Dietary fatty acids of spiders reveal spatial and temporal variations in aquatic-terrestrial linkages
- Chari, Lenin D, Richoux, Nicole B, Moyo, Sydney, Villet, Martin H
- Authors: Chari, Lenin D , Richoux, Nicole B , Moyo, Sydney , Villet, Martin H
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/441919 , vital:73935 , https://doi.org/10.1016/j.fooweb.2020.e00152
- Description: Stream and riparian food webs can be strongly linked by inputs of aquatic emergent insect prey to terrestrial predators. However, quantifying these linkages and understanding how they vary in time and space is challenging. We investigated the dynamic width of a riverine trophic subsidy zone by determining the relationship between perpendicular distance from a river and dietary contributions of aquatic insect prey to web-building spiders' diets. To assess this relationship, riparian web-building spiders at two river sites were sampled during four seasons and analysed for the fatty acids 16:0, 16:1ω7 and 20:5ω3, their total ω3-fatty acid content and their ω3:ω6 ratio to evaluate trophic subsidies reaching them from an adjacent river. River-derived fatty acids generally declined with increased distance from the river, indicating a diffusion of aquatically derived subsidies into the riparian zone. While the river was only 16 m wide at its broadest, river-derived trophic subsidies were detected up to four times that distance from the river edge. Spiders at a downstream section of the river, characterised by generally higher emergence rates of aquatic insects, contained higher proportions of aquatic indicator fatty acids compared with spiders located upstream, where emergence rates were lower. Similarly, proportions of aquatic indicator fatty acids in spiders were lowest during winter when aquatic insect emergence rates were lowest. The fatty acid 20:5ω3 (eicosapentaenoic acid; EPA) held the best promise as a biomarker of aquatic-derived tropic subsidies and could be developed as a useful tool for riparian research and management.
- Full Text:
- Date Issued: 2020
- Authors: Chari, Lenin D , Richoux, Nicole B , Moyo, Sydney , Villet, Martin H
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/441919 , vital:73935 , https://doi.org/10.1016/j.fooweb.2020.e00152
- Description: Stream and riparian food webs can be strongly linked by inputs of aquatic emergent insect prey to terrestrial predators. However, quantifying these linkages and understanding how they vary in time and space is challenging. We investigated the dynamic width of a riverine trophic subsidy zone by determining the relationship between perpendicular distance from a river and dietary contributions of aquatic insect prey to web-building spiders' diets. To assess this relationship, riparian web-building spiders at two river sites were sampled during four seasons and analysed for the fatty acids 16:0, 16:1ω7 and 20:5ω3, their total ω3-fatty acid content and their ω3:ω6 ratio to evaluate trophic subsidies reaching them from an adjacent river. River-derived fatty acids generally declined with increased distance from the river, indicating a diffusion of aquatically derived subsidies into the riparian zone. While the river was only 16 m wide at its broadest, river-derived trophic subsidies were detected up to four times that distance from the river edge. Spiders at a downstream section of the river, characterised by generally higher emergence rates of aquatic insects, contained higher proportions of aquatic indicator fatty acids compared with spiders located upstream, where emergence rates were lower. Similarly, proportions of aquatic indicator fatty acids in spiders were lowest during winter when aquatic insect emergence rates were lowest. The fatty acid 20:5ω3 (eicosapentaenoic acid; EPA) held the best promise as a biomarker of aquatic-derived tropic subsidies and could be developed as a useful tool for riparian research and management.
- Full Text:
- Date Issued: 2020
Dietary fatty acids of spiders reveal spatial and temporal variations in aquatic-terrestrial linkages
- Chari, Lenin D, Richoux, Nicole B, Moyo, Sydney, Villet, Martin H
- Authors: Chari, Lenin D , Richoux, Nicole B , Moyo, Sydney , Villet, Martin H
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454320 , vital:75335 , xlink:href="https://doi.org/10.1016/j.fooweb.2020.e00152"
- Description: Stream and riparian food webs can be strongly linked by inputs of aquatic emergent insect prey to terrestrial predators. However, quantifying these linkages and understanding how they vary in time and space is challenging. We investigated the dynamic width of a riverine trophic subsidy zone by determining the relationship between perpendicular distance from a river and dietary contributions of aquatic insect prey to web-building spiders' diets. To assess this relationship, riparian web-building spiders at two river sites were sampled during four seasons and analysed for the fatty acids 16:0, 16:1ω7 and 20:5ω3, their total ω3-fatty acid content and their ω3:ω6 ratio to evaluate trophic subsidies reaching them from an adjacent river. River-derived fatty acids generally declined with increased distance from the river, indicating a diffusion of aquatically derived subsidies into the riparian zone. While the river was only 16 m wide at its broadest, river-derived trophic subsidies were detected up to four times that distance from the river edge. Spiders at a downstream section of the river, characterised by generally higher emergence rates of aquatic insects, contained higher proportions of aquatic indicator fatty acids compared with spiders located upstream, where emergence rates were lower. Similarly, proportions of aquatic indicator fatty acids in spiders were lowest during winter when aquatic insect emergence rates were lowest. The fatty acid 20:5ω3 (eicosapentaenoic acid; EPA) held the best promise as a biomarker of aquatic-derived tropic subsidies and could be developed as a useful tool for riparian research and management.
- Full Text:
- Date Issued: 2020
- Authors: Chari, Lenin D , Richoux, Nicole B , Moyo, Sydney , Villet, Martin H
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454320 , vital:75335 , xlink:href="https://doi.org/10.1016/j.fooweb.2020.e00152"
- Description: Stream and riparian food webs can be strongly linked by inputs of aquatic emergent insect prey to terrestrial predators. However, quantifying these linkages and understanding how they vary in time and space is challenging. We investigated the dynamic width of a riverine trophic subsidy zone by determining the relationship between perpendicular distance from a river and dietary contributions of aquatic insect prey to web-building spiders' diets. To assess this relationship, riparian web-building spiders at two river sites were sampled during four seasons and analysed for the fatty acids 16:0, 16:1ω7 and 20:5ω3, their total ω3-fatty acid content and their ω3:ω6 ratio to evaluate trophic subsidies reaching them from an adjacent river. River-derived fatty acids generally declined with increased distance from the river, indicating a diffusion of aquatically derived subsidies into the riparian zone. While the river was only 16 m wide at its broadest, river-derived trophic subsidies were detected up to four times that distance from the river edge. Spiders at a downstream section of the river, characterised by generally higher emergence rates of aquatic insects, contained higher proportions of aquatic indicator fatty acids compared with spiders located upstream, where emergence rates were lower. Similarly, proportions of aquatic indicator fatty acids in spiders were lowest during winter when aquatic insect emergence rates were lowest. The fatty acid 20:5ω3 (eicosapentaenoic acid; EPA) held the best promise as a biomarker of aquatic-derived tropic subsidies and could be developed as a useful tool for riparian research and management.
- Full Text:
- Date Issued: 2020
Decoupled reciprocal subsidies of biomass and fatty acids in fluxes of invertebrates between a temperate river and the adjacent land:
- Moyo, Sydney, Chari, Lenin D, Villet, Martin H, Richoux, Nicole B
- Authors: Moyo, Sydney , Chari, Lenin D , Villet, Martin H , Richoux, Nicole B
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/140843 , vital:37923 , DOI: 10.1007/s00027-017-0529-0
- Description: Streams and riparian areas are tightly coupled through reciprocal trophic subsidies, and there is evidence that these subsidies affect consumers in connected ecosystems. Most studies of subsidies consider only their quantity and not their quality. We determined the bidirectional exchange of organisms between the Kowie River and its riparian zone in South Africa using floating pyramidal traps (to measure insect emergence) and pan traps (to capture infalling invertebrates).
- Full Text:
- Date Issued: 2017
- Authors: Moyo, Sydney , Chari, Lenin D , Villet, Martin H , Richoux, Nicole B
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/140843 , vital:37923 , DOI: 10.1007/s00027-017-0529-0
- Description: Streams and riparian areas are tightly coupled through reciprocal trophic subsidies, and there is evidence that these subsidies affect consumers in connected ecosystems. Most studies of subsidies consider only their quantity and not their quality. We determined the bidirectional exchange of organisms between the Kowie River and its riparian zone in South Africa using floating pyramidal traps (to measure insect emergence) and pan traps (to capture infalling invertebrates).
- Full Text:
- Date Issued: 2017
Connectivity through allochthony: Reciprocal links between adjacent aquatic and terrestrial ecosystems in South Africa
- Richoux, Nicole B, Moyo, Sydney, Chari, Lenin D, Bergamino, Leandro, Carassou, Laure, Dalu, Tatenda, Hean, Jeffrey W, Sikutshwa, Likho, Gininda, Simphiwe, Magoro, Mandla L, Perhar, Gurbir, Ni, Felicity, Villet, Martin H, Whitfield, Alan K, Parker, Daniel M, Froneman, P William, Arhonditsis, George, Craig, Adrian J F K
- Authors: Richoux, Nicole B , Moyo, Sydney , Chari, Lenin D , Bergamino, Leandro , Carassou, Laure , Dalu, Tatenda , Hean, Jeffrey W , Sikutshwa, Likho , Gininda, Simphiwe , Magoro, Mandla L , Perhar, Gurbir , Ni, Felicity , Villet, Martin H , Whitfield, Alan K , Parker, Daniel M , Froneman, P William , Arhonditsis, George , Craig, Adrian J F K
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438363 , vital:73454 , ISBN 978-1-4312-0679-7 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2186-1-15.pdf
- Description: An important aspect of the dynamics of nutrients and pollutants in natural systems is captured in the concept of allochthony, founded on the observation that nutrients and energy in a variety of forms are transferred between adjacent habitats, com-munities and ecosystems that are not routinely considered as connected. Different forms of nutrients and energy move across the conceptual boundaries of habitats via organisms’ activities or physical processes such as wind or water currents, and these transfers can represent important food subsidies. Such cross-partition ecolog-ical subsidies can augment the nutritional condition, biomass and biodiversity of communities, particularly where local production (or autochthony) alone may be inadequate to support local food webs. Furthermore, organic subsidies can influ-ence population dynamics, community interactions and ecosystem processes, and can represent dominant flux inputs in ecosystem budgets. Our intention was to ex-plore organic nutrient fluxes in relation to a primarily lotic (i.e. flowing) aquatic sys-tem at the scale of a hydrological catchment.
- Full Text:
- Date Issued: 2015
- Authors: Richoux, Nicole B , Moyo, Sydney , Chari, Lenin D , Bergamino, Leandro , Carassou, Laure , Dalu, Tatenda , Hean, Jeffrey W , Sikutshwa, Likho , Gininda, Simphiwe , Magoro, Mandla L , Perhar, Gurbir , Ni, Felicity , Villet, Martin H , Whitfield, Alan K , Parker, Daniel M , Froneman, P William , Arhonditsis, George , Craig, Adrian J F K
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438363 , vital:73454 , ISBN 978-1-4312-0679-7 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2186-1-15.pdf
- Description: An important aspect of the dynamics of nutrients and pollutants in natural systems is captured in the concept of allochthony, founded on the observation that nutrients and energy in a variety of forms are transferred between adjacent habitats, com-munities and ecosystems that are not routinely considered as connected. Different forms of nutrients and energy move across the conceptual boundaries of habitats via organisms’ activities or physical processes such as wind or water currents, and these transfers can represent important food subsidies. Such cross-partition ecolog-ical subsidies can augment the nutritional condition, biomass and biodiversity of communities, particularly where local production (or autochthony) alone may be inadequate to support local food webs. Furthermore, organic subsidies can influ-ence population dynamics, community interactions and ecosystem processes, and can represent dominant flux inputs in ecosystem budgets. Our intention was to ex-plore organic nutrient fluxes in relation to a primarily lotic (i.e. flowing) aquatic sys-tem at the scale of a hydrological catchment.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »