An investigation of the antimicrobial and antifouling properties of marine algal metabolites
- Authors: Mann, Maryssa Gudrun Ailsa
- Date: 2008 , 2013-07-11
- Subjects: Anti-infective agents , Marine metabolites -- Therapeutic use , Marine algae , Pharmacognosy , Fouling , Marine fouling organisms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3831 , http://hdl.handle.net/10962/d1007465 , Anti-infective agents , Marine metabolites -- Therapeutic use , Marine algae , Pharmacognosy , Fouling , Marine fouling organisms
- Description: Prevention of the accumulation of undesirable biological material i.e. biofouling upon a solid surface requires the use of antifouling systems. The solid surface may be a contact lens, an off shore oil rig or a living organism. When chemicals are employed as a mechanism of defense against biofouling, the agents involved are known as antifouling agents. Marine algae must protect themselves from fouling organisms and it is thought that one of the mechanisms used by these organisms is the production of secondary metabolites with an array of biological activities. In vitro studies have shown numerous compounds isolated from marine algae to possess antibacterial, antifungal and antimacrofouling activity. The aim of this study was to evaluate the secondary metabolite extracts of selected Southern African marine macro-algae as a potential source of compounds that inhibit biofilm formation and that could be used as antifouling agents. In this project, marine macro-algae were collected from various sites along the South African coastline. Their extracts were screened for antimicrobial activity against four ubiquitous microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Mycobacterium aurm and Candida albicans. Results of screening assays guided the fractionation of two Rhodophyta, Plocamium corallorhiza and Laurencia flexuosa. The algae were fractionated using silica gel column chromatography and compounds were isolated by semi-preparative normal phase HPLC. Compound characterization was performed using UV, IR and advanced one- and two-dimensional NMR (¹H, ¹³C NMR, COSY, HSQC, HMBC and NOESY) spectroscopy and mass spectrometry. Ten halogenated monoterpenes including four members of the small class of halogenated monoterpene aldehydes were isolated from extracts of P. corallorhiza. The compounds isolated included the known compounds 3,4,6,7-tetrachloro-3,7-dimethyl-1-octene; 4,6-dibromo-1, 1-dichloro-3,7 -dimethyl-2E,7 octadiene; 4,8-d ibromo-1,1,7 -trichloro-3, 7-dimethyl-2,5Eoctadiene;1 ,4,8-tribromo-3, 7 -dichloro-3,7-dimethyl-1 E,5E-octadiene; 8-bremo-6, 7-dichloro-3,7-dimethyl-octa-2E,4E-dienal; 4-Bromo-8-chloro-3,7-dimethyl-octa-2E,6E-dienal; 4,6- Dibromo-3,7-dimethyl-octa-2E,7-dienal; 2,4-dichloro-1-(2-chlorovinyl)-1-methyl-5-methylidene-cyclohexane and two new metabolites 4,8-chloro-3,7-dimethyl-2Z,4,6Z-octatrien-1-al and Compound 3.47. Methodology was developed for the chemical derivatization and mass spectrometric analysis of the aldehydic compounds, The aldehyde trapping reagent 0-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride was used to derivatize the molecules, stabilizing them and allowing for their complete characterization. From Laurencia flexuosa a new cuparene sesquiterpene 4-bremo-2-(5-hydroxy-1,2,2- trimethylcyclopent-3-enyl)-5-methylphenol was isolated along with two geometric isomers of the vinyl acetylene bromofucin , An halogenated monoterpene 3S*,4R*-1-bromo-3,4,8-trichloro-9-dichloromethyl-1-E,5-E,7-Z-octatriene was also isolated but was suspected to be a contaminant and an investigation into its biological source revealed that it originated from Plocamium suhrii. A third alga, Martensia elegans was extracted based on published reports of antimicrobial compounds in related species. A new a-alkyl malate derivative was isolated and characterized. Selected compounds isolated during the course of the study were employed in preliminary assays that tested their ability to inhibit biofilm formation by Pseudomonas aeruginosa. The halogenated monoterpenes isolated from the Plocamium species were the only active compounds. 3S*,4R*-1-bromo-3,4,S-trichloro-g-dichloromethyl-1-E,5-E,7-octatriene from P. suhrii inhibited biofilm formation through antibacterial activity on planktonic cells but could not prevent biofilm formation when employed as a film on the surface of microtitre plate wells. 1,4,8-tribromo-3,7-dichloro-3,7-dimethyl-1E,5E-octadiene and 4,6-dibromo-1,1-dichloro-3,7-dimethyl-2E,7-octadiene inhibited biofilm formation when applied as a film to the microtitre plate wells but had no significant antibacterial activity. No potential antifouling agents were identified in this project but the antimicrobial activity exhibited by the crude algal extracts was highly encouraging and a number of new research areas have been identified. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2008
- Authors: Mann, Maryssa Gudrun Ailsa
- Date: 2008 , 2013-07-11
- Subjects: Anti-infective agents , Marine metabolites -- Therapeutic use , Marine algae , Pharmacognosy , Fouling , Marine fouling organisms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:3831 , http://hdl.handle.net/10962/d1007465 , Anti-infective agents , Marine metabolites -- Therapeutic use , Marine algae , Pharmacognosy , Fouling , Marine fouling organisms
