 for porphyrin chitosan immobilization complexes. Our results demonstrate that the PACT activity of cationic porphyrin (P3) and its chitosan immobilization form (P3-Ct) were more efficient in decreasing the number of viable cells up to 100% in vitro.
- Full Text:
- Date Issued: 2022
- «
- ‹
- 1
- ›
- »