Aphid (Sitobion yakini) investigation shows thin-walled sieve tubes in barley (Hordeum vulgare L) to be more functional than thick-walled sieve tubes
- Matsiliza, Balbalwa, Botha, Christiaan E J
- Authors: Matsiliza, Balbalwa , Botha, Christiaan E J
- Date: 2002
- Language: English
- Type: Article
- Identifier: vital:6526 , http://hdl.handle.net/10962/d1005960
- Description: Barley, like most other grasses that have been studied, contains two kinds of sieve tube. The first formed are called thinwalled sieve tubes because of their thin wall compared to the late-formed, and are associated with companion cells. The late-formed are thick-walled sieve tubes, which differentiate next to the metaxylem vessels and lack companion cells. Aphid (Sitobion yakini (Eastop) feeding was studied using light microscopy to determine if they preferentially feed from thin- or thick-walled sieve tubes in the barley leaf. Penetration of the stylets through the leaf epidermis and mesophyll was largely intercellular, becoming partly intercellular and, partly, intracellular inside the vascular bundle. Sixteen of 19 pairs of stylets (84%), and 293 of 317 (92%) stylet tracks terminated at the thin-walled sieve tubes, suggesting that Sitobion yakini feeds preferentially on the thin-walled sieve tubes which seem to be more attractive to the aphid. These thin-walled sieve tubes are thus probably the most functional in terms of phloem loading and transport.
- Full Text:
- Date Issued: 2002
- Authors: Matsiliza, Balbalwa , Botha, Christiaan E J
- Date: 2002
- Language: English
- Type: Article
- Identifier: vital:6526 , http://hdl.handle.net/10962/d1005960
- Description: Barley, like most other grasses that have been studied, contains two kinds of sieve tube. The first formed are called thinwalled sieve tubes because of their thin wall compared to the late-formed, and are associated with companion cells. The late-formed are thick-walled sieve tubes, which differentiate next to the metaxylem vessels and lack companion cells. Aphid (Sitobion yakini (Eastop) feeding was studied using light microscopy to determine if they preferentially feed from thin- or thick-walled sieve tubes in the barley leaf. Penetration of the stylets through the leaf epidermis and mesophyll was largely intercellular, becoming partly intercellular and, partly, intracellular inside the vascular bundle. Sixteen of 19 pairs of stylets (84%), and 293 of 317 (92%) stylet tracks terminated at the thin-walled sieve tubes, suggesting that Sitobion yakini feeds preferentially on the thin-walled sieve tubes which seem to be more attractive to the aphid. These thin-walled sieve tubes are thus probably the most functional in terms of phloem loading and transport.
- Full Text:
- Date Issued: 2002
Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface
- Botha, Christiaan E J, Cross, Robin H M, Van Bel, A J E, Peter, Craig I
- Authors: Botha, Christiaan E J , Cross, Robin H M , Van Bel, A J E , Peter, Craig I
- Date: 2000
- Language: English
- Type: Article
- Identifier: vital:6503 , http://hdl.handle.net/10962/d1005926
- Description: Using Lucifer Yellow we have demonstrated that the phloem-loading pathway from the mesophyll to the bundle sheath-vascular parenchyma interface in Zea mays source leaves follows a symplasmic route in small and intermediate vascular bundles in control as well as in the green sections of mutant sucrose-export-defective (SXD-1) plants. In the anthocyanin-rich mutant leaf sections, Lucifer Yellow transport was prohibited along the same path, at the bundle sheath-vascular parenchyma interface in particular. Plasmodesmata at the latter interface in SXD-1 anthocyanin-rich leaf sections appear to be structurally altered through callose deposition at the plasmodesmal orifices. We suggest that a transport bottleneck at the bundle sheath-vascular parenchyma interface is thus orchestrated and regulated through callose formation, preventing symplasmic transport across this important loading interface.
- Full Text:
- Date Issued: 2000
- Authors: Botha, Christiaan E J , Cross, Robin H M , Van Bel, A J E , Peter, Craig I
- Date: 2000
- Language: English
- Type: Article
- Identifier: vital:6503 , http://hdl.handle.net/10962/d1005926
- Description: Using Lucifer Yellow we have demonstrated that the phloem-loading pathway from the mesophyll to the bundle sheath-vascular parenchyma interface in Zea mays source leaves follows a symplasmic route in small and intermediate vascular bundles in control as well as in the green sections of mutant sucrose-export-defective (SXD-1) plants. In the anthocyanin-rich mutant leaf sections, Lucifer Yellow transport was prohibited along the same path, at the bundle sheath-vascular parenchyma interface in particular. Plasmodesmata at the latter interface in SXD-1 anthocyanin-rich leaf sections appear to be structurally altered through callose deposition at the plasmodesmal orifices. We suggest that a transport bottleneck at the bundle sheath-vascular parenchyma interface is thus orchestrated and regulated through callose formation, preventing symplasmic transport across this important loading interface.
- Full Text:
- Date Issued: 2000
Towards reconciliation of structure with function in plasmodesmata—who is the gatekeeper?
- Botha, Christiaan E J, Cross, Robin H M
- Authors: Botha, Christiaan E J , Cross, Robin H M
- Date: 2000
- Language: English
- Type: Article
- Identifier: vital:6497 , http://hdl.handle.net/10962/d1004493
- Description: Whilst the structure of higher plant plasmodesmata was first described by Robards (1963. Desmotubule—a plasmodesmatal substructure. Nature 218, 784), and despite many subsequent intensive investigations, there is still much that remains unclear relating to their ultrastructure and functioning in higher plants. We have examined chemically fixed plant material, and suggest that the conformational changes seen in plasmodesmatal substructure, particularly the deposition of electron-dense extra-plasmodesmal material, is linked to either manipulation of the hormonal balance (as in Avocado fruit), or of osmotic potential in leaf blade material. These changes result in the deposition of β 1,3-glucan (callose) at the neck region of these plasmodesmata. This electron-dense material is deposited at the neck region of plasmodesmata, and forms a collar-like structure. The formation of a collar is shown to be coupled with loss of lucence within the cytoplasmic sleeve. The formation of a collar at the plasmodesmatal orifice thus results in encapsulation and closure of the plasmodesmatal orifice. Closure of the orifice coincides with a loss of electron-lucence and a lack of resolution of the desmotubule. These ultrastructural changes are potentially significant and could contribute to, result in, or assist in the down-regulation of cell to cell trafficking via plasmodesmata.
- Full Text:
- Date Issued: 2000
- Authors: Botha, Christiaan E J , Cross, Robin H M
- Date: 2000
- Language: English
- Type: Article
- Identifier: vital:6497 , http://hdl.handle.net/10962/d1004493
- Description: Whilst the structure of higher plant plasmodesmata was first described by Robards (1963. Desmotubule—a plasmodesmatal substructure. Nature 218, 784), and despite many subsequent intensive investigations, there is still much that remains unclear relating to their ultrastructure and functioning in higher plants. We have examined chemically fixed plant material, and suggest that the conformational changes seen in plasmodesmatal substructure, particularly the deposition of electron-dense extra-plasmodesmal material, is linked to either manipulation of the hormonal balance (as in Avocado fruit), or of osmotic potential in leaf blade material. These changes result in the deposition of β 1,3-glucan (callose) at the neck region of these plasmodesmata. This electron-dense material is deposited at the neck region of plasmodesmata, and forms a collar-like structure. The formation of a collar is shown to be coupled with loss of lucence within the cytoplasmic sleeve. The formation of a collar at the plasmodesmatal orifice thus results in encapsulation and closure of the plasmodesmatal orifice. Closure of the orifice coincides with a loss of electron-lucence and a lack of resolution of the desmotubule. These ultrastructural changes are potentially significant and could contribute to, result in, or assist in the down-regulation of cell to cell trafficking via plasmodesmata.
- Full Text:
- Date Issued: 2000
Plasmodesmatal frequency in relation to short-distance transport and phloem loading in leaves of barley (Hordeum vulgare). Phloem is not loaded directly from the symplast
- Botha, Christiaan E J, Cross, Robin H M
- Authors: Botha, Christiaan E J , Cross, Robin H M
- Date: 1997
- Language: English
- Type: Article
- Identifier: vital:6504 , http://hdl.handle.net/10962/d1005928
- Description: We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential {average -52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (-122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.
- Full Text:
- Date Issued: 1997
- Authors: Botha, Christiaan E J , Cross, Robin H M
- Date: 1997
- Language: English
- Type: Article
- Identifier: vital:6504 , http://hdl.handle.net/10962/d1005928
- Description: We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential {average -52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (-122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.
- Full Text:
- Date Issued: 1997
- «
- ‹
- 1
- ›
- »