Characterization and electrocatalytic applications of metallophthalocyanine-single walled carbon nanotube conjugates
- Authors: Mugadza, Tawanda
- Date: 2011 , 2011-03-30
- Subjects: Phthalocyanines Pesticides Nanotubes Electrocatalysis Electrochemistry Transmission electron microscopy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4419 , http://hdl.handle.net/10962/d1006855
- Description: Metallophthalocyanine-single walled carbon nanotube conjugates were successfully synthesized and applied in the electrochemical characterizations of pesticides (amitrole and diuron) and 2-mercaptoethanol (2-ME). The formation of conjugates was confirmed through the use of the following analytical techniques: UV-vis, FTIR, Raman and XRD spectroscopies, atomic force and transmission electron microscopies and voltammetry. Chemically linking SWCNT to MPcs created platforms that offered efficient transfer of electrons and this was confirmed through electrochemical impedance studies (EIS) and voltammetry as shown by lower ΔEp values observed in conjugates. Carboxy carrying MPcs have very poor electron transfer kinetics (both tetrasubstituted and low symmetry), but the presence of SWCNTs activates their catalysis. All electrochemical studies were done at pH 4. Cyclic voltammetry, rotating disk linear sweep voltammetry, chronoamperometry and EIS were used in the electrochemical characterization of 2-ME and the pesticides on poly-Ni(OH)TAPc and MPc-SWCNT modified glassy carbon electrodes (GCEs). High Tafel slopes were observed for the pesticides relative to 2-ME, an indication of the passivating nature of their oxidation products. However, conjugates showed very high resistances to passivation and were easily regenerated by shaking in methanol. Improved catalysis of the conjugates is also indicated by the high catalytic rate constants for the analytes, observed on these electrodes. Conjugates of low symmetry MPcs with SWCNTs gave the highest catalytic rate constants, confirming better catalysis on these electrode surfaces. The nature of SWCNT functionalization also affected catalysis, with amine functionalized SWCNTs inducing better catalytic properties into the MPcs than carboxylic acid terminated CNTs. The presence of amine functionalized SWCNTs activates the catalysis of non-catalytic carboxy-carrying MPcs and this is more pronounced in conjugates of tetrasubstituted MPcs relative to those of low symmetry Pcs. Ethylene amine (EA) functionalized SWCNTs reduced redox overpotentials of the MPcs more than the phenyl-amine (PA) functionalized counterparts. Poly-NiTAPc was successfully converted to poly-Ni(OH)TAPc through cyclisation in pH 4 buffer and showed very good catalytic properties towards diuron, relative to the former.
- Full Text:
- Date Issued: 2011
- Authors: Mugadza, Tawanda
- Date: 2011 , 2011-03-30
- Subjects: Phthalocyanines Pesticides Nanotubes Electrocatalysis Electrochemistry Transmission electron microscopy
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4419 , http://hdl.handle.net/10962/d1006855
- Description: Metallophthalocyanine-single walled carbon nanotube conjugates were successfully synthesized and applied in the electrochemical characterizations of pesticides (amitrole and diuron) and 2-mercaptoethanol (2-ME). The formation of conjugates was confirmed through the use of the following analytical techniques: UV-vis, FTIR, Raman and XRD spectroscopies, atomic force and transmission electron microscopies and voltammetry. Chemically linking SWCNT to MPcs created platforms that offered efficient transfer of electrons and this was confirmed through electrochemical impedance studies (EIS) and voltammetry as shown by lower ΔEp values observed in conjugates. Carboxy carrying MPcs have very poor electron transfer kinetics (both tetrasubstituted and low symmetry), but the presence of SWCNTs activates their catalysis. All electrochemical studies were done at pH 4. Cyclic voltammetry, rotating disk linear sweep voltammetry, chronoamperometry and EIS were used in the electrochemical characterization of 2-ME and the pesticides on poly-Ni(OH)TAPc and MPc-SWCNT modified glassy carbon electrodes (GCEs). High Tafel slopes were observed for the pesticides relative to 2-ME, an indication of the passivating nature of their oxidation products. However, conjugates showed very high resistances to passivation and were easily regenerated by shaking in methanol. Improved catalysis of the conjugates is also indicated by the high catalytic rate constants for the analytes, observed on these electrodes. Conjugates of low symmetry MPcs with SWCNTs gave the highest catalytic rate constants, confirming better catalysis on these electrode surfaces. The nature of SWCNT functionalization also affected catalysis, with amine functionalized SWCNTs inducing better catalytic properties into the MPcs than carboxylic acid terminated CNTs. The presence of amine functionalized SWCNTs activates the catalysis of non-catalytic carboxy-carrying MPcs and this is more pronounced in conjugates of tetrasubstituted MPcs relative to those of low symmetry Pcs. Ethylene amine (EA) functionalized SWCNTs reduced redox overpotentials of the MPcs more than the phenyl-amine (PA) functionalized counterparts. Poly-NiTAPc was successfully converted to poly-Ni(OH)TAPc through cyclisation in pH 4 buffer and showed very good catalytic properties towards diuron, relative to the former.
- Full Text:
- Date Issued: 2011
Electrochemical, microscopic and spectroscopic characterization of benzene diamine functionalized single walled carbon nanotube-cobalt (II) tetracarboxy-phthalocyanine conjugates
- Mugadza, Tawanda, Nyokong, Tebello
- Authors: Mugadza, Tawanda , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247859 , vital:51624 , xlink:href="https://doi.org/10.1016/j.jcis.2010.10.057"
- Description: In this paper we report on the synthesis and characterization of 1,4-benzene diamine (BDA) functionalized single walled carbon nanotubes linked to cobalt (II) tetracarboxy-phthalocyanine. The characterization of the conjugate was through UV–vis, FTIR and X-ray diffraction (XRD) spectroscopies and by transmission electron microscope (TEM) and electrochemical methods. The conjugate is used for the electrochemical characterization of diuron. The catalytic rate constant for diuron was 4.4 × 103 M−1 s−1 and the apparent electron transfer rate constant was 18.5 × 10−6 cm s−1. The linear dynamic range was 1.0 × 10−5–2.0 × 10−4 M, with a sensitivity of ∼0.42 A mol−1L cm−2 and a limit of detection of 0.18 μM using the 3δ notation.
- Full Text:
- Date Issued: 2011
- Authors: Mugadza, Tawanda , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247859 , vital:51624 , xlink:href="https://doi.org/10.1016/j.jcis.2010.10.057"
- Description: In this paper we report on the synthesis and characterization of 1,4-benzene diamine (BDA) functionalized single walled carbon nanotubes linked to cobalt (II) tetracarboxy-phthalocyanine. The characterization of the conjugate was through UV–vis, FTIR and X-ray diffraction (XRD) spectroscopies and by transmission electron microscope (TEM) and electrochemical methods. The conjugate is used for the electrochemical characterization of diuron. The catalytic rate constant for diuron was 4.4 × 103 M−1 s−1 and the apparent electron transfer rate constant was 18.5 × 10−6 cm s−1. The linear dynamic range was 1.0 × 10−5–2.0 × 10−4 M, with a sensitivity of ∼0.42 A mol−1L cm−2 and a limit of detection of 0.18 μM using the 3δ notation.
- Full Text:
- Date Issued: 2011
Porphyrin nanorods modified glassy carbon electrode for the electrocatalysis of dioxygen, methanol and hydrazine
- George, Reama C, Mugadza, Tawanda, Khene, Samson, Egharevba, Gabriel O, Nyokong, Tebello
- Authors: George, Reama C , Mugadza, Tawanda , Khene, Samson , Egharevba, Gabriel O , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247388 , vital:51576 , xlink:href="https://doi.org/10.1002/elan.201100081"
- Description: Porphyrin nanorods (PNR) were prepared by ionic self-assembly of two oppositely charged porphyrin molecules consisting of free base meso-tetraphenylsulfonate porphyrin (H4TPPS42−) and meso-tetra(N-methyl-4-pyridyl) porphyrin (MTMePyP4+M=Sn, Mn, In, Co). These consist of H4TPPS42−SnTMePyP4+, H4TPPS42−CoTMePyP4+, H4TPPS42−InTMePyP4+ and H4TPPS42−MnTMePyP4+ porphyrin nanorods. The absorption spectra and transmission electron microscopic (TEM) images of these structures were obtained. These porphyrin nanostructures were used to modify a glassy carbon electrode for the electrocatalytic reduction of oxygen, and the oxidation of hydrazine and methanol at low pH. The cyclic voltammogram of PNR-modified GCE in pH 2 buffer solution has five irreversible processes, two distinct reduction processes and three oxidation processes. The porphyrin nanorods modified GCE produce good responses especially towards oxygen reduction at −0.50 V vs. Ag|AgCl (3 M KCl). The process of electrocatalytic oxidation of methanol using PNR-modified GCE begins at 0.71 V vs. Ag|AgCl (3 M KCl). The electrochemical oxidation of hydrazine began at around 0.36 V on H4TPPS42−SnTMePyP4+ modified GCE. The GCE modified with H4TPPS42−CoTMePyP4+ H4TPPS42−InTMePyP4+ and H4TPPS42−MnTMePyP4+ porphyrin nanorods began oxidizing hydrazine at 0.54 V, 0.59 V and 0.56 V, respectively.
- Full Text:
- Date Issued: 2011
- Authors: George, Reama C , Mugadza, Tawanda , Khene, Samson , Egharevba, Gabriel O , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247388 , vital:51576 , xlink:href="https://doi.org/10.1002/elan.201100081"
- Description: Porphyrin nanorods (PNR) were prepared by ionic self-assembly of two oppositely charged porphyrin molecules consisting of free base meso-tetraphenylsulfonate porphyrin (H4TPPS42−) and meso-tetra(N-methyl-4-pyridyl) porphyrin (MTMePyP4+M=Sn, Mn, In, Co). These consist of H4TPPS42−SnTMePyP4+, H4TPPS42−CoTMePyP4+, H4TPPS42−InTMePyP4+ and H4TPPS42−MnTMePyP4+ porphyrin nanorods. The absorption spectra and transmission electron microscopic (TEM) images of these structures were obtained. These porphyrin nanostructures were used to modify a glassy carbon electrode for the electrocatalytic reduction of oxygen, and the oxidation of hydrazine and methanol at low pH. The cyclic voltammogram of PNR-modified GCE in pH 2 buffer solution has five irreversible processes, two distinct reduction processes and three oxidation processes. The porphyrin nanorods modified GCE produce good responses especially towards oxygen reduction at −0.50 V vs. Ag|AgCl (3 M KCl). The process of electrocatalytic oxidation of methanol using PNR-modified GCE begins at 0.71 V vs. Ag|AgCl (3 M KCl). The electrochemical oxidation of hydrazine began at around 0.36 V on H4TPPS42−SnTMePyP4+ modified GCE. The GCE modified with H4TPPS42−CoTMePyP4+ H4TPPS42−InTMePyP4+ and H4TPPS42−MnTMePyP4+ porphyrin nanorods began oxidizing hydrazine at 0.54 V, 0.59 V and 0.56 V, respectively.
- Full Text:
- Date Issued: 2011
Synthesis and electrocatalytic behavior of cobalt (II)-tris (benzyl-mercapto)-monoaminophthalocyanine–single walled carbon nanotube nanorods
- Mugadza, Tawanda, Nyokong, Tebello
- Authors: Mugadza, Tawanda , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247882 , vital:51626 , xlink:href="https://doi.org/10.1016/j.electacta.2010.11.016"
- Description: In this paper we report on synthesis and electrocatalytic behavior of cobalt (II)-tris(benzyl-mercapto)-monoaminophthalocyanine–single walled carbon nanotube nanorods towards the oxidation of amitrole. SWCNTs that were terminally functionalized with carboxylic acid groups were chemically linked to cobalt (II)-tris(benzyl-mercapto) monoaminophthalocyanine (CoMAPc) via an amide bond to form nanorods. UV–vis, FTIR, TEM, Raman and XRD spectroscopies were used in characterization of the nanorods (CoMAPc–SWCNT-linked), while cyclic voltammetry and chronoamperometry were used during the characterization of amitrole on the modified glassy carbon electrode. The linear dynamic range for the amitrole was from 1.0 × 10−6 M to 1.2 × 10−4 M, with a sensitivity of 6.76 A mol−1 L cm−2. The estimated limit of detection for amitrole was 0.10 μM, using the 3δ criterion. The catalytic rate constant was found to be 1.09 × 105 M−1 s−1.
- Full Text:
- Date Issued: 2011
- Authors: Mugadza, Tawanda , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247882 , vital:51626 , xlink:href="https://doi.org/10.1016/j.electacta.2010.11.016"
- Description: In this paper we report on synthesis and electrocatalytic behavior of cobalt (II)-tris(benzyl-mercapto)-monoaminophthalocyanine–single walled carbon nanotube nanorods towards the oxidation of amitrole. SWCNTs that were terminally functionalized with carboxylic acid groups were chemically linked to cobalt (II)-tris(benzyl-mercapto) monoaminophthalocyanine (CoMAPc) via an amide bond to form nanorods. UV–vis, FTIR, TEM, Raman and XRD spectroscopies were used in characterization of the nanorods (CoMAPc–SWCNT-linked), while cyclic voltammetry and chronoamperometry were used during the characterization of amitrole on the modified glassy carbon electrode. The linear dynamic range for the amitrole was from 1.0 × 10−6 M to 1.2 × 10−4 M, with a sensitivity of 6.76 A mol−1 L cm−2. The estimated limit of detection for amitrole was 0.10 μM, using the 3δ criterion. The catalytic rate constant was found to be 1.09 × 105 M−1 s−1.
- Full Text:
- Date Issued: 2011
Synthesis, characterization and application of monocarboxy-phthalocyanine-single walled carbon nanotube conjugates in electrocatalysis
- Mugadza, Tawanda, Nyokong, Tebello
- Authors: Mugadza, Tawanda , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247399 , vital:51577 , xlink:href="https://doi.org/10.1016/j.poly.2011.04.020"
- Description: In this paper we report on the synthesis, characterization and use of monocarboxy-phthalocyanine-single walled carbon nanotube conjugates in the electrocatalysis of amitrole and diuron. UV–Vis, FTIR and XRD spectroscopies were used in the characterization of cobalt(II)-tris(benzyl-mercapto)-mono(carboxyphenoxy)-phthalocyanine conjugates (CoMCPc–PA-SWCNT(linked)), while AFM was used to show changes in surface morphologies of the modified electrodes. Cyclic voltammetry and chronoamperometry were used for the electrocatalytic oxidation of amitrole and diuron on the modified glassy carbon electrode. The catalytic rate constants for amitrole and diuron were found to be 1.83 × 106 and 1.99 × 106 M−1 s−1, respectively. The linear range for both was 1.0 × 10−5–2.0 × 10−4 M, with sensitivities of 5.10 and 3.70 A mol−1 L cm−2 for amitrole and diuron, respectively. The limits of detection were estimated to be 0.14 and 0.20 μM for amitrole and diuron, respectively, using the 3δ notation.
- Full Text:
- Date Issued: 2011
- Authors: Mugadza, Tawanda , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247399 , vital:51577 , xlink:href="https://doi.org/10.1016/j.poly.2011.04.020"
- Description: In this paper we report on the synthesis, characterization and use of monocarboxy-phthalocyanine-single walled carbon nanotube conjugates in the electrocatalysis of amitrole and diuron. UV–Vis, FTIR and XRD spectroscopies were used in the characterization of cobalt(II)-tris(benzyl-mercapto)-mono(carboxyphenoxy)-phthalocyanine conjugates (CoMCPc–PA-SWCNT(linked)), while AFM was used to show changes in surface morphologies of the modified electrodes. Cyclic voltammetry and chronoamperometry were used for the electrocatalytic oxidation of amitrole and diuron on the modified glassy carbon electrode. The catalytic rate constants for amitrole and diuron were found to be 1.83 × 106 and 1.99 × 106 M−1 s−1, respectively. The linear range for both was 1.0 × 10−5–2.0 × 10−4 M, with sensitivities of 5.10 and 3.70 A mol−1 L cm−2 for amitrole and diuron, respectively. The limits of detection were estimated to be 0.14 and 0.20 μM for amitrole and diuron, respectively, using the 3δ notation.
- Full Text:
- Date Issued: 2011
The effects of carbon nanotubes on the electrocatalysis of hydrogen peroxide by metallo-phthalocyanines
- Mashazi, Philani N, Mugadza, Tawanda, Sosibo, Ndabenhle, Mdluli, Phumlani, Vilakazi, Sibulelo, Nyokong, Tebello
- Authors: Mashazi, Philani N , Mugadza, Tawanda , Sosibo, Ndabenhle , Mdluli, Phumlani , Vilakazi, Sibulelo , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247174 , vital:51553 , xlink:href="https://doi.org/10.1016/j.talanta.2011.07.069"
- Description: The pre-grafted screen-printed gold electrode modified with phenyl-amino monolayer was investigated for covalent immobilization of phenyl-amine functionalized single-walled carbon nanotubes (PA-SWCNT) and metal tetra-amino phthalocyanine (MTAPc) using Schiff-base reactions with benzene-1,4-dicarbaldehyde (BDCA) as cross-linker. The PA-SWCNT and MTAPc modified electrodes were applied as hybrids for electrochemical sensing of H2O2. The step-by-step fabrication of the electrode was followed using electrochemistry, impedance spectroscopy, scanning electron microscopy and Raman spectroscopy and all these techniques confirmed the fabrication and the immobilization of PA-SWCNT, MnTAPc and CoTAPc onto gold surfaces. The apparent electron transfer constant (kapp) showed that the carbon nanotubes and metallo-phthalocyanines hybrids possess good electron transfer properties compared to the bare, pre-grafted and the MTAPc modified gold electrode surfaces without PA-SWCNT. The electrochemical sensing of hydrogen peroxide was successful with PA-SWCNT–MTAPc hybrid systems showing higher electrocatalytic currents compared to the other electrodes. The analytical parameters obtained using chronoamperometry gave good linearity at H2O2 concentrations ranging from 1.0 to 30.0 μmol L−1. The values for the limit of detection (LoD) were found to be of the orders of 10−7 M using the 3δ for all the electrodes. The PA-SWCNT–MTAPc modified SPAuEs were much more sensitive compared to PA–MTAPc modified SPAuEs.
- Full Text:
- Date Issued: 2011
- Authors: Mashazi, Philani N , Mugadza, Tawanda , Sosibo, Ndabenhle , Mdluli, Phumlani , Vilakazi, Sibulelo , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247174 , vital:51553 , xlink:href="https://doi.org/10.1016/j.talanta.2011.07.069"
- Description: The pre-grafted screen-printed gold electrode modified with phenyl-amino monolayer was investigated for covalent immobilization of phenyl-amine functionalized single-walled carbon nanotubes (PA-SWCNT) and metal tetra-amino phthalocyanine (MTAPc) using Schiff-base reactions with benzene-1,4-dicarbaldehyde (BDCA) as cross-linker. The PA-SWCNT and MTAPc modified electrodes were applied as hybrids for electrochemical sensing of H2O2. The step-by-step fabrication of the electrode was followed using electrochemistry, impedance spectroscopy, scanning electron microscopy and Raman spectroscopy and all these techniques confirmed the fabrication and the immobilization of PA-SWCNT, MnTAPc and CoTAPc onto gold surfaces. The apparent electron transfer constant (kapp) showed that the carbon nanotubes and metallo-phthalocyanines hybrids possess good electron transfer properties compared to the bare, pre-grafted and the MTAPc modified gold electrode surfaces without PA-SWCNT. The electrochemical sensing of hydrogen peroxide was successful with PA-SWCNT–MTAPc hybrid systems showing higher electrocatalytic currents compared to the other electrodes. The analytical parameters obtained using chronoamperometry gave good linearity at H2O2 concentrations ranging from 1.0 to 30.0 μmol L−1. The values for the limit of detection (LoD) were found to be of the orders of 10−7 M using the 3δ for all the electrodes. The PA-SWCNT–MTAPc modified SPAuEs were much more sensitive compared to PA–MTAPc modified SPAuEs.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »