Biotic resistance towards Hydrellia egeriae, a biological control agent for the aquatic weed Egeria densa, in South Africa
- Authors: Moffat, Rosali , van Noort, Simon , Coetzee, Julie A , Hill, Martin P
- Date: 2024
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451299 , vital:75038 , http://dx.doi.org/10.17159/2254-8854/2024/a15718
- Description: Egeria densa is a submerged aquatic weed that can grow into dense monocultures in rivers and dams in South Africa, which negatively affects ecosystem functioning and services. The biological control agent Hydrellia egeriae Rodrigues-Júnior (Diptera: Ephydridae) was first released against Egeria densa Planchon (Hydrocharitaceae) in South Africa in 2018. Biotic resistance in an introduced range can have negative impacts on the ability of a biological control agent to establish and exert top-down pressure. Dipteran and lepidopteran species that are used as biological control agents are often susceptible to higher levels of parasitism in their introduced range than biological control agents from other insect orders. In addition, ecological analogues that are present in South Africa, make H. egeriae particularly vulnerable to biotic resistance. Considering this, post-release surveys were conducted to investigate if native parasitoids will extend their host range to include H. egeriae. Chaenusa seminervata van Achterberg, C. anervata van Achterberg (Braconidae: Alysiinae: Dacnusini) and Ademon lagarosiphonae van Achterberg (Braconidae: Opiinae) were reared from field-collected H. egeriae pupae, within a year of its release. These braconid parasitoids were previously recorded from a native herbivore, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae).
- Full Text:
- Date Issued: 2024
Contrasting effects of climate change on the invasion risk and biocontrol potential of the invasive Iris pseudacorus L. between Northern and Southern Hemisphere
- Authors: Minuti, Gianmarco , Coetzee, Julie A , Stiers, Iris
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423329 , vital:72048 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105290"
- Description: Iris pseudacorus is both a prized ornamental and an invasive aquatic plant that tends to grow dense monospecific stands, displacing the local vegetation and altering the hydrology of freshwater ecosystems. Originally from Europe, this species has historically invaded North America, China and Japan, and more recently spread through Argentina, South Africa and Australasia, where it is now a target for biological control. Field surveys within its native range have led to the selection of three candidate biocontrol agents. Prioritizing the best candidates for different regions constitutes a critical step, which could save significant time and resources before further cost-intensive experimental studies are conducted. Climate change is seldom taken into consideration in the prioritization process. In this regard, climatic suitability can be used to model the potential distributions of weeds and their candidate agents, both in space and time, thus allowing to identify areas at risk of invasion and predict where agents will be able to establish long-term. Accordingly, the objectives of this work were (i) to predict I. pseudacorus invasions and range shifts in the context of climate change; (ii) to identify wetland areas most at risk of invasion under present and future climatic conditions; and (iii) to prioritize the best suite of candidate biocontrol agents for different invaded ranges, worldwide. To do so, we modelled the present and future (2040–2060) climatic suitability of I. pseudacorus and its candidate agents using the software MaxEnt. Our results highlight a clear distinction between predictions for the Northern and Southern Hemispheres. In North America and eastern Asia, the area climatically suitable for I. pseudacorus is expected to increase and shift northwards. As for its biocontrol agents, very low suitability is predicted across these regions, further decreasing under future climatic conditions. On the other hand, climatically suitable areas for the plant in South America, southern Africa and Australasia are predicted, on average, to reduce in response to climate change. A decrease in climatic suitability is also expected for its candidate biocontrol agents which, however, would still maintain a significant range overlap with their host. These results can be used to prioritize areas most at risk of invasion and identify which combination of candidates could potentially provide the best level of control across different invaded ranges.
- Full Text:
- Date Issued: 2023
Do thermal requirements of Dichrorampha odorata, a shoot-boring moth for the biological control of Chromolaena odorata, explain its failure to establish in South Africa?
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
Evaluating the establishment of a new water hyacinth biological control agent in South Africa
- Authors: Miller, Benjamin E , Coetzee, Julie A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451399 , vital:75046 , http://dx.doi.org/10.17159/2254-8854/2023/a15613
- Description: Megamelus scutellaris Berg (Hemiptera: Delphacidae) is the most recent of nine biological control agents developed to manage invasive water hyacinth, Pontederia (= Eichhornia) crassipes Mart.(Pontederiaceae), in South Africa. More than a million M. scutellaris have been mass-reared and released since the first introduction of the agent into South Africa in 2013, successfully establishing overwintering populations at 32 sites in seven of the nine provinces. Establishment has also been recorded at seven of these sites through natural dispersal from sites where they had established. Inundative releases, where large numbers of M. scutellaris are released regularly, have resulted in excellent establishment, and caused a significant reduction in water hyacinth cover in areas where, historically, biological control seemed unlikely due to excessive eutrophication. Although M. scutellaris has established well throughout South Africa through classical biological control methods, this study also showed that inundative releases of biological control agents over multiple seasons results in the most effective control of the weed, especially at cool temperate and eutrophic sites.
- Full Text:
- Date Issued: 2023
Know thy enemy: Investigating genetic contributions from putative parents of invasive Nymphaea mexicana hybrids in South Africa as part of efforts to develop biological control
- Authors: Reid, Megan K , Paterson, Iain D , Coetzee, Julie A , Gettys, Lyn A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423540 , vital:72070 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105291"
- Description: Hybridisation of alien invasive plants complicates efforts to develop biological control, because variations in the genetic makeup of the target plant can impact the survival of host specific agents that have evolved adaptations specific to the original host. To maximise the likelihood of success in a biological control program, potential agents should therefore be collected from populations in the region of origin that are genetically similar to plants in the invaded range. Molecular markers are useful tools to understand genetic contributions in hybrid populations, especially where morphological differentiation is difficult. Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive alien plant in South Africa that is being targeted for biological control, but hybrids with intermediate morphological traits are also present at several sites. In this study, ISSR (inter simple sequence repeats) and ITS (internal transcribed spacer) markers were used to determine which Nymphaea species are likely to be putative parents of these hybrids, and morphological characters were also investigated to determine if genetic and morphological traits matched. Two major hybrid groups were identified, with one group clustering with Nymphaea odorata Aiton and the other clustering with Nymphaea alba L. A third, smaller group clustered with Nymphaea tetragona Georgi, whereas the remaining samples clustered with pure N. mexicana from the native range. Morphological features agreed with deductions drawn from molecular data. These results allow us to focus efforts to find compatible biological control agents and better understand the complicated genetic structure of N. mexicana and Nymphaea hybrids in South Africa.
- Full Text:
- Date Issued: 2023
Love at first bite? Pre-release surveys reveal a novel association between a native weevil and the invasive Nymphaea mexicana Zuccarini (Nymphaeaceae) in South Africa
- Authors: Reid, Megan K , Hill, Martin P , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416866 , vital:71392 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a19"
- Description: Classical biological control aims to suppress alien invasive plant populations by introducing host-specific natural enemies from the native range. This relies on the assumption that invasive plant populations in the invaded range benefit from the release of natural enemies. Pre-release surveys in the invaded range are a useful way to determine if enemy release applies to a particular invasive alien plant, and to determine what other factors may contribute to the invasion. Similarly, pre-release surveys gather information that can be used to compare invaded sites before and after the release of biological control agents and may also identify whether natural enemies have been accidentally introduced into the country. Pre-release surveys were conducted in South Africa on the invasive Nymphaea mexicana Zuccarini (Nymphaeaceae) to gather such information about this species, for which a biological control programme is being developed. There was lower diversity and abundance of herbivores in the native range compared to South Africa, suggesting that N. mexicana does experience enemy release at most sites in South Africa. This support for the enemy release hypothesis justifies the investment in biological control for its management. However, a native weevil, Bagous longulus Gyllenhal (Coleoptera: Curculionidae), was found feeding and reproducing on N. mexicana at three sites, resulting in damage to the leaves and suggesting that a novel association has formed between these species. Bagous longulus may have potential to be distributed to sites of N. mexicana where it is not present, though further investigation is necessary to confirm if its host range is suitable for this to be a safe endeavour. With the exception of sites where B. longulus was present, leaf sizes were large and damage was low, and there is no evidence that any natural enemies have been accidentally introduced from the native range. Findings such as these emphasise the importance of conducting thorough surveys during the development of biological control programmes.
- Full Text:
- Date Issued: 2023
Performance and field host range of the life stages of Cornops aquaticum, a biological control agent of water hyacinth
- Authors: Franceschini, M Celeste , Hill, Martin P , Fuentes-Rodríguez, Daniela , Gervazoni, Paula B , Sabater, Lara M , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424814 , vital:72186 , xlink:href="https://doi.org/10.1111/eea.13354"
- Description: Host specificity determination of weed biocontrol agents has historically relied on evidence generated through quarantine trials in the region of introduction. These trials could give ‘false positive’ results due to a maximum type I error probability, and where possible, more research under field conditions should be conducted in the region of origin. The oligophagous, semiaquatic grasshopper, Cornops aquaticum Bruner (Orthoptera: Acrididae, Tetrataeniini), was released in South Africa for the biological control of Pontederia crassipes Pellegrini and Horn (Pontederiaceae). The aim of this study was to assess how the performance and field host range of C. aquaticum varies according to its stages of development, and how this contributes to the understanding of the relationship between the fundamental (laboratory-based) and the ecological (field-based) host range of this grasshopper, and its implications for water hyacinth biocontrol. We conducted post-release laboratory no-choice trials, confining early instars (instars 1 and 2), later instars (instars 3–6), and adult females and males in mesh cages, to determine insect performance on wetland plants growing in sympatry with P. crassipes. Also, gut analysis from field-collected C. aquaticum was done to determine the ecological host range of this insect, identifying epidermal tissue of consumed plants. In no-choice trials, survival rates of the later instars and adult C. aquaticum were similar on Pistia stratiotes L. (Araceae), Oxycaryum cubense (Poepp. and Kunth) Lye (Cyperaceae), and P. crassipes. However, under field conditions, P. crassipes and the congeneric Pontederia azurea Sw. were the only plant contents in the guts of early instars and the most abundant species in later instars and adults. The results support the hypothesis that C. aquaticum is an oligophagous insect on the genus Pontederia, and that different life stages should be considered when conducting host-specificity trials in externally feeding mobile herbivore species. Diet composition of field-collected insects thus could help detect false positives in laboratory trials, being an additional and realistic approach in understanding and predicting the selection processes of the insect in the new environment. Retrospective analysis of potential agents that were rejected due to lack of host-specificity, using the methods from this study, could add a suite of additional agents to programs where invasive weeds remain unmanaged.
- Full Text:
- Date Issued: 2023
Sample size assessments for thermal physiology studies: An R package and R Shiny application
- Authors: van Steenderen, Clarke J M , Sutton, Guy F , Owen, Candice A , Martin, Grant D , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444455 , vital:74242 , https://doi.org/10.1111/phen.12416
- Description: Required sample sizes for a study need to be carefully assessed to account for logistics, cost, ethics and statistical rigour. For example, many studies have shown that methodological variations can impact the critical thermal limits (CTLs) recorded for a species, although studies on the impact of sample size on these measures are lacking. Here, we present ThermalSampleR; an R CRAN package and Shiny application that can assist researchers in determining when adequate sample sizes have been reached for their data. The method is particularly useful because it is not taxon specific. The Shiny application offers a user‐friendly interface equivalent to the package for users not familiar with R programming. ThermalSampleR is accompanied by an in‐built example dataset, which we use to guide the user through the workflow with a fully worked tutorial.
- Full Text:
- Date Issued: 2023
Best of both worlds: The thermal physiology of Hydrellia egeriae, a biological control agent for the submerged aquatic weed, Egeria densa in South Africa
- Authors: Smith, Rosali , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417913 , vital:71494 , xlink:href="https://doi.org/10.1007/s10526-022-10142-w"
- Description: The submerged aquatic weed, Egeria densa Planch. (Hydrocharitaceae) or Brazilian waterweed, is a secondary invader of eutrophic freshwater systems in South Africa, following the successful management of floating aquatic weeds. In 2018, the leaf and stem-mining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae), was released against E. densa, the first agent released against a submerged aquatic weed in South Africa. During its life stages, the biological control agent is exposed to two environments, air and water. The thermal physiology of both life stages was investigated to optimize agent establishment through fine-tuned release strategies. The thermal physiological limits of H. egeriae encompassed its host plant’s optimal temperature range of 10 to 35 °C, with lower and upper critical temperatures of 2.6 to 47.0 °C, lower and upper lethal temperatures of − 5.6 and 40.6 °C for adults, and − 6.3 to 41.3 °C for larvae. Results from development time experiments and degree-day accumulation showed that the agent is capable of establishing at all E. densa sites in South Africa, with between 6.9 and 8.3 generations per year. However, cold temperatures (14 °C) prolonged the agent’s development time to three months, allowing it to only develop through one generation in winter. Predictions obtained from laboratory thermal physiology experiments corroborates field data, where the agent has established at all the sites it was released.
- Full Text:
- Date Issued: 2022
Climatic suitability and compatibility of the invasive Iris pseudacorus L.(Iridaceae) in the Southern Hemisphere: Considerations for biocontrol
- Authors: Minuti, Gianmarco , Stiers, Iris , Coetzee, Julie A
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423293 , vital:72045 , xlink:href="https://doi.org/10.1016/j.biocontrol.2022.104886"
- Description: Iris pseudacorus L. (Iridaceae) is an emergent macrophyte native to Europe, North Africa and western Asia. Considered invasive in wetland habitats around the world, this species is now the target of a biocontrol programme in the Southern Hemisphere. Native range surveys of the weed led to the selection of the flea beetle, Aphthona nonstriata Goeze (Coleoptera: Chrysomelidae), as a candidate biocontrol agent. An important aspect to consider in weed biocontrol is the ability of an agent to establish and thrive in the environment where it is released. Climatic incompatibility between source and intended release sites can in fact limit the success of a biocontrol programme. In the current study, the potential climatic niche of I. pseudacorus and A. nonstriata in the Southern Hemisphere was analysed. The ecological niche modelling software MaxEnt was used to map the climatic suitability of both organisms across invaded regions in South America, southern Africa and Australasia. Furthermore, occurrence records from each invaded range were used independently to model the climatic compatibility of I. pseudacorus in Europe, in order to prioritize areas of the native range to explore during future surveys for potential biocontrol agents. The models identified areas at high risk of invasion by I. pseudacorus in northern Argentina, Uruguay, southern Brazil and central Chile, as well as numerous provinces of eastern South Africa, Lesotho, southern Australia and New Zealand. Accordingly, the highest climatic suitability for A. nonstriata was predicted across the humid temperate climates of north-east Argentina, Uruguay, southern Brazil, southern South Africa, south-east Australia and New Zealand. These results can eventually be used in future release plans to prioritize areas where establishment and survival of the agent is expected to be highest. At the same time, it may be useful to search the native range of the weed for biological control agents showing high climatic adaptation towards the intended release sites of each invaded range. In this regards, our climatic compatibility models identified high-priority areas across the Mediterranean regions of Italy and southern France, as well as the temperate regions of central and western Europe. Altogether, the current study provides useful new information to tackle the invasion and advance the biocontrol programme of I. pseudacorus in the Southern Hemisphere.
- Full Text:
- Date Issued: 2022
Invasive alien aquatic plant species management drives aquatic ecosystem community recovery: An exploration using stable isotope analysis
- Authors: Motitsoe, Samuel N , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423527 , vital:72069 , xlink:href="https://doi.org/10.1016/j.biocontrol.2022.104995"
- Description: The socio-economic and ecological impacts of invasive alien aquatic plant (IAAP) species have been well studied globally. However less is known about ecosystem recovery following the management of IAAP species. This study employed a before-after study design to investigate ecological recovery following the management of Salvinia molesta D.S. Mitchell, at four field sites in South Africa. We hypothesized that the presence of S. molesta would have a negative impact on the ecosystem food web structure, and that following S. molesta control, the systems would show positive ecosystem recovery. Aquatic macroinvertebrate and macrophyte samples collected before and after mechanical or biological control of S. molesta, were analysed for δ13C and δ15N stable isotopes. Salvinia molesta infestations negatively impacted the food web structure, indicated by reduced food chain length, trophic diversity and basal resources. This represented an altered aquatic food web structure, that in some cases, led to the collapse of the aquatic community. In contrast, after either mechanical or biological control, there were increases in food chain length, trophic diversity and abundance of energy resources accessed by consumers, indicating improved food web structure. Although the study showed positive ecosystem recovery following control, we noted that each control method followed a different recovery trajectory. We conclude that S. molesta invasions reduce aquatic biodiversity and alter ecosystem trophic dynamics and related ecosystem processes, necessitating control.
- Full Text:
- Date Issued: 2022
It's a numbers game: inundative biological control of water hyacinth (Pontederia crassipes), using Megamelus scutellaris (Hemiptera: Delphacidae) yields success at a high elevation, hypertrophic reservoir in South Africa
- Authors: Coetzee, Julie A , Miller, Benjamin E , Kinsler, David , Sebola, Keneilwe , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417749 , vital:71483 , xlink:href="https://doi.org/10.1080/09583157.2022.2109594"
- Description: Classical biological control of water hyacinth in South Africa has been constrained by cool winter temperatures that limit population growth of the biological control agents, and highly eutrophic waters which enhance plant growth. However, inundative releases of the control agent, Megamelus scutellaris (Hemiptera: Delphacidae), at the Hartbeespoort Dam, South Africa, suggest that water hyacinth can be managed successfully using biological control as a standalone intervention for the first time in the absence of herbicide operations, despite eutrophication and a temperate climate. Sentinel-2 satellite images were used to measure the reduction in water hyacinth cover from over 37% to less than 6% over two consecutive years since M. scutellaris was first released on the dam in 2018, while site surveys confirmed a corresponding increase in M. scutellaris population density from fewer than 500 insects/m2 in October 2019, to more than 6000 insects/m2 by March 2020. Inundative release strategies are recommended for the control of water hyacinth in South Africa at key stages of its invasion, particularly after winter, and flooding events.
- Full Text:
- Date Issued: 2022
The thermal physiology of Lysathia sp.(Coleoptera: Chrysomelidae), a biocontrol agent of parrot’s feather in South Africa, supports its success
- Authors: Goddard, Matthew , Owen, Candice A , Martin, Grant D , Coetzee, Julie A
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417806 , vital:71487 , xlink:href="https://doi.org/10.1080/09583157.2022.2054949"
- Description: The establishment success of biocontrol agents originating from tropical regions is often limited by climate when introduced in temperate regions. However, the flea beetle, Lysathia sp. (Coleoptera: Chrysomelidae), a biocontrol agent of Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae) in South Africa, is an effective agent in regions where other biocontrol agents of tropical aquatic weeds have failed due to winter-induced mortality. The development (degree-day model) and thermal tolerance (critical thermal minimum/maximum [CTmin/max] and lower/upper lethal limits [LLT/ULT50]) of Lysathia sp. were investigated to explain this success. The model predicted that Lysathia sp. could complete 6 to 12 generations per year in the colder regions of the country. The lower threshold for development (t0) was 13.0 °C and thermal constant (K) was 222.4 days, which is considerably lower than the K values of other biocontrol agents of aquatic weeds in South Africa. This suggests that above the temperature threshold, Lysathia sp. can develop faster than those other species and complete multiple life cycles in the cooler winter months, allowing for rapid population growth and thus improving M. aquaticum control. Furthermore, the CTmin of Lysathia sp. was 2.3 ± 0.2 °C and the CTmax was 49.0 ± 0.5 °C. The LLT50 was calculated as ∼ −7.0 °C and the ULT50 as ∼ 43.0 °C. These wide tolerance ranges and survival below freezing show why Lysathia sp. has established at cool sites and suggest that it may be a suitable agent for other cold countries invaded by M. aquaticum.
- Full Text:
- Date Issued: 2022
A review of the biocontrol programmes against aquatic weeds in South Africa
- Authors: Coetzee, Julie A , Bownes, Angela , Martin, Grant D , Miller, Benjamin E , Smith, Rosalie , Weyl, Philip S R , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406965 , vital:70326 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a18"
- Description: Biological control (biocontrol) against invasive macrophytes is one of the longest standing programmes in South Africa, initiated in the 1970s against water hyacinth, Pontederia crassipes Mart. (Pontederiaceae). Since then, 15 agent species (13 insects, one mite and one pathogen) have been released against six weeds, most of which are floating macrophytes, with excellent levels of success. The release of the water hyacinth planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae) in particular, has improved biocontrol prospects for water hyacinth since 2018. In the last decade, however, a new suite of submerged and rooted emergent invasive macrophytes has been targeted. The first release against a submerged macrophyte in South Africa, and the first release against Brazilian waterweed, Egeria densa Planch. (Hydrocharitaceae), anywhere in the world, was achieved with the release of a leafmining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae). Yellow flag, Iris pseudacorus L. (Iridaceae) and Mexican waterlily, Nymphaea mexicana Zucc. (Nymphaeaceae), have also been targeted for biocontrol for the first time worldwide, and are in the early stages of agent development. Post-release evaluations, long term monitoring and controlled experiments have highlighted the need for a more holistic approach to managing aquatic invasive plants in South Africa, whose presence is largely driven by eutrophication, resulting in regime shifts between floating and submerged invaded states.
- Full Text:
- Date Issued: 2021
Biological control of South African plants that are invasive elsewhere in the world: A review of earlier and current programmes
- Authors: Olckers, Terence , Coetzee, Julie A , Egli, Daniella , Martin, Grant D , Paterson, Iain D , Sutton, Guy F , Wood, Alan R
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414336 , vital:71137 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a21"
- Description: South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa’s history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa.
- Full Text:
- Date Issued: 2021
From introduction to nuisance growth: A review of traits of alien aquatic plants which contribute to their invasiveness
- Authors: Hussner, Andreas , Heidbuchel, Patrick , Coetzee, Julie A , Gross, Elisabeth M
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424006 , vital:72115 , xlink:href="https://doi.org/10.1007/s10750-020-04463-z"
- Description: Invasive alien aquatic plant species (IAAPs) cause serious ecological and economic impact and are a major driver of changes in aquatic plant communities. Their invasive success is influenced by both abiotic and biotic factors. Here, we summarize the existing knowledge on the biology of 21 IAAPs (four free-floating species, eight sediment-rooted, emerged or floating-leaved species, and nine sediment-rooted, submerged species) to highlight traits that are linked to their invasive success. We focus on those traits which were documented as closely linked to plant invasions, including dispersal and growth patterns, allelopathy and herbivore defence. The traits are generally specific to the different growth forms of IAAPs. In general, the species show effective dispersal and spread mechanisms, even though sexual and vegetative spread differs strongly between species. Moreover, IAAPs show varying strategies to cope with the environment. The presented overview of traits of IAAPs will help to identify potential invasive alien aquatic plants. Further, the information provided is of interest for developing species-specific management strategies and effective prevention measures.
- Full Text:
- Date Issued: 2021
Population genetics of invasive and native Nymphaea mexicana Zuccarini: Taking the first steps to initiate a biological control programme in South Africa
- Authors: Reid, Megan K , Naidu, Prinavin , Paterson, Iain D , Mangan, Rosie , Coetzee, Julie A
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419375 , vital:71638 , xlink:href="https://doi.org/10.1016/j.aquabot.2021.103372"
- Description: Nymphaea mexicana Zuccarini (Nympheaceae) (Mexican waterlily) is a rooted floating-leaved aquatic plant native to southern USA and Mexico that has become a problematic invasive alien plant in South Africa. Biological control is considered a desirable management strategy for the plant in South Africa. A good understanding of the genetic structure of invasive populations has been useful in other biological control programmes because taxonomic uncertainty about the target plant can result in natural enemies that are not adapted to the invasive populations being considered as potential agents. For N. mexicana, hybrids exist in the wild and horticultural trade, but identification is difficult, so understanding the genetic structure of populations is required to ensure that potential agents are collected off plants similar to invasive populations in South Africa. ISSR (inter-simple sequence repeats) analysis was used to determine whether invasive N. mexicana populations from South Africa were genetically similar to native range populations from USA or whether they were hybrids. Results from these analyses were matched with the morphotypes of each population based on petal colour, shape, and size. The genotypes suggested by the ISSR analyses corroborated the presence of both hybrid and pure forms of N. mexicana in South Africa. Populations of N. mexicana in the invaded range that are genetically similar to native range populations are more likely to be suitable for biological control, while other populations are likely to be hybrids formed by crossing of parents from the native range or within the horticultural trade, which may present difficulties for management using biocontrol.
- Full Text:
- Date Issued: 2021
The effects of elevated atmospheric CO2 concentration on the biological control of invasive aquatic weeds
- Authors: Baso, Nompumelelo C , Coetzee, Julie A , Ripley, Bradford S , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419423 , vital:71643 , xlink:href="https://doi.org/10.1016/j.aquabot.2020.103348"
- Description: There has been a rapid increase in atmospheric CO2 concentration, from pre-industrial values of 280 ppm to more than 400 ppm currently, and this is expected to double by the end of the 21st century. Studies have shown that plants grown at elevated CO2 concentrations have increased growth rates and invest more in carbon-based defences. This has important implications for the management of invasive alien plants, especially using biological control which is mostly dependent on herbivorous insects. The aim of this study was to investigate the effects of elevated atmospheric CO2 on the biological control of four invasive aquatic weeds (Azolla filiculoides, Salvinia molesta, Pistia stratiotes and Myriophyllum aquaticum). These species are currently under successful control by their respective biological control agents (Stenopelmus rufinasus, Cyrtobagous salviniae, Neohydronomus affinis, and Lysathia sp.) in South Africa. The plant species were grown in a two factorial design experiment, where atmospheric CO2 concentrations were set at ambient (400 ppm) or elevated (800 ppm), and plants were either subjected to or not subjected to herbivory by their target biological control agents. There was an overall increase in biomass production and C:N across all species at elevated CO2, both in the absence and presence of biological control, although C:N of M. aquaticum and biomass of A. filiculoides with herbivory were not constant with this trend. Insect feeding damage was reduced by elevated CO2, except for S. molesta. Thus, we can expect that plants will respond differently to CO2 increase, but the general trend suggests that these species will become more challenging to manage through biological control in future.
- Full Text:
- Date Issued: 2021
The role of mass-rearing in weed biological control projects in South Africa
- Authors: Hill, Martin P , Conlong, Desmond , Zachariades, Costas , Coetzee, Julie A , Paterson, Iain D , Miller, Benjamin E , Foxcroft, Llewellyn , Van der Westhuizen, Liamé
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407094 , vital:70335 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a22"
- Description: It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.
- Full Text:
- Date Issued: 2021
Biological control of Salvinia molesta (DS Mitchell) drives aquatic ecosystem recovery
- Authors: Motitsoe, Samuel N , Coetzee, Julie A , Hill, Jaclyn M , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444515 , vital:74247 , https://doi.org/10.3390/d12050204
- Description: Salvinia molesta D.S. Mitchell (Salviniaceae) is a damaging free-floating invasive alien macrophyte native to South America. The biological control programme against S. molesta by the weevil Cyrtobagous salviniae Calder and Sands (Erirhinidae) has been successful in controlling S. molesta infestations in the introduced range, however, there is some debate as to how biological control success is measured. This study measured the response of epilithic algae and aquatic macroinvertebrate communities in a S. molesta-dominated state and subsequently where the weed had been cleared by biological control, as a proxy for ecosystem recovery in a before–after control–impact mesocosm experiment.
- Full Text:
- Date Issued: 2020