High performance nonwovens in technical textile applications
- Ogunleye, Christopher Olarinde
- Authors: Ogunleye, Christopher Olarinde
- Date: 2013
- Subjects: Nonwoven fabrics , Textile fabrics -- Technological innovations
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10356 , http://hdl.handle.net/10948/d1021011
- Description: The aim of this research was to establish the optimum processing conditions and parameters for producing nonwoven fabrics best suited for application in disposable and protective wear for surgical gowns, drapes and laboratory coats. Carded and crosslapped webs, of three basic weights (80, 120, and 150g/m2), from greige (unscoured and unbleached) cotton, viscose and polyester fibres, were hydroentangled, using three different waterjet pressures (60, 100 and 120 bars), on a Fleissner Aquajet hydroentanglement machine. An antibacterial agent (Ruco-Coat FC 9005) and a fluorochemical water repellent agent (Ruco Bac-AGP), were applied in one bath using the pad-dry-cure technique, to impart both antibacterial and water repellent properties to the fabrics, SEM photomicrographs indicating that the finished polymers were evenly dispersed on the fabric surface. The effect of waterjet pressure, fabric weight and type and treatment on the structure of the nonwoven produced, was evaluated by measuring the relevant characteristics of the fabrics. As expected, there was an interrelationship between fabric weight, thickness, and density, the fabric thickness and mass density increasing with fabric weight. An increase in waterjet pressure decreased the fabric thickness and increased the fabric density. The water repellent and antibacterial treatment increased the fabric weight and thickness. The antimicrobial activity of the fabrics was assessed by determining the percentage reduction in Staphylococcus aureus and Escherichia coli bacteria population. The maximum percent reduction at 24hrs contact time for both bacteria ranged from 99.5 to 99.6 percent for all the fabric types. The standard spray test ratings for the three treated fabrics ranged from 80-90 percent, whereas that of the untreated water repellent fabric was zero, while the contact angles for all the fabric types exceeded 90 degrees, indicating good resistance to wetting. It was found that the tensile strength of the fabric in the cross-machine direction was higher than that in the machine direction, for both the treated and untreated fabrics, with the tensile strengths in both the MD and CD of the treated fabrics were greater than that of the untreated fabrics, the reverse being true for the extension at break. An increase in waterjet pressure increased the tensile strength but decreased the extension at break, for both the treated and untreated fabrics. The finishing treatment decreased the mean pore size of all the fabrics, the mean pore size decreasing with an increase in fabric weight and waterjet pressure. An increase in waterjet pressure and fabric weight decreased the air and water vapour permeability, as did the finishing treatment, although the differences were not always statistically significant. The polyester fabrics had the highest water and air permeability. Hence low weight fabrics of 80 g/m2, which were hydroentangled at low water jet pressures of 60 bars, were suitable for use in this study due to their higher air and water vapour permeability as well as higher pore size distribution. These group of fabrics thus meet the requirements for surgical gowns, drapes, nurses’ uniforms and laboratory coats.
- Full Text:
- Date Issued: 2013
- Authors: Ogunleye, Christopher Olarinde
- Date: 2013
- Subjects: Nonwoven fabrics , Textile fabrics -- Technological innovations
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10356 , http://hdl.handle.net/10948/d1021011
- Description: The aim of this research was to establish the optimum processing conditions and parameters for producing nonwoven fabrics best suited for application in disposable and protective wear for surgical gowns, drapes and laboratory coats. Carded and crosslapped webs, of three basic weights (80, 120, and 150g/m2), from greige (unscoured and unbleached) cotton, viscose and polyester fibres, were hydroentangled, using three different waterjet pressures (60, 100 and 120 bars), on a Fleissner Aquajet hydroentanglement machine. An antibacterial agent (Ruco-Coat FC 9005) and a fluorochemical water repellent agent (Ruco Bac-AGP), were applied in one bath using the pad-dry-cure technique, to impart both antibacterial and water repellent properties to the fabrics, SEM photomicrographs indicating that the finished polymers were evenly dispersed on the fabric surface. The effect of waterjet pressure, fabric weight and type and treatment on the structure of the nonwoven produced, was evaluated by measuring the relevant characteristics of the fabrics. As expected, there was an interrelationship between fabric weight, thickness, and density, the fabric thickness and mass density increasing with fabric weight. An increase in waterjet pressure decreased the fabric thickness and increased the fabric density. The water repellent and antibacterial treatment increased the fabric weight and thickness. The antimicrobial activity of the fabrics was assessed by determining the percentage reduction in Staphylococcus aureus and Escherichia coli bacteria population. The maximum percent reduction at 24hrs contact time for both bacteria ranged from 99.5 to 99.6 percent for all the fabric types. The standard spray test ratings for the three treated fabrics ranged from 80-90 percent, whereas that of the untreated water repellent fabric was zero, while the contact angles for all the fabric types exceeded 90 degrees, indicating good resistance to wetting. It was found that the tensile strength of the fabric in the cross-machine direction was higher than that in the machine direction, for both the treated and untreated fabrics, with the tensile strengths in both the MD and CD of the treated fabrics were greater than that of the untreated fabrics, the reverse being true for the extension at break. An increase in waterjet pressure increased the tensile strength but decreased the extension at break, for both the treated and untreated fabrics. The finishing treatment decreased the mean pore size of all the fabrics, the mean pore size decreasing with an increase in fabric weight and waterjet pressure. An increase in waterjet pressure and fabric weight decreased the air and water vapour permeability, as did the finishing treatment, although the differences were not always statistically significant. The polyester fabrics had the highest water and air permeability. Hence low weight fabrics of 80 g/m2, which were hydroentangled at low water jet pressures of 60 bars, were suitable for use in this study due to their higher air and water vapour permeability as well as higher pore size distribution. These group of fabrics thus meet the requirements for surgical gowns, drapes, nurses’ uniforms and laboratory coats.
- Full Text:
- Date Issued: 2013
Characterisation and optimisation of waterjet impact forces and energy parameters during hydroentanglement
- Authors: Moyo, Doice
- Date: 2012
- Subjects: Textile chemistry , Nonwoven fabrics
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10453 , http://hdl.handle.net/10948/d1020134
- Description: Hydroentanglement is an important technique of bonding fibres to produce nonwovens using high velocity waterjets as the primary bonding tool. The work reported in this thesis addresses the gap in scientific knowledge and understanding, both theoretical and experimental, related to the impact forces and energy of the waterjets used in the hydroentanglement process. The current study focused on the impact forces and energy involved in, and the optimisation of, the hydroentanglement process. The results of the experimentally measured waterjet impact forces have been used to characterise the waterjets as well as to verify empirically the theoretical models currently available for explaining the mechanics of the hydroentanglement process. Since the process of supplying pressurised waterjets consumes a great deal of energy, the study of energy consumption and efficiency of the system has been critical. A method was proposed and used to determine the coefficients of velocity and water discharge of an industrial machine set-up, helping explain the mechanism of energy transfer during hydroentanglement and to concurrently optimise the process. Furthermore, a response surface experimental design was used to optimise the hydroentanglement of viscose and Polylactic acid (PLA) fibres into nonwovens. The selected Box-Behnken design, with four factors, namely the waterjet force, machine processing speed, input weight and fibre type, was employed to investigate the multivariate process factors and their interactive effects on physical and mechanical properties of nonwovens. Two sets of experiments, the later for validation, were performed to study the energy transfer efficiency. The results of the relative energy transfer to bond the fibrous web showed that it was possible to produce nonwovens using lower input energy without compromising the quality of the products. The optimum waterjet pressure and machine speed used to produce the Abstract nonwoven with the highest tensile strength for the least amount of energy supplied were identified.
- Full Text:
- Date Issued: 2012
- Authors: Moyo, Doice
- Date: 2012
- Subjects: Textile chemistry , Nonwoven fabrics
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10453 , http://hdl.handle.net/10948/d1020134
- Description: Hydroentanglement is an important technique of bonding fibres to produce nonwovens using high velocity waterjets as the primary bonding tool. The work reported in this thesis addresses the gap in scientific knowledge and understanding, both theoretical and experimental, related to the impact forces and energy of the waterjets used in the hydroentanglement process. The current study focused on the impact forces and energy involved in, and the optimisation of, the hydroentanglement process. The results of the experimentally measured waterjet impact forces have been used to characterise the waterjets as well as to verify empirically the theoretical models currently available for explaining the mechanics of the hydroentanglement process. Since the process of supplying pressurised waterjets consumes a great deal of energy, the study of energy consumption and efficiency of the system has been critical. A method was proposed and used to determine the coefficients of velocity and water discharge of an industrial machine set-up, helping explain the mechanism of energy transfer during hydroentanglement and to concurrently optimise the process. Furthermore, a response surface experimental design was used to optimise the hydroentanglement of viscose and Polylactic acid (PLA) fibres into nonwovens. The selected Box-Behnken design, with four factors, namely the waterjet force, machine processing speed, input weight and fibre type, was employed to investigate the multivariate process factors and their interactive effects on physical and mechanical properties of nonwovens. Two sets of experiments, the later for validation, were performed to study the energy transfer efficiency. The results of the relative energy transfer to bond the fibrous web showed that it was possible to produce nonwovens using lower input energy without compromising the quality of the products. The optimum waterjet pressure and machine speed used to produce the Abstract nonwoven with the highest tensile strength for the least amount of energy supplied were identified.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »