A review of generalized linear models for count data with emphasis on current geospatial procedures
- Authors: Michell, Justin Walter
- Date: 2016
- Subjects: Spatial analysis (Statistics) , Bayesian statistical decision theory , Geospatial data , Malaria -- Botswana -- Statistics , Malaria -- Botswana -- Research -- Statistical methods
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5582 , http://hdl.handle.net/10962/d1019989
- Description: Analytical problems caused by over-fitting, confounding and non-independence in the data is a major challenge for variable selection. As more variables are tested against a certain data set, there is a greater risk that some will explain the data merely by chance, but will fail to explain new data. The main aim of this study is to employ a systematic and practicable variable selection process for the spatial analysis and mapping of historical malaria risk in Botswana using data collected from the MARA (Mapping Malaria Risk in Africa) project and environmental and climatic datasets from various sources. Details of how a spatial database is compiled for a statistical analysis to proceed is provided. The automation of the entire process is also explored. The final bayesian spatial model derived from the non-spatial variable selection procedure using Markov Chain Monte Carlo simulation was fitted to the data. Winter temperature had the greatest effect of malaria prevalence in Botswana. Summer rainfall, maximum temperature of the warmest month, annual range of temperature, altitude and distance to closest water source were also significantly associated with malaria prevalence in the final spatial model after accounting for spatial correlation. Using this spatial model malaria prevalence at unobserved locations was predicted, producing a smooth risk map covering Botswana. The automation of both compiling the spatial database and the variable selection procedure proved challenging and could only be achieved in parts of the process. The non-spatial selection procedure proved practical and was able to identify stable explanatory variables and provide an objective means for selecting one variable over another, however ultimately it was not entirely successful due to the fact that a unique set of spatial variables could not be selected.
- Full Text:
- Date Issued: 2016
- Authors: Michell, Justin Walter
- Date: 2016
- Subjects: Spatial analysis (Statistics) , Bayesian statistical decision theory , Geospatial data , Malaria -- Botswana -- Statistics , Malaria -- Botswana -- Research -- Statistical methods
- Language: English
- Type: Thesis , Masters , MCom
- Identifier: vital:5582 , http://hdl.handle.net/10962/d1019989
- Description: Analytical problems caused by over-fitting, confounding and non-independence in the data is a major challenge for variable selection. As more variables are tested against a certain data set, there is a greater risk that some will explain the data merely by chance, but will fail to explain new data. The main aim of this study is to employ a systematic and practicable variable selection process for the spatial analysis and mapping of historical malaria risk in Botswana using data collected from the MARA (Mapping Malaria Risk in Africa) project and environmental and climatic datasets from various sources. Details of how a spatial database is compiled for a statistical analysis to proceed is provided. The automation of the entire process is also explored. The final bayesian spatial model derived from the non-spatial variable selection procedure using Markov Chain Monte Carlo simulation was fitted to the data. Winter temperature had the greatest effect of malaria prevalence in Botswana. Summer rainfall, maximum temperature of the warmest month, annual range of temperature, altitude and distance to closest water source were also significantly associated with malaria prevalence in the final spatial model after accounting for spatial correlation. Using this spatial model malaria prevalence at unobserved locations was predicted, producing a smooth risk map covering Botswana. The automation of both compiling the spatial database and the variable selection procedure proved challenging and could only be achieved in parts of the process. The non-spatial selection procedure proved practical and was able to identify stable explanatory variables and provide an objective means for selecting one variable over another, however ultimately it was not entirely successful due to the fact that a unique set of spatial variables could not be selected.
- Full Text:
- Date Issued: 2016
Prediction of protein secondary structure using binary classificationtrees, naive Bayes classifiers and the Logistic Regression Classifier
- Eldud Omer, Ahmed Abdelkarim
- Authors: Eldud Omer, Ahmed Abdelkarim
- Date: 2016
- Subjects: Bayesian statistical decision theory , Logistic regression analysis , Biostatistics , Proteins -- Structure
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5581 , http://hdl.handle.net/10962/d1019985
- Description: The secondary structure of proteins is predicted using various binary classifiers. The data are adopted from the RS126 database. The original data consists of protein primary and secondary structure sequences. The original data is encoded using alphabetic letters. These data are encoded into unary vectors comprising ones and zeros only. Different binary classifiers, namely the naive Bayes, logistic regression and classification trees using hold-out and 5-fold cross validation are trained using the encoded data. For each of the classifiers three classification tasks are considered, namely helix against not helix (H/∼H), sheet against not sheet (S/∼S) and coil against not coil (C/∼C). The performance of these binary classifiers are compared using the overall accuracy in predicting the protein secondary structure for various window sizes. Our result indicate that hold-out cross validation achieved higher accuracy than 5-fold cross validation. The Naive Bayes classifier, using 5-fold cross validation achieved, the lowest accuracy for predicting helix against not helix. The classification tree classifiers, using 5-fold cross validation, achieved the lowest accuracies for both coil against not coil and sheet against not sheet classifications. The logistic regression classier accuracy is dependent on the window size; there is a positive relationship between the accuracy and window size. The logistic regression classier approach achieved the highest accuracy when compared to the classification tree and Naive Bayes classifiers for each classification task; predicting helix against not helix with accuracy 77.74 percent, for sheet against not sheet with accuracy 81.22 percent and for coil against not coil with accuracy 73.39 percent. It is noted that it is easier to compare classifiers if the classification process could be completely facilitated in R. Alternatively, it would be easier to assess these logistic regression classifiers if SPSS had a function to determine the accuracy of the logistic regression classifier.
- Full Text:
- Date Issued: 2016
- Authors: Eldud Omer, Ahmed Abdelkarim
- Date: 2016
- Subjects: Bayesian statistical decision theory , Logistic regression analysis , Biostatistics , Proteins -- Structure
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5581 , http://hdl.handle.net/10962/d1019985
- Description: The secondary structure of proteins is predicted using various binary classifiers. The data are adopted from the RS126 database. The original data consists of protein primary and secondary structure sequences. The original data is encoded using alphabetic letters. These data are encoded into unary vectors comprising ones and zeros only. Different binary classifiers, namely the naive Bayes, logistic regression and classification trees using hold-out and 5-fold cross validation are trained using the encoded data. For each of the classifiers three classification tasks are considered, namely helix against not helix (H/∼H), sheet against not sheet (S/∼S) and coil against not coil (C/∼C). The performance of these binary classifiers are compared using the overall accuracy in predicting the protein secondary structure for various window sizes. Our result indicate that hold-out cross validation achieved higher accuracy than 5-fold cross validation. The Naive Bayes classifier, using 5-fold cross validation achieved, the lowest accuracy for predicting helix against not helix. The classification tree classifiers, using 5-fold cross validation, achieved the lowest accuracies for both coil against not coil and sheet against not sheet classifications. The logistic regression classier accuracy is dependent on the window size; there is a positive relationship between the accuracy and window size. The logistic regression classier approach achieved the highest accuracy when compared to the classification tree and Naive Bayes classifiers for each classification task; predicting helix against not helix with accuracy 77.74 percent, for sheet against not sheet with accuracy 81.22 percent and for coil against not coil with accuracy 73.39 percent. It is noted that it is easier to compare classifiers if the classification process could be completely facilitated in R. Alternatively, it would be easier to assess these logistic regression classifiers if SPSS had a function to determine the accuracy of the logistic regression classifier.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »