Metallophthalocyanines: versatile probes for microbial photoinactivation and for pollutant degradation as photocatalysts, both molecular or supported form
- Authors: Sindelo, Azole
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466614 , vital:76760 , DOI https://doi.org/10.21504/10962/466614
- Description: This thesis investigates the synthesie of metallophthalocyanines for potential use as photosensitizers in two applications: photodynamic antimicrobial chemotherapy and the photodegradation of organic pollutants. To achieve this, phthalocyanines with morpholine (substituted at alpha and beta position, to imine), ethyl and propyl pyrrolidine Schiff bases, asymmetrical mercaptobenzothiazole and morpholine substituents were synthesized for the first time. All nitrogen containing phthalocyanines were methylated to form cationic derivatives. Asymmetrical mercaptobenzothiazole were covalently linked to spherical and pyramidal zinc oxide nanoparticles, while the asymmetrical morpholine were conjugated to polyacrylonitrile (PAN) nanofibers, chitosan modified PAN and glass wool, while carboxylic acid containing phthalocyanines were also linked to glass wool. Various characterization techniques, including electronic spectroscopy, mass spectroscopy, nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), elemental analysis, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM), and time-resolved fluorescence measurements were employed to characterize all the phthalocyanine composites. The research aimed to establish general trends in fluorescence quantum yields, triplet and singlet oxygen generation, photodegradation rates, and fluorescence and triplet state lifetimes of the complexes. Notably, the presence of zinc oxide nanoparticles increased the triplet quantum yield of phthalocyanines, however, the singlet oxygen quantum yield decreased. The study also examined the photodynamic inactivation of various planktonic cells and biofilms using all photosensitizers. The photodynamic antimicrobial chemotherapy activities were dose-dependent, and all cationic photosensitizers were highly effective in completely inactivating the microbes in both forms, as opposed to non-charged photosensitizers. For the supports, the chitosan modified PAN showed high efficacy due to improved hydrophilicity. Furthermore, the research was conducted on the photodegradation of 4-chlorophenol, methyl orange and methylene blue using Pc-anchored PAN and glass wool supports. The immobilized photosensitizers demonstrated a strong capacity for generating singlet oxygen in aqueous media, with the cationic Pc-PAN removing methylene blue more efficiently due to its adsorption and photodegradation abilities. All supports were recoverable, showing potential application for future use in the removal of microbes and organic pollutants. , Thesis (PhD) -- Faculty of Science, Chemistry, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Sindelo, Azole
- Date: 2024-10-11
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466614 , vital:76760 , DOI https://doi.org/10.21504/10962/466614
- Description: This thesis investigates the synthesie of metallophthalocyanines for potential use as photosensitizers in two applications: photodynamic antimicrobial chemotherapy and the photodegradation of organic pollutants. To achieve this, phthalocyanines with morpholine (substituted at alpha and beta position, to imine), ethyl and propyl pyrrolidine Schiff bases, asymmetrical mercaptobenzothiazole and morpholine substituents were synthesized for the first time. All nitrogen containing phthalocyanines were methylated to form cationic derivatives. Asymmetrical mercaptobenzothiazole were covalently linked to spherical and pyramidal zinc oxide nanoparticles, while the asymmetrical morpholine were conjugated to polyacrylonitrile (PAN) nanofibers, chitosan modified PAN and glass wool, while carboxylic acid containing phthalocyanines were also linked to glass wool. Various characterization techniques, including electronic spectroscopy, mass spectroscopy, nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR), elemental analysis, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM), and time-resolved fluorescence measurements were employed to characterize all the phthalocyanine composites. The research aimed to establish general trends in fluorescence quantum yields, triplet and singlet oxygen generation, photodegradation rates, and fluorescence and triplet state lifetimes of the complexes. Notably, the presence of zinc oxide nanoparticles increased the triplet quantum yield of phthalocyanines, however, the singlet oxygen quantum yield decreased. The study also examined the photodynamic inactivation of various planktonic cells and biofilms using all photosensitizers. The photodynamic antimicrobial chemotherapy activities were dose-dependent, and all cationic photosensitizers were highly effective in completely inactivating the microbes in both forms, as opposed to non-charged photosensitizers. For the supports, the chitosan modified PAN showed high efficacy due to improved hydrophilicity. Furthermore, the research was conducted on the photodegradation of 4-chlorophenol, methyl orange and methylene blue using Pc-anchored PAN and glass wool supports. The immobilized photosensitizers demonstrated a strong capacity for generating singlet oxygen in aqueous media, with the cationic Pc-PAN removing methylene blue more efficiently due to its adsorption and photodegradation abilities. All supports were recoverable, showing potential application for future use in the removal of microbes and organic pollutants. , Thesis (PhD) -- Faculty of Science, Chemistry, 2024
- Full Text:
- Date Issued: 2024-10-11
The systematic assembly of prostate specific antigen electrochemical sensors based on asymmetric Co(II) phthalocyanines, graphitic quantum dots and an aptamer
- Authors: Nxele, Siphesihle Robin
- Date: 2022-04-08
- Subjects: Prostate-specific antigen , Electrochemical sensors , Phthalocyanines , Quantum dots , Co(II) phthalocyanines , Aptamer
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/232893 , vital:50035 , DOI 10.21504/10962/232893
- Description: The need for low-cost, efficient and simple diagnostic tools has led to more research going into this subject, with the aim of making such medical devices more accessible where they are needed. This has led to more researchers developing point-of-care devices for this purpose worldwide, by sensor fabrication. This thesis focuses on electrochemical sensor development for the early diagnosis of prostate cancer. It is common knowledge that prostate cancer is one of the most prevalent carcinomas that have claimed lives due to late diagnosis where even the most invasive treatments have failed. For this reason, development of early detection devices that can even be used in the comfort of home is necessary and quite crucial. Electrochemical sensors have gained much attention due to their ease of fabrication, cost effectiveness, simplicity, ease of use and high efficiency. Using nanocomposites as modifiers has also become popular as they provide greater stability and improve detection limits when used together with biomolecules. With that said, the work reported herein has combined nanocomposites of graphenebased quantum dots, gold nanoparticles, phthalocyanines and an aptamer in order to fabricate aptasensors for the electrochemical detection of prostate cancer biomarker. The aptamer is specifically designed to bind to the biomarker, and the nanocomposites are expected to enhance current output thus lowering detection limits and increasing stability and efficiency. Reproducible results are also expected. Prior to the detection of the prostate cancer biomarker, the quantum dots-phthalocyanine nanohybrids were used to detect L-cysteine, which is an amino acid, in order to verify the synergistic effects as electrode modifiers that lead to the enhancement of current output. This increase in current output is then v exploited for the improvement of aptasensor functionality upon incorporation of the aptamer, for the detection of prostate specific antigen. The research in this thesis has been carried out with the intention of contributing to the world of medical research, more so because of the ever-increasing need for medical care to become accessible to all and not only to those who can afford expensive technologies and treatments. , Thesis (PhD) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-04-08
- Authors: Nxele, Siphesihle Robin
- Date: 2022-04-08
- Subjects: Prostate-specific antigen , Electrochemical sensors , Phthalocyanines , Quantum dots , Co(II) phthalocyanines , Aptamer
- Language: English
- Type: Doctoral thesis , text
- Identifier: http://hdl.handle.net/10962/232893 , vital:50035 , DOI 10.21504/10962/232893
- Description: The need for low-cost, efficient and simple diagnostic tools has led to more research going into this subject, with the aim of making such medical devices more accessible where they are needed. This has led to more researchers developing point-of-care devices for this purpose worldwide, by sensor fabrication. This thesis focuses on electrochemical sensor development for the early diagnosis of prostate cancer. It is common knowledge that prostate cancer is one of the most prevalent carcinomas that have claimed lives due to late diagnosis where even the most invasive treatments have failed. For this reason, development of early detection devices that can even be used in the comfort of home is necessary and quite crucial. Electrochemical sensors have gained much attention due to their ease of fabrication, cost effectiveness, simplicity, ease of use and high efficiency. Using nanocomposites as modifiers has also become popular as they provide greater stability and improve detection limits when used together with biomolecules. With that said, the work reported herein has combined nanocomposites of graphenebased quantum dots, gold nanoparticles, phthalocyanines and an aptamer in order to fabricate aptasensors for the electrochemical detection of prostate cancer biomarker. The aptamer is specifically designed to bind to the biomarker, and the nanocomposites are expected to enhance current output thus lowering detection limits and increasing stability and efficiency. Reproducible results are also expected. Prior to the detection of the prostate cancer biomarker, the quantum dots-phthalocyanine nanohybrids were used to detect L-cysteine, which is an amino acid, in order to verify the synergistic effects as electrode modifiers that lead to the enhancement of current output. This increase in current output is then v exploited for the improvement of aptasensor functionality upon incorporation of the aptamer, for the detection of prostate specific antigen. The research in this thesis has been carried out with the intention of contributing to the world of medical research, more so because of the ever-increasing need for medical care to become accessible to all and not only to those who can afford expensive technologies and treatments. , Thesis (PhD) -- Faculty of Science, Chemistry, 2022
- Full Text:
- Date Issued: 2022-04-08
Fabrication and characterization of ciprofloxacin loaded niosomes for transtympanic delivery
- Authors: Mhlanga, Asavela
- Date: 2022-04-06
- Subjects: Drug delivery systems , Liposomes , Ciprofloxacin , Quinolone antibacterial agents , Drug carriers (Pharmacy) , Drug stability , Lamellarity , Niosomes
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/290715 , vital:56777
- Description: Ciprofloxacin (CPH) is a broad-spectrum antibiotic used to treat bone, joint, and skin infections. It is commercially available as an extended-release tablet and as a cream dosage form. CPH is a bactericidal active pharmaceutical ingredient (API) of the fluoroquinolone drug class. It inhibits deoxyribonucleic acid (DNA) replication by inhibiting bacterial DNA topoisomerase and DNA gyrase enzymes. Common adverse effects include nausea, vomiting, unusual fatigue, pale skin, and may increase the risk of tendinitis, which could be a major concern. CPH is, according to the Biopharmaceutics Classification System (BCS), classified as a BCS class IV drug exhibiting low oral bioavailability, low solubility, and intestinal permeability. CPH was chosen as a good candidate for the study because of its stability in solutions, its low molecular weight (331.4 g/mol), and its moderate lipophilicity (log P = 0.28) [16]. The use of conventional ear drops in the ear is effective, avoids hepatic first metabolism and extensive protein binding and may reduce adverse effects as a low dose may be used to achieve a therapeutic effect. However, conventional ear drops and oral antibiotics have a long onset of action and have to be taken/applied in short intervals. For convenience and assurance of a long residence time in the ear, CPH may be delivered by using a niosomal formulation, a liquid at room temperature, to allow administration into the ear without the need to constantly apply the ear drops for long periods of time. A simple, rapid, precise, accurate, reproducible, and specific reversed-phase high-performance liquid chromatography (RP-HPLC) method using ultraviolet (UV) detection for the quantitation of CPH was developed and optimized using a central composite design (CCD). The method was validated using International Conference on Harmonisation (ICH) guidelines and was found to be linear, precise, accurate, and specific for the analysis of CPH. Since the method is specific, it was used to quantify CPH in commercial and experimental formulations and monitor CPH released during in-vitro release testing. The compatibility of CPH and potential excipients was investigated during preformulation studies using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) to identify and select suitable excipients for use during formulation development activities. No apparent interactions were evident between CPH, and the excipients tested. The probe sonication method was used to manufacture CPH loaded niosomes using different surfactants/surfactant combinations, and a combination of Tween® 80: sodium lauryl sulfate (SLS) was found to be the best composition in terms of both entrapment efficiency and Zeta potential. The limits for the independent input variables used for the manufacture included amplitude, sonication time, and amount of cholesterol were determined. Design of experiments (DOE) was used to design the study. The input variables investigated included amplitude, amount of cholesterol, and sonication time. The output or responses monitored included Zeta potential, vesicle size, polydispersity index (PDI), and entrapment efficiency. Non-ionic surfactant systems are predominantly stabilized by steric stabilization, and there is only a minor electrostatic element from adsorbed hydroxyl ions. With the inclusion of SLS it is to be expected that Zeta potential will be a contributing factor. DOE using Box-Behnken design (BBD) and response surface methodology (RSM) in addition to Artificial Neural Networks (ANN) were used for the optimization of the formulation. The optimized formulation had a composition of 1 g cholesterol, 1 g of Tween® 80, 1 g of SLS and was prepared at an amplitude of 11.294 % with a sonication time of 3.304 minutes. The formulation exhibited zero-order release kinetics and had an average pH of 7.45. The formulation was stored at 4 ℃ and 25 ℃ and was assessed for vesicle size, entrapment efficiency, Zeta potential, colour, lamellarity, and PDI every 7 days for 4 weeks. The lead formulation stored at 4 ℃ was more stable than the formulation at 25 ℃ in terms of entrapment efficiency, PDI and vesicle size during the 4-week period. CPH loaded niosomes for transtympanic delivery in the treatment of otitis media were developed and optimized. The technology exhibits sustained release of CPH and has the potential for further development and optimization. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Mhlanga, Asavela
- Date: 2022-04-06
- Subjects: Drug delivery systems , Liposomes , Ciprofloxacin , Quinolone antibacterial agents , Drug carriers (Pharmacy) , Drug stability , Lamellarity , Niosomes
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/290715 , vital:56777
- Description: Ciprofloxacin (CPH) is a broad-spectrum antibiotic used to treat bone, joint, and skin infections. It is commercially available as an extended-release tablet and as a cream dosage form. CPH is a bactericidal active pharmaceutical ingredient (API) of the fluoroquinolone drug class. It inhibits deoxyribonucleic acid (DNA) replication by inhibiting bacterial DNA topoisomerase and DNA gyrase enzymes. Common adverse effects include nausea, vomiting, unusual fatigue, pale skin, and may increase the risk of tendinitis, which could be a major concern. CPH is, according to the Biopharmaceutics Classification System (BCS), classified as a BCS class IV drug exhibiting low oral bioavailability, low solubility, and intestinal permeability. CPH was chosen as a good candidate for the study because of its stability in solutions, its low molecular weight (331.4 g/mol), and its moderate lipophilicity (log P = 0.28) [16]. The use of conventional ear drops in the ear is effective, avoids hepatic first metabolism and extensive protein binding and may reduce adverse effects as a low dose may be used to achieve a therapeutic effect. However, conventional ear drops and oral antibiotics have a long onset of action and have to be taken/applied in short intervals. For convenience and assurance of a long residence time in the ear, CPH may be delivered by using a niosomal formulation, a liquid at room temperature, to allow administration into the ear without the need to constantly apply the ear drops for long periods of time. A simple, rapid, precise, accurate, reproducible, and specific reversed-phase high-performance liquid chromatography (RP-HPLC) method using ultraviolet (UV) detection for the quantitation of CPH was developed and optimized using a central composite design (CCD). The method was validated using International Conference on Harmonisation (ICH) guidelines and was found to be linear, precise, accurate, and specific for the analysis of CPH. Since the method is specific, it was used to quantify CPH in commercial and experimental formulations and monitor CPH released during in-vitro release testing. The compatibility of CPH and potential excipients was investigated during preformulation studies using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) to identify and select suitable excipients for use during formulation development activities. No apparent interactions were evident between CPH, and the excipients tested. The probe sonication method was used to manufacture CPH loaded niosomes using different surfactants/surfactant combinations, and a combination of Tween® 80: sodium lauryl sulfate (SLS) was found to be the best composition in terms of both entrapment efficiency and Zeta potential. The limits for the independent input variables used for the manufacture included amplitude, sonication time, and amount of cholesterol were determined. Design of experiments (DOE) was used to design the study. The input variables investigated included amplitude, amount of cholesterol, and sonication time. The output or responses monitored included Zeta potential, vesicle size, polydispersity index (PDI), and entrapment efficiency. Non-ionic surfactant systems are predominantly stabilized by steric stabilization, and there is only a minor electrostatic element from adsorbed hydroxyl ions. With the inclusion of SLS it is to be expected that Zeta potential will be a contributing factor. DOE using Box-Behnken design (BBD) and response surface methodology (RSM) in addition to Artificial Neural Networks (ANN) were used for the optimization of the formulation. The optimized formulation had a composition of 1 g cholesterol, 1 g of Tween® 80, 1 g of SLS and was prepared at an amplitude of 11.294 % with a sonication time of 3.304 minutes. The formulation exhibited zero-order release kinetics and had an average pH of 7.45. The formulation was stored at 4 ℃ and 25 ℃ and was assessed for vesicle size, entrapment efficiency, Zeta potential, colour, lamellarity, and PDI every 7 days for 4 weeks. The lead formulation stored at 4 ℃ was more stable than the formulation at 25 ℃ in terms of entrapment efficiency, PDI and vesicle size during the 4-week period. CPH loaded niosomes for transtympanic delivery in the treatment of otitis media were developed and optimized. The technology exhibits sustained release of CPH and has the potential for further development and optimization. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2022
- Full Text:
- Date Issued: 2022-04-06
Systematics of the Afrotropical Chalcididae (Hymenoptera: Chalcidoidea)
- Authors: Faure, Sariana
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192808 , vital:45266
- Description: Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Faure, Sariana
- Date: 2021-10-29
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192808 , vital:45266
- Description: Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10-29
- «
- ‹
- 1
- ›
- »