- Title
- Establishment of a high-content neurodegenerative disease model screening platform
- Creator
- Swanepoel, Bresler
- Subject
- Molecular neurobiology
- Subject
- Nervous system -- Diseases
- Subject
- Nervous system -- Degeneration
- Date Issued
- 2023-12
- Date
- 2023-12
- Type
- Doctorial theses
- Type
- text
- Identifier
- http://hdl.handle.net/10948/62644
- Identifier
- vital:72906
- Description
- The identification of viable therapeutic targets and new treatments for central nervous system disorders, especially neurodegenerative diseases, remain major challenges in the field of drug discovery. Over the past few years there has been a steady decline in the turnaround time of current screening processes to yield viable drugs. Therefore, an increasing need exists for better technologies, protocols, and the screening of larger libraries. High-throughput screening provides the best solution to this problem and has become a key part in the drug discovery and development process. Likewise, high-content analysis has gained popularity over the past few years and is suitable for high-throughput screening. The aim of this study was to establish a comprehensive in vitro neuroprotective screening platform incorporating high throughput screening, using Parkinson’s disease as the neurodegenerative disease of interest. To evaluate the success of this platform, the neuroprotective potential of two mushrooms (Hericium erinaceus and Phlebopus sudanicus), two plants (Lippia javanica and Myrothamnus flabellifolia) and two seaweeds (Eucheuma denticulatum and Kappaphycus alvarezii) were investigated. Aqueous and ethanolic extracts of the selected natural products were evaluated across 21 parameters associated with four hallmarks of neurodegeneration: acquiring senescence, acquiring cell death, neuroinflammation and altered metabolism/cell survival. Based on the effects of these selected natural products on the 21 parameters, their potential mechanisms of action were elucidated. In addition to this, the natural products were scored under each of these therapeutic targets in an attempt to identify the most suitable animal models for future studies. The scoring system indicated that animal models investigating anti-senescence ability would be more suited for extracts of H. erinaceus, P. sudanicus and E. denticulatum whereas studies investigating the prevention of cell death would be more suited for extracts of E. denticulatum, L. javanica and K. alvarezii. Likewise, models based on neuroinflammation would be best suited for extracts of H. erinaceus, E. denticulatum and L. javanica while studies examining altered metabolism/cell survival would be best suited to extracts of H. erinaceus, E. denticulatum, K. alvarezii and M. flabellifolia. Considering the pleiotropic nature of the selected natural products, models that can combine these therapeutic targets could be of great interest. 6-OHDA proved to be capable of inducing favourable effects, in all the parameters investigated, with regard to a neurodegenerative state. However, it is known to have some disadvantages when it comes to pathological features such as the lack of the ability to induce Lewy body formation. Choosing the correct inducer remains a daunting task and no model, whether cell-based or animal-based, exists yet in which all the features of neurodegenerative diseases have been successfully replicated. The limitations of the current models, however, does not mean that they do not produce valuable insights. This is especially true if the mechanism of action for a specific compound or natural product is unknown. Animal models are still indispensable for the validation and interpretation of the results obtained from cell models with particular importance to toxicity. Therefore, this study assessed the best studied extract with the highest overall score for its toxicity using a zebrafish larvae-based model. Assessment of the toxicity of H. erinaceus revealed that both aqueous and ethanolic extracts resulted in death at the highest concentrations. This was supported by the results obtained in the in vitro cytotoxicity screening. In conclusion, this highlighted the importance of using physiologically relevant concentrations and supported the translational value of the current cell-based screening model to animal models and possibly humans. The findings of the present study suggest that a scoring system, which categorizes the different activities of selected natural products into distinct groups, can be a useful tool to improve the translatability of in vitro results to animal models. Furthermore, the current study arguably provides the most comprehensive neuroprotective screening platform in existence. Future research can look at expanding the platform through incorporation of additional parameters based on other hallmarks of neurodegeneration, not covered in this study, including protein folding and aggregation, altered epigenetics and the examination of other neuronal markers such as the involvement of astrocytes, oligodendrocytes, and microglia. In addition to this, future research can make use of more sophisticated cell models such as differentiated, human induced pluripotent stem cells and three-dimensional cultures.
- Description
- Thesis (PhD) -- Faculty of Science, School of Biomolecular and Chemical Sciences, 2023
- Format
- computer
- Format
- online resource
- Format
- application/pdf
- Format
- 1 online resource (xix, 288 pages)
- Format
- Publisher
- Nelson Mandela University
- Publisher
- Faculty of Science
- Language
- English
- Rights
- Nelson Mandela University
- Rights
- All Rights Reserved
- Rights
- Open Access
- Hits: 208
- Visitors: 208
- Downloads: 10
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Swanepoel, B.pdf | 4 MB | Adobe Acrobat PDF | View Details Download |