Photodynamic therapy characteristics of phthalocyanines in the presence of boron doped detonation nanodiamonds
- Matshitse, Refilwe, Nwaji, Njemuwa, Managa, Muthimuni, Chen, Zhi-Long, Nyokong, Tebello
- Authors: Matshitse, Refilwe , Nwaji, Njemuwa , Managa, Muthimuni , Chen, Zhi-Long , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229921 , vital:49723 , xlink:href="https://doi.org/10.1016/j.pdpdt.2021.102705"
- Description: The synthesis, photophysicochemical and photodynamic therapy (PDT) activities of benzothiazole substituted zinc phthalocyanine (Pc): 1 (asymmetrically substituted and composed of no charges), 2 (asymmetrically substituted and composed of three positive charges), and 3 (symmetrically substituted and composed of four positive charges), are presented. The triplet and singlet oxygen quantum yields were highest for complex 2 showing the importance of asymmetry and charge. The complexes are covalently and non-covalently linked to B doped detonation nanodiamonds (B@DNDs) to yield nanohybrids (B@DNDs-1, B@DNDs-2, B@DNDs-3). The presence of B@DNDs, asymmetry and positive charge resulted in improved PDT with the lowest cell viability being observed for B@DNDs-2 at 5%. The cell viability ranged from 5% to 7% for the nanohybrids compared to 19–26% for Pcs alone.
- Full Text:
- Date Issued: 2022
- Authors: Matshitse, Refilwe , Nwaji, Njemuwa , Managa, Muthimuni , Chen, Zhi-Long , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229921 , vital:49723 , xlink:href="https://doi.org/10.1016/j.pdpdt.2021.102705"
- Description: The synthesis, photophysicochemical and photodynamic therapy (PDT) activities of benzothiazole substituted zinc phthalocyanine (Pc): 1 (asymmetrically substituted and composed of no charges), 2 (asymmetrically substituted and composed of three positive charges), and 3 (symmetrically substituted and composed of four positive charges), are presented. The triplet and singlet oxygen quantum yields were highest for complex 2 showing the importance of asymmetry and charge. The complexes are covalently and non-covalently linked to B doped detonation nanodiamonds (B@DNDs) to yield nanohybrids (B@DNDs-1, B@DNDs-2, B@DNDs-3). The presence of B@DNDs, asymmetry and positive charge resulted in improved PDT with the lowest cell viability being observed for B@DNDs-2 at 5%. The cell viability ranged from 5% to 7% for the nanohybrids compared to 19–26% for Pcs alone.
- Full Text:
- Date Issued: 2022
Synthesis and pharmacological evaluation of chlorin derivatives for photodynamic therapy of cholangiocarcinoma
- Gao, Ying-Hua, Li, Man-Yi, Saijad, Faiza, Wang, Jin-Hai, Meharban, Faiza, Gadoora, Malaz A, Yan, Yi-Jia, Nyokong, Tebello, Chen, Zhi-Long
- Authors: Gao, Ying-Hua , Li, Man-Yi , Saijad, Faiza , Wang, Jin-Hai , Meharban, Faiza , Gadoora, Malaz A , Yan, Yi-Jia , Nyokong, Tebello , Chen, Zhi-Long
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190873 , vital:45036 , xlink:href="https://doi.org/10.1016/j.ejmech.2020.112049"
- Description: Photodynamic therapy (PDT) has been developed as a promising therapeutic method in cancer treatment. The discovery of effective photosensitizer, which is the key factor of PDT, is highly desired. This paper reports the synthesis of novel chlorin derivatives, 5,10,15,20-tetraphenyl-[2:3]-[(methoxycarbonyl, carboxy)methano] chlorin I and 5,10,15,20-tetraphenyl-[2:3]- {[methoxycarbonyl, (2-hydroxyethyl)amide]methano}chlorin II. Their structures were characterized with UV–vis, 1HNMR, 13CNMR and HRMS spectroscopies. Photophysical and photochemical experiments results showed that compound I and II had an absorption maximum around 650 nm, with molar extinction coefficients of 1 × 104 M−1 cm−1. They had strong fluorescence emission in 650–660 nm upon excitation with 419–422 nm light. ESR showed that singlet oxygen was produced upon irradiation of compounds with 650 nm light in the presence of molecular oxygen. The photo-bleaching test indicated that the structure of compounds was stable. These new compounds exhibit excellent anti-tumor effects and lower toxicity compared to m-THPC in vitro and in vivo. Compound I and II had high tumor selectivity, which could induced tumor cells shrinkage and necrosis under 650 nm laser irradiation. Flow cytometry revealed that the compounds might mediate PDT effect at late apoptotic phase. These results make these compound I and II promising candidates for future study in photo-diagnosis and photodynamic therapy of cholangiocarcinoma.
- Full Text:
- Date Issued: 2020
- Authors: Gao, Ying-Hua , Li, Man-Yi , Saijad, Faiza , Wang, Jin-Hai , Meharban, Faiza , Gadoora, Malaz A , Yan, Yi-Jia , Nyokong, Tebello , Chen, Zhi-Long
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190873 , vital:45036 , xlink:href="https://doi.org/10.1016/j.ejmech.2020.112049"
- Description: Photodynamic therapy (PDT) has been developed as a promising therapeutic method in cancer treatment. The discovery of effective photosensitizer, which is the key factor of PDT, is highly desired. This paper reports the synthesis of novel chlorin derivatives, 5,10,15,20-tetraphenyl-[2:3]-[(methoxycarbonyl, carboxy)methano] chlorin I and 5,10,15,20-tetraphenyl-[2:3]- {[methoxycarbonyl, (2-hydroxyethyl)amide]methano}chlorin II. Their structures were characterized with UV–vis, 1HNMR, 13CNMR and HRMS spectroscopies. Photophysical and photochemical experiments results showed that compound I and II had an absorption maximum around 650 nm, with molar extinction coefficients of 1 × 104 M−1 cm−1. They had strong fluorescence emission in 650–660 nm upon excitation with 419–422 nm light. ESR showed that singlet oxygen was produced upon irradiation of compounds with 650 nm light in the presence of molecular oxygen. The photo-bleaching test indicated that the structure of compounds was stable. These new compounds exhibit excellent anti-tumor effects and lower toxicity compared to m-THPC in vitro and in vivo. Compound I and II had high tumor selectivity, which could induced tumor cells shrinkage and necrosis under 650 nm laser irradiation. Flow cytometry revealed that the compounds might mediate PDT effect at late apoptotic phase. These results make these compound I and II promising candidates for future study in photo-diagnosis and photodynamic therapy of cholangiocarcinoma.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »