NFComms: A synchronous communication framework for the CPU-NFP heterogeneous system
- Authors: Pennefather, Sean
- Date: 2020
- Subjects: Network processors , Computer programming , Parallel processing (Electronic computers) , Netronome
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/144181 , vital:38318
- Description: This work explores the viability of using a Network Flow Processor (NFP), developed by Netronome, as a coprocessor for the construction of a CPU-NFP heterogeneous platform in the domain of general processing. When considering heterogeneous platforms involving architectures like the NFP, the communication framework provided is typically represented as virtual network interfaces and is thus not suitable for generic communication. To enable a CPU-NFP heterogeneous platform for use in the domain of general computing, a suitable generic communication framework is required. A feasibility study for a suitable communication medium between the two candidate architectures showed that a generic framework that conforms to the mechanisms dictated by Communicating Sequential Processes is achievable. The resulting NFComms framework, which facilitates inter- and intra-architecture communication through the use of synchronous message passing, supports up to 16 unidirectional channels and includes queuing mechanisms for transparently supporting concurrent streams exceeding the channel count. The framework has a minimum latency of between 15.5 μs and 18 μs per synchronous transaction and can sustain a peak throughput of up to 30 Gbit/s. The framework also supports a runtime for interacting with the Go programming language, allowing user-space processes to subscribe channels to the framework for interacting with processes executing on the NFP. The viability of utilising a heterogeneous CPU-NFP system for use in the domain of general and network computing was explored by introducing a set of problems or applications spanning general computing, and network processing. These were implemented on the heterogeneous architecture and benchmarked against equivalent CPU-only and CPU/GPU solutions. The results recorded were used to form an opinion on the viability of using an NFP for general processing. It is the author’s opinion that, beyond very specific use cases, it appears that the NFP-400 is not currently a viable solution as a coprocessor in the field of general computing. This does not mean that the proposed framework or the concept of a heterogeneous CPU-NFP system should be discarded as such a system does have acceptable use in the fields of network and stream processing. Additionally, when comparing the recorded limitations to those seen during the early stages of general purpose GPU development, it is clear that general processing on the NFP is currently in a similar state.
- Full Text:
- Date Issued: 2020
- Authors: Pennefather, Sean
- Date: 2020
- Subjects: Network processors , Computer programming , Parallel processing (Electronic computers) , Netronome
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/144181 , vital:38318
- Description: This work explores the viability of using a Network Flow Processor (NFP), developed by Netronome, as a coprocessor for the construction of a CPU-NFP heterogeneous platform in the domain of general processing. When considering heterogeneous platforms involving architectures like the NFP, the communication framework provided is typically represented as virtual network interfaces and is thus not suitable for generic communication. To enable a CPU-NFP heterogeneous platform for use in the domain of general computing, a suitable generic communication framework is required. A feasibility study for a suitable communication medium between the two candidate architectures showed that a generic framework that conforms to the mechanisms dictated by Communicating Sequential Processes is achievable. The resulting NFComms framework, which facilitates inter- and intra-architecture communication through the use of synchronous message passing, supports up to 16 unidirectional channels and includes queuing mechanisms for transparently supporting concurrent streams exceeding the channel count. The framework has a minimum latency of between 15.5 μs and 18 μs per synchronous transaction and can sustain a peak throughput of up to 30 Gbit/s. The framework also supports a runtime for interacting with the Go programming language, allowing user-space processes to subscribe channels to the framework for interacting with processes executing on the NFP. The viability of utilising a heterogeneous CPU-NFP system for use in the domain of general and network computing was explored by introducing a set of problems or applications spanning general computing, and network processing. These were implemented on the heterogeneous architecture and benchmarked against equivalent CPU-only and CPU/GPU solutions. The results recorded were used to form an opinion on the viability of using an NFP for general processing. It is the author’s opinion that, beyond very specific use cases, it appears that the NFP-400 is not currently a viable solution as a coprocessor in the field of general computing. This does not mean that the proposed framework or the concept of a heterogeneous CPU-NFP system should be discarded as such a system does have acceptable use in the fields of network and stream processing. Additionally, when comparing the recorded limitations to those seen during the early stages of general purpose GPU development, it is clear that general processing on the NFP is currently in a similar state.
- Full Text:
- Date Issued: 2020
Resource recovery options in brewery effluent treatment using activated sludge and high rate algal ponds: assessing environmental impacts
- Authors: Taylor, Richard Peter
- Date: 2020
- Subjects: Sewage -- Purification -- Activated sludge process , Sewage disposal plants , Sewage -- Purification -- Biological treatament , Sewage -- Purification -- Nitrogen removal , Brewery waste , Breweries -- Waste disposal , Microalgae -- Biotechnology , Algal biofuels
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/153746 , vital:39507
- Description: Wastewater treatment plants (WWTPs) are designed to clean effluents, but they also consume resources and produce waste. Various treatment technologies allow for the recovery of energy, nutrients and water from effluents turning this waste into products, which increases their sustainability and decreases the impact of WWTPs on the environment. There is a lack of literature which comprehensively compares the treatment performances, environmental impacts and beneficial downstream uses of the biomass generated by high rate algal pond (HRAP) and activated sludge (AS) treatment systems. This thesis aimed to compare (1) effluent treatment performance, (2) emissions and (3) downstream use of algae cultured in HRAP to sludge produced in AS and to obtain data to conduct a life cycle analysis (LCA) to compare the systems. The focus was on adding value to the effluent treatment process, while identifying the associated environmental impacts and contributing to the first ever zero-waste brewery effluent treatment system. Furthermore, these data were used to provide a basis to critically review and contribute to improving the methods used in the LCA of effluent treatment systems; particularly since this was the first wastewater treatment LCA that compared AS and HRAP using data collected from the same temporal and geographic location and from a single effluent stream. The electrical consumption water emission and land application of waste biomass caused the major environmental impacts of both treatment systems. The HRAP had less than 50 % of the electrical energy consumption (0.11±0.01 kW/m3 of effluent treated) compared to the AS system (0.29±0.11 kW/m3) which resulted in the technology having a lower climate change, photochemical oxidant formation, freshwater and marine ecotoxicity and fossil fuel depletion impact. It is imperative to understand the method of electrical energy (fossil fuel vs renewable) generation when conducting a LCA and deciding which technologies to use, since they have a major influence on the aforementioned impacts. The biogas yield of algal and sludge substrates was similar with an average gas production of 241 ml/g volatile solids fed. Biogas from algae fed digesters had a significantly higher methane content (64.73±0.81 %) and lower carbon dioxide content (22.94±0.24 %) when compared to WAS fed digesters (60.08±0.18 % and 27.37±0.43 %) respectively due to it being a less oxidised substrate. Swiss chard plants (Beta vulgaris) fertilised with anaerobically digested (AD) algae or sludge had a significantly higher mean biweekly yield (5.08±0.73 kg/m2) when compared to the inorganic-fertiliser control (3.45±0.89 kg/m2; p<0.0001). No difference was observed in the soil’s physical fertility when algae or sludge were applied to the soil (p>0.05). The HRAP produced more biomass (317.18±27.76 g/m3) than the AS (83.12±64.91 g/m3), which resulted in a significantly greater downstream production of biogas and fertiliser per volume of effluent treated. According to the LCA, this also resulted in the HRAP system having a higher terrestrial ecotoxicity, due to the greater volume of solids and thus heavy metals applied to the soil. This interpretation can be misleading, because the mass of heavy metals released into the environment is the same for both systems, with a greater portion being applied to the land in the HRAP scenario and discharged into fresh water in the case of AS. Future LCA models should clarify if these biomasses are going to be applied to a single piece of land or multiple sites as this will influence the risk of contamination via pollutant build up in the soil. The application of sludge or algae on soil increased the soil’s sodium concentration and sodium absorption ratio from 774.80±13.66 mg/kg to 952.17±34.89 mg/kg and 2.91±0.04 to 3.53±0.13, respectively. Regulations on the application of algae or sludge on agricultural soils should be altered to consider the limit values for sodium and future LCA’s associated with effluent treatment facilities should incorporate the possibility of soil contamination through sodium build-up. This work also conceptualised the importance of reporting water emissions in wastewater treatment LCA in as much detail as possible, because this had a significant influence on the eutrophication impacts on water systems. Reporting water emissions as total nitrogen underestimated downstream eutrophication impacts compared with those using nitrogen-species concentration (ammonia, nitrite, nitrate etc). A marine eutrophication sensitivity co-efficient should be included in future LCA models which accounts for the probability of nitrogen and phosphorus emissions entering the coastal environment as well as the vulnerability of the marine environment to eutrophication. Activated sludge systems are favourable for situations where space is limited, were there are inadequate options for biomass disposal (biomass not be used in agriculture or AD) and were electricity is generated from a renewable source; whereas, HRAP are more suitable under circumstances where electricity production relies on fossil fuel that carries a high environmental impact and where options are available to use the biomass for economic gain such as biogas and fertiliser production. This thesis contributes towards a zero-waste brewery effluent treated process. The HRAP and AS treated effluent for reuse in the brewery or in agricultural irrigation. The solids were anaerobically digested, and the carbon was recovered as a biogas, while the digestate was applied as an agricultural fertiliser. This allowed for the recovery of water, nutrients and carbon.
- Full Text:
- Date Issued: 2020
- Authors: Taylor, Richard Peter
- Date: 2020
- Subjects: Sewage -- Purification -- Activated sludge process , Sewage disposal plants , Sewage -- Purification -- Biological treatament , Sewage -- Purification -- Nitrogen removal , Brewery waste , Breweries -- Waste disposal , Microalgae -- Biotechnology , