The effect of charge on Zn tetra morpholine porphyrin conjugated to folic acid-nitrogen doped graphene quantum dots for photodynamic therapy studies
- Magaela, N Bridged, Matshitse, Refilwe, Nyokong, Tebello
- Authors: Magaela, N Bridged , Matshitse, Refilwe , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295840 , vital:57383 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102898"
- Description: Zinc tetra morpholine porphyrin (complex 2), and its quaternized derivative (complex 3) were synthesized and conjugated to folic acid decorated nitrogen doped graphene quantum dots (FA-NGQDs) through π−π stacking to study their photodynamic therapy (PDT) efficacy. Photophysiochemical properties of complexes 2, 3, and their conjugates (2-FA-NGQDs, 3-FA-NGQDs) were studied. It was found that complex 3 had higher ϕΔ of 0.56 compared to complex 2 with ϕΔ of 0.24, and respective composites: 3-FA-NGQDs had higher ϕΔ compared to 2-FA-NGQDs. The PDT studies were conducted for nanoparticles (FA-NGQDs), complexes (2, 3), and respective composites (2-FA-NGQDs, and 3-FA-NGQDs) using MCF-7 breast cancer cell. Dark toxicity of all compounds was above 90% which is negligible. At a highest concentration of 40 µg/mL, 3-FA-NGQDs gave the lowest cell viability of 28% compared to all other conjugates and porphyrins alone.
- Full Text:
- Date Issued: 2022
- Authors: Magaela, N Bridged , Matshitse, Refilwe , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295840 , vital:57383 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102898"
- Description: Zinc tetra morpholine porphyrin (complex 2), and its quaternized derivative (complex 3) were synthesized and conjugated to folic acid decorated nitrogen doped graphene quantum dots (FA-NGQDs) through π−π stacking to study their photodynamic therapy (PDT) efficacy. Photophysiochemical properties of complexes 2, 3, and their conjugates (2-FA-NGQDs, 3-FA-NGQDs) were studied. It was found that complex 3 had higher ϕΔ of 0.56 compared to complex 2 with ϕΔ of 0.24, and respective composites: 3-FA-NGQDs had higher ϕΔ compared to 2-FA-NGQDs. The PDT studies were conducted for nanoparticles (FA-NGQDs), complexes (2, 3), and respective composites (2-FA-NGQDs, and 3-FA-NGQDs) using MCF-7 breast cancer cell. Dark toxicity of all compounds was above 90% which is negligible. At a highest concentration of 40 µg/mL, 3-FA-NGQDs gave the lowest cell viability of 28% compared to all other conjugates and porphyrins alone.
- Full Text:
- Date Issued: 2022
Theoretical and photodynamic therapy characteristics of heteroatom doped detonation nanodiamonds linked to asymmetrical phthalocyanine for eradication of breast cancer cells
- Matshitse, Refilwe, Tshiwawa, Tendamudzimu, Managa, Muthumuni, Nwaji, Njemuwa, Lobb, Kevin A, Nyokong, Tebello
- Authors: Matshitse, Refilwe , Tshiwawa, Tendamudzimu , Managa, Muthumuni , Nwaji, Njemuwa , Lobb, Kevin A , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186089 , vital:44462 , xlink:href="https://doi.org/10.1016/j.jlumin.2020.117465"
- Description: An amide mono substituted benzothiozole phthalocyanine: zinc(II) 3-(4-((3,17,23-tris(4-(benzo [d]thiazol-2-yl)phenoxy)-9-yl)oxy) phenyl)amide phthalocyanine (NH2BzPc) was covalently linked to undoped and heteroatom doped detonation nanodiamonds (DNDs): B@DNDs, P@DNDs, S@DNDs, N@DNDs, and SandN@DNDs There is a drastic decrease in highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) energy gaps for nanoconjugates compared to DNDs alone. B@DNDs-NH2BzPc, SandN@DNDs-NH2BzPc, and P@DNDs-NH2BzPc showed superior photodynamic therapy (PDT) effects. DNDs-NH2BzPc also had a small HOMO-LUMO gap, but did not show improved PDT activity compared to the Pc alone, suggesting doping of DNDs is important. This study shows improved PDT effect on Michigan Cancer Foundation-7 breast cancer lines at 7.63%, 7.62% and 6.5% cell viability for P@DNDs-NH2BzPc, SandN@DNDs-NH2BzPc and B@DNDs-NH2BzPc, respectively.
- Full Text:
- Date Issued: 2020
- Authors: Matshitse, Refilwe , Tshiwawa, Tendamudzimu , Managa, Muthumuni , Nwaji, Njemuwa , Lobb, Kevin A , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186089 , vital:44462 , xlink:href="https://doi.org/10.1016/j.jlumin.2020.117465"
- Description: An amide mono substituted benzothiozole phthalocyanine: zinc(II) 3-(4-((3,17,23-tris(4-(benzo [d]thiazol-2-yl)phenoxy)-9-yl)oxy) phenyl)amide phthalocyanine (NH2BzPc) was covalently linked to undoped and heteroatom doped detonation nanodiamonds (DNDs): B@DNDs, P@DNDs, S@DNDs, N@DNDs, and SandN@DNDs There is a drastic decrease in highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) energy gaps for nanoconjugates compared to DNDs alone. B@DNDs-NH2BzPc, SandN@DNDs-NH2BzPc, and P@DNDs-NH2BzPc showed superior photodynamic therapy (PDT) effects. DNDs-NH2BzPc also had a small HOMO-LUMO gap, but did not show improved PDT activity compared to the Pc alone, suggesting doping of DNDs is important. This study shows improved PDT effect on Michigan Cancer Foundation-7 breast cancer lines at 7.63%, 7.62% and 6.5% cell viability for P@DNDs-NH2BzPc, SandN@DNDs-NH2BzPc and B@DNDs-NH2BzPc, respectively.
- Full Text:
- Date Issued: 2020
Photophysical and nonlinear optical characteristics of pyridyl substituted phthalocyanine-detonation nanodiamond conjugated systems in solution
- Matshitse, Refilwe, Khene, Samson M, Nyokong, Tebello
- Authors: Matshitse, Refilwe , Khene, Samson M , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187079 , vital:44563 , xlink:href="https://doi.org/10.1016/j.diamond.2019.03.013"
- Description: In this study photophysical, nonlinear absorption and optical limiting properties of detonation nanodiamonds (DNDs)-phthalocyanine nanoconjugate systems containing: 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyaninato (H2TPPc), 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyanato zinc(II) (ZnTPPc) and 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyanato silicon(IV) hydroxide (Si(OH)2TPPc), were investigated in dimethylsulfoxide solution. Pcs were non-covalently linked to nanondiamonds (also covalently linked for Si(OH)2TPPc) and investigated using 532 nm laser excitation at 10 ns pulses for their optical limiting properties. Complexes that have higher triplet state absorption also possessed enhanced nonlinear optical behaviour following reverse saturable absorption mechanism. Superior optical performance is observed when the Pcs had a central metal with axial ligands conjugated to DNDs in solution. Nanoconjugate of DNDs-Si(OH)2TPPc and respective Pc in solution gave the highest imaginary third-order susceptibility (Im[X(3)]) and hyperpolarizability (γ) at 2.91 × 10−8 and 3.17 × 10−8 esu and 3.88 × 10−28 and 4.22 × 10−28 esu, respectively, with Ilim value of 0.47 and 0.39 J·cm−2.
- Full Text:
- Date Issued: 2019
- Authors: Matshitse, Refilwe , Khene, Samson M , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187079 , vital:44563 , xlink:href="https://doi.org/10.1016/j.diamond.2019.03.013"
- Description: In this study photophysical, nonlinear absorption and optical limiting properties of detonation nanodiamonds (DNDs)-phthalocyanine nanoconjugate systems containing: 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyaninato (H2TPPc), 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyanato zinc(II) (ZnTPPc) and 2,9(10),16(17),23(24)-tetrakis-(4-pyridyloxy) phthalocyanato silicon(IV) hydroxide (Si(OH)2TPPc), were investigated in dimethylsulfoxide solution. Pcs were non-covalently linked to nanondiamonds (also covalently linked for Si(OH)2TPPc) and investigated using 532 nm laser excitation at 10 ns pulses for their optical limiting properties. Complexes that have higher triplet state absorption also possessed enhanced nonlinear optical behaviour following reverse saturable absorption mechanism. Superior optical performance is observed when the Pcs had a central metal with axial ligands conjugated to DNDs in solution. Nanoconjugate of DNDs-Si(OH)2TPPc and respective Pc in solution gave the highest imaginary third-order susceptibility (Im[X(3)]) and hyperpolarizability (γ) at 2.91 × 10−8 and 3.17 × 10−8 esu and 3.88 × 10−28 and 4.22 × 10−28 esu, respectively, with Ilim value of 0.47 and 0.39 J·cm−2.
- Full Text:
- Date Issued: 2019
Electrocatalytic activity of a push-pull phthalocyanine in the presence of reduced and amino functionalized graphene quantum dots towards the electrooxidation of hydrazine
- Centane, Sixolile, Sekhosana, Kutloano E, Matshitse, Refilwe, Nyokong, Tebello
- Authors: Centane, Sixolile , Sekhosana, Kutloano E , Matshitse, Refilwe , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233456 , vital:50092 , xlink:href="https://doi.org/10.1016/j.jelechem.2018.05.005"
- Description: We report on the electrochemical behaviour of reduced graphene quantum dots (rGQDs) compared to amino functionalized graphene quantum dots (NH2GQDs). Reduction of the GQDs entails the elimination of the excessive carboxyl and hydrogen groups on the GQDs surface, thereby reducing the energy band gap. The energy band gap of graphene is directly proportional to the available oxygen atoms. The two GQD types were conjugated to a novel cobalt phthalocyanine (cobalt tris-(tert-butyl phenoxy)-mono-carboxyphenoxy phthalocyanine, CoPc) via covalent and nom-covalent interactions. The resulting conjugates were tested towards the electrooxidation of hydrazine. The conjugates are represented as rGQDs(π)CoPc, NH2(π)CoPc, rGQDs@CoPc and NH2GQDs@CoPc. The resulting conjugates were adsorbed onto a glassy carbon electrode using the drop and dry method. The lowest limit of detection (LOD) was obtained for rGQDs(π)CoPc.
- Full Text:
- Date Issued: 2018
- Authors: Centane, Sixolile , Sekhosana, Kutloano E , Matshitse, Refilwe , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233456 , vital:50092 , xlink:href="https://doi.org/10.1016/j.jelechem.2018.05.005"
- Description: We report on the electrochemical behaviour of reduced graphene quantum dots (rGQDs) compared to amino functionalized graphene quantum dots (NH2GQDs). Reduction of the GQDs entails the elimination of the excessive carboxyl and hydrogen groups on the GQDs surface, thereby reducing the energy band gap. The energy band gap of graphene is directly proportional to the available oxygen atoms. The two GQD types were conjugated to a novel cobalt phthalocyanine (cobalt tris-(tert-butyl phenoxy)-mono-carboxyphenoxy phthalocyanine, CoPc) via covalent and nom-covalent interactions. The resulting conjugates were tested towards the electrooxidation of hydrazine. The conjugates are represented as rGQDs(π)CoPc, NH2(π)CoPc, rGQDs@CoPc and NH2GQDs@CoPc. The resulting conjugates were adsorbed onto a glassy carbon electrode using the drop and dry method. The lowest limit of detection (LOD) was obtained for rGQDs(π)CoPc.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »