Quantitation of zolpidem in biological fluids by electro-driven microextraction combined with HPLC-UV analysis
- Yaripour, Saeid, Mohammadi, Ali, Esfanjani, Isa, Walker, Roderick B, Nojavan, Saeed
- Authors: Yaripour, Saeid , Mohammadi, Ali , Esfanjani, Isa , Walker, Roderick B , Nojavan, Saeed
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184723 , vital:44266 , xlink:href="http://dx.doi.org/10.17179/excli2018-1140"
- Description: In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R2 >0.9991) with repeatability (%RSD) between 0.3 % and 7.3 % (n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %.
- Full Text:
- Date Issued: 2018
- Authors: Yaripour, Saeid , Mohammadi, Ali , Esfanjani, Isa , Walker, Roderick B , Nojavan, Saeed
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184723 , vital:44266 , xlink:href="http://dx.doi.org/10.17179/excli2018-1140"
- Description: In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R2 >0.9991) with repeatability (%RSD) between 0.3 % and 7.3 % (n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %.
- Full Text:
- Date Issued: 2018
The use of experimental design for the development and validation of an HPLC-ECD method for the quantitation of efavirenz
- Makoni, Pedzisai A, Khamanga, Sandile M, Kasongo, Kasongo W, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183556 , vital:44006 , xlink:href="https://doi.org/10.1691/ph.2018.8074"
- Description: A high performance liquid chromatography with electrochemical detection (HPLC-ECD) method for the quantitation of efavirenz (EFV) was developed, since traditional HPLC-UV methods may be inappropriate, given that EFV undergoes photolytic degradation following exposure to UV light. This work describes the use of response surface methodology (RSM) based on a central composite design (CCD) to develop a stability-indicating HPLC method with pulsed ECD in direct current (DC) mode at an applied potential difference and current of +1400 mV and 1.0 μA for the analysis of EFV. Separation of EFV and imipramine was achieved using a Nova-Pak®C18 cartridge column and a mobile phase of phosphate buffer (pH 4.5): acetonitrile (ACN) (55:45 v/v). Mobile phase pH, buffer molarity, ACN concentration and applied potential difference were investigated. The optimized method produced sharp well resolved peaks for imipramine and EFV with retention times of 3.70 and 8.89 minutes. The calibration curve was linear (R2 = 0.9979) over the range 5-70 μg/mL. Repeatability and intermediate precision ranged between 3.37 and 4.34 % RSD and 1.31 and 4.29 % RSD and accuracy between -0.80 and 4.71 % bias. The LOQ and LOD were 5.0 and 1.5 μg/mL. The method was specific for EFV and was used to analyse EFV in commercially available tablets. The HPLC-ECD method is more suitable for quantitative analysis of EFV than HPLC-UV.
- Full Text:
- Date Issued: 2018
- Authors: Makoni, Pedzisai A , Khamanga, Sandile M , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183556 , vital:44006 , xlink:href="https://doi.org/10.1691/ph.2018.8074"
- Description: A high performance liquid chromatography with electrochemical detection (HPLC-ECD) method for the quantitation of efavirenz (EFV) was developed, since traditional HPLC-UV methods may be inappropriate, given that EFV undergoes photolytic degradation following exposure to UV light. This work describes the use of response surface methodology (RSM) based on a central composite design (CCD) to develop a stability-indicating HPLC method with pulsed ECD in direct current (DC) mode at an applied potential difference and current of +1400 mV and 1.0 μA for the analysis of EFV. Separation of EFV and imipramine was achieved using a Nova-Pak®C18 cartridge column and a mobile phase of phosphate buffer (pH 4.5): acetonitrile (ACN) (55:45 v/v). Mobile phase pH, buffer molarity, ACN concentration and applied potential difference were investigated. The optimized method produced sharp well resolved peaks for imipramine and EFV with retention times of 3.70 and 8.89 minutes. The calibration curve was linear (R2 = 0.9979) over the range 5-70 μg/mL. Repeatability and intermediate precision ranged between 3.37 and 4.34 % RSD and 1.31 and 4.29 % RSD and accuracy between -0.80 and 4.71 % bias. The LOQ and LOD were 5.0 and 1.5 μg/mL. The method was specific for EFV and was used to analyse EFV in commercially available tablets. The HPLC-ECD method is more suitable for quantitative analysis of EFV than HPLC-UV.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »