First example of nonlinear optical materials based on nanoconjugates of sandwich phthalocyanines with quantum dots
- Authors: Oluwole, David O , Yagodin, Alexey V , Mkhize, Nhlakanipho C , Sekhosana, Kutloana E , Martynov, Alexander G , Gorbunova, Yulia G , Tsivadze, Aslan Yu , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/238014 , vital:50577 , xlink:href="https://doi.org/10.1002/chem.201604401"
- Description: We report original, selective, and efficient approaches to novel nonlinear optical (NLO) materials, namely homoleptic double- and triple-decker europium(III) complexes 2 and 3 with the A3B-type phthalocyanine ligand (2,3-bis[2′-(2′′-hydroxyethoxy)ethoxy]-9,10,16,17,23,24-hexa-n-butoxyphthalocyanine 1) bearing two anchoring diethyleneglycol chains terminated with OH groups. Their covalently linked nanoconjugates with mercaptosuccinic acid-capped ternary CdSeTe/CdTeS/ZnSeS quantum dots are prepared in the presence of an ethyl(dimethylaminopropyl)carbodiimide activating agent. Optical limiting (OL) properties of the obtained low-symmetry complexes and their conjugates with quantum dots (QDs) are measured for the first time by the open-aperture Z-scan technique (532 nm laser and pulse rate of 10 ns). For comparison, symmetrical double- and triple-decker EuIII octa-n-butoxyphthalocyaninates 5 and 6 and their mixtures with trioctylphosphine oxide-capped QDs are also synthesized and studied. It is revealed that both lowering of molecular symmetry and expansion of the π-electron system upon moving from double- to triple-decker complexes significantly improves the OL characteristics, making the low-symmetry triple-decker complex 3 the most efficient optical limiter in the studied family of sandwich complexes, affording 50 % lowering of light transmittance below 0.5 J cm−2 input fluence. Conjugation (both covalent and noncovalent) with QDs affords further enhancement of the OL properties of both double- and triple-decker complexes. Altogether, the obtained results contribute to the development of novel nonlinear optical materials for future nanoelectronic and optical device applications.
- Full Text:
- Date Issued: 2017
Optical limiters with improved performance based on nanoconjugates of thiol substituted phthalocyanine with CdSe quantum dots and Ag nanoparticles
- Authors: Oluwole, David O , Yagodin, Alexey V , Britton, Jonathan , Martynov, Alexander G , Gorbunova, Yulia G , Tsivadze, Aslan Yu , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/238286 , vital:50605 , xlink:href="https://doi.org/10.1039/C7DT03867D"
- Description: Two alternative synthetic approaches affording a low-symmetry A3B-type phthalocyanine 1 bearing two [2′-(2′′-mercaptoethoxy)ethoxy] anchoring substituents were developed. Due to the presence of thiol groups, this phthalocyanine could be conjugated with TOPO-capped (TOPO - trioctylphosphine)-capped CdSe quantum dots (CdSe-QDs) or oleylamine capped silver nanoparticles (Ag-NPs). The nonlinear optical behaviour of starting phthalocyanine, quantum dots, nanoparticles and their conjugates was studied by using an open aperture Z-scan technique, revealing that the grafting of 1 onto the nanomaterials resulted in a significant enhancement of the optical limiting of 1-Ag and 1-CdSe in comparison with the individual components. The conjugate 1-CdSe, being the first example of Pc-based thiol conjugated with quantum dots, revealed superior limiting characteristics with a limiting threshold below 0.18 J cm−2.
- Full Text:
- Date Issued: 2017