- Description: Prevention of the accumulation of undesirable biological material i.e. biofouling upon a solid surface requires the use of antifouling systems. The solid surface may be a contact lens, an off shore oil rig or a living organism. When chemicals are employed as a mechanism of defense against biofouling, the agents involved are known as antifouling agents. Marine algae must protect themselves from fouling organisms and it is thought that one of the mechanisms used by these organisms is the production of secondary metabolites with an array of biological activities. In vitro studies have shown numerous compounds isolated from marine algae to possess antibacterial, antifungal and antimacrofouling activity. The aim of this study was to evaluate the secondary metabolite extracts of selected Southern African marine macro-algae as a potential source of compounds that inhibit biofilm formation and that could be used as antifouling agents. In this project, marine macro-algae were collected from various sites along the South African coastline. Their extracts were screened for antimicrobial activity against four ubiquitous microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Mycobacterium aurm and Candida albicans. Results of screening assays guided the fractionation of two Rhodophyta, Plocamium corallorhiza and Laurencia flexuosa. The algae were fractionated using silica gel column chromatography and compounds were isolated by semi-preparative normal phase HPLC. Compound characterization was performed using UV, IR and advanced one- and two-dimensional NMR (¹H, ¹³C NMR, COSY, HSQC, HMBC and NOESY) spectroscopy and mass spectrometry. Ten halogenated monoterpenes including four members of the small class of halogenated monoterpene aldehydes were isolated from extracts of P. corallorhiza. The compounds isolated included the known compounds 3,4,6,7-tetrachloro-3,7-dimethyl-1-octene; 4,6-dibromo-1, 1-dichloro-3,7 -dimethyl-2E,7 octadiene; 4,8-d ibromo-1,1,7 -trichloro-3, 7-dimethyl-2,5Eoctadiene;1 ,4,8-tribromo-3, 7 -dichloro-3,7-dimethyl-1 E,5E-octadiene; 8-bremo-6, 7-dichloro-3,7-dimethyl-octa-2E,4E-dienal; 4-Bromo-8-chloro-3,7-dimethyl-octa-2E,6E-dienal; 4,6- Dibromo-3,7-dimethyl-octa-2E,7-dienal; 2,4-dichloro-1-(2-chlorovinyl)-1-methyl-5-methylidene-cyclohexane and two new metabolites 4,8-chloro-3,7-dimethyl-2Z,4,6Z-octatrien-1-al and Compound 3.47. Methodology was developed for the chemical derivatization and mass spectrometric analysis of the aldehydic compounds, The aldehyde trapping reagent 0-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride was used to derivatize the molecules, stabilizing them and allowing for their complete characterization. From Laurencia flexuosa a new cuparene sesquiterpene 4-bremo-2-(5-hydroxy-1,2,2- trimethylcyclopent-3-enyl)-5-methylphenol was isolated along with two geometric isomers of the vinyl acetylene bromofucin , An halogenated monoterpene 3S*,4R*-1-bromo-3,4,8-trichloro-9-dichloromethyl-1-E,5-E,7-Z-octatriene was also isolated but was suspected to be a contaminant and an investigation into its biological source revealed that it originated from Plocamium suhrii. A third alga, Martensia elegans was extracted based on published reports of antimicrobial compounds in related species. A new a-alkyl malate derivative was isolated and characterized. Selected compounds isolated during the course of the study were employed in preliminary assays that tested their ability to inhibit biofilm formation by Pseudomonas aeruginosa. The halogenated monoterpenes isolated from the Plocamium species were the only active compounds. 3S*,4R*-1-bromo-3,4,S-trichloro-g-dichloromethyl-1-E,5-E,7-octatriene from P. suhrii inhibited biofilm formation through antibacterial activity on planktonic cells but could not prevent biofilm formation when employed as a film on the surface of microtitre plate wells. 1,4,8-tribromo-3,7-dichloro-3,7-dimethyl-1E,5E-octadiene and 4,6-dibromo-1,1-dichloro-3,7-dimethyl-2E,7-octadiene inhibited biofilm formation when applied as a film to the microtitre plate wells but had no significant antibacterial activity. No potential antifouling agents were identified in this project but the antimicrobial activity exhibited by the crude algal extracts was highly encouraging and a number of new research areas have been identified. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2008
An assessment of the genetic diversity and origin of the invasive weed Chromolaena Odorata (L.) King and Robinson in South Africa
- Authors: Von Senger, Inge
- Date: 2002
- Subjects: Biodiversity -- South Africa , Chromolaena odorata -- Biological control -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4233 , http://hdl.handle.net/10962/d1003802 , Biodiversity -- South Africa , Chromolaena odorata -- Biological control -- South Africa
- Description: Chromolaena odorata (L.) King and Robinson is an alien invasive weed to most of the Old World tropical regions of the earth, including South Africa where it is morphologically distinct from most other C. odorata plants examined from both its native and invasive range. It is thought that these morphological differences are related to difficulties encountered in successful establishment of biological control agents on the South African population of C. odorata. It has been postulated that the source population of the South African population will harbour potential biocontrol agents that will be suited to successful establishment on the South African plants. Several morphological, cytological and isozyme studies have been attempted to identify the source population of the South African population, but these have failed to identify the origin of the South African population. In this dissertation two PCR-based methods were attempted, in an investigation into whether the morphological differences and difficulties in establishment of biocontrol agents have a genetic basis. The two techniques attempted were: Inter Simple Sequence Repeat (ISSR) amplification, and DNA sequencing. Results could not be obtained using the ISSR method, and the reason for this was not discovered despite extensive trials. The internal transcribed spacer region and the external transcribed spacer region sequences were obtained from five samples, and compared. It was found that the ETS region gave more phylogenetic signal at the intraspecific level than the ITS region. However, due to difficulties in amplification of the external transcribed spacer region, work here focussed on obtaining Internal Transcribed Spacer sequences for 61 samples. Each of the samples sequenced had a unique ITS sequence, displaying a high level of intraspecific genetic diversity. The degree of this diversity is discussed with reference to the possible influences of polyploidy and concerted evolution on genetic structure. The ITS data indicated that some of the physical traits used to define ‘morphotypes’ of C. odorata were not correlated to genotype. From discussion and comparison of morphological character distributions and the ITS-based phylogeography it is suggested that the geographical origin of the South African population is Greater Antilelan, rather than from the continents of North and South America, which is where the Australasian, West African and Mauritian infestations are suggested to have originated.
- Full Text:
- Date Issued: 2002
- Authors: Von Senger, Inge
- Date: 2002
- Subjects: Biodiversity -- South Africa , Chromolaena odorata -- Biological control -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4233 , http://hdl.handle.net/10962/d1003802 , Biodiversity -- South Africa , Chromolaena odorata -- Biological control -- South Africa
- Description: Chromolaena odorata (L.) King and Robinson is an alien invasive weed to most of the Old World tropical regions of the earth, including South Africa where it is morphologically distinct from most other C. odorata plants examined from both its native and invasive range. It is thought that these morphological differences are related to difficulties encountered in successful establishment of biological control agents on the South African population of C. odorata. It has been postulated that the source population of the South African population will harbour potential biocontrol agents that will be suited to successful establishment on the South African plants. Several morphological, cytological and isozyme studies have been attempted to identify the source population of the South African population, but these have failed to identify the origin of the South African population. In this dissertation two PCR-based methods were attempted, in an investigation into whether the morphological differences and difficulties in establishment of biocontrol agents have a genetic basis. The two techniques attempted were: Inter Simple Sequence Repeat (ISSR) amplification, and DNA sequencing. Results could not be obtained using the ISSR method, and the reason for this was not discovered despite extensive trials. The internal transcribed spacer region and the external transcribed spacer region sequences were obtained from five samples, and compared. It was found that the ETS region gave more phylogenetic signal at the intraspecific level than the ITS region. However, due to difficulties in amplification of the external transcribed spacer region, work here focussed on obtaining Internal Transcribed Spacer sequences for 61 samples. Each of the samples sequenced had a unique ITS sequence, displaying a high level of intraspecific genetic diversity. The degree of this diversity is discussed with reference to the possible influences of polyploidy and concerted evolution on genetic structure. The ITS data indicated that some of the physical traits used to define ‘morphotypes’ of C. odorata were not correlated to genotype. From discussion and comparison of morphological character distributions and the ITS-based phylogeography it is suggested that the geographical origin of the South African population is Greater Antilelan, rather than from the continents of North and South America, which is where the Australasian, West African and Mauritian infestations are suggested to have originated.
- Full Text:
- Date Issued: 2002
- «
- ‹
- 1
- ›
- »