- Title
- Development of MgZnO-grown MOCVD for UV Photonic applications
- Creator
- Talla, Kharouna
- Subject
- Photoluminescence
- Subject
- Photonics
- Subject
- Zinc oxide
- Date Issued
- 2011
- Date
- 2011
- Type
- Thesis
- Type
- Doctoral
- Type
- PhD
- Identifier
- vital:10537
- Identifier
- http://hdl.handle.net/10948/d1012585
- Identifier
- Photoluminescence
- Identifier
- Photonics
- Identifier
- Zinc oxide
- Description
- MgxZn1-xO has emerged as a material of great technological importance. Having a direct energy band gap that is tunable throughout much of the ultraviolet (UV) region of the spectrum from the near-UV (~370 nm) to the deep-UV (~176 nm), this compound is of interest for a variety of optoelectronic devices operating in this part of the electromagnetic spectrum. MgxZn1-xO offers advantages over the more mature compound semiconductor AlGaN which stem mainly from the unusually high exciton binding energy (60 meV in ZnO). In this study the growth of ZnO and MgxZn1-xO thin films using metal organic chemical vapour deposition (MOCVD) is systematically investigated. The films are mainly grown on c-Al2O3 and Si (100) and characterized using various techniques, such as photoluminescence (PL), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and auger electron spectroscopy (AES). The optical and the structural properties are essentially inspected in order to improve their quality. In this thesis the optimisation of ZnO grown using oxygen gas as a new oxidant in our reactor is investigated. The growth temperature and VI/II ratio are varied in order to find optimum parameters giving high quality layers. The effects of Si (100), Si (111), c- and r-sapphire, glass, GaAs and ZnO substrates on the optical, structural and morphological properties of ZnO thin films grown with tert-butanol (TBOH) is examined. Similar morphologies are observed for all substrates, with the films comprising hexagonal columns having cone shaped ends. The photoluminescence spectra are similar, but the various transitions have different relative intensities. It is clear that the different substrates influence neither the orientation of the films, nor the surface morphology, significantly. The photoluminescence hints at larger stacking fault densities in films grown on silicon and glass, however, as evidenced by stronger basal plane stacking fault-related luminescence at ~3.319 eV in the relevant low temperature photoluminescence spectra. The morphology changes with Mg incorporation, from hexagonal columnar structures to cubic faceted columns. From PL, the full with at half maximum is found to gradually increase with Mg content due to alloy broadening. The deep level emission (DLE) is observed to shift with Mg content. By changing the Mg content, the band gap of MgxZn1-xO film is tuned by ~450 meV, which provides an excellent opportunity for band gap engineering for optoelectronic applications. The c-lattice constant of ZnO (5.205 Å) decreases by only 0.6% when the Mg content reaches x=0.39. The introduction of Mg into ZnO is shown to increase the relative PL intensity of stacking fault-related transitions (at 3.314 eV for ZnO). This becomes the dominant near band edge emission. Using TEM a thin Mg rich layer is observed at the interface between the film and the Si or Al2O3. Temperature dependent PL measurements on layers with low Mg concentration (x=0.05 and 0.1) show that the main bound exciton peak exhibits an “s-shaped” temperature dependence, characteristic of localization in a disordered alloy. The origin of the PL line broadening of MgxZn1-xO (x≤0.04) is also analyzed with respect to alloy broadening, taking into account a random cation distribution and alloy clustering. The influence of various MOCVD growth parameters such as growth temperature and VI/II ratio is studied. Varying the temperature from 280 ˚C to 580 ˚C reveals strong morphological changes and optical degradation of the films. Low (<280 ˚C) and high (>580 ˚C) growth temperatures reduce the Mg incorporation. High VI/II ratios also decrease the Mg incorporation, as evidenced by the red-shift of the donor bound exciton (D°X) line. This is ascribed to a stronger premature reaction between (MeCp)2Mg and the oxidant or a preferential heterogeneous interaction between the Mg and oxygen species on the growth front. For both oxidizing agents (O2 and TBOH), the growth at 420 ˚C and a VI-II ratio of 60 on c-Al2O3 gave optimal quality layers in terms of their optical and structural quality. A comparison of films grown using TBOH and O2 gas as oxidizing agent shows no major difference in terms of Mg incorporation. The effect of annealing, the inclusion of a buffer layer and the influence of growth rate on the properties MgxZn1-xO thin films are also reported.
- Format
- 147 pages
- Format
- Publisher
- Nelson Mandela Metropolitan University
- Publisher
- Faculty of Science
- Language
- English
- Rights
- Nelson Mandela Metropolitan University
- Hits: 1873
- Visitors: 1845
- Downloads: 112
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCEPDF | 4 MB | Adobe Acrobat PDF | View Details Download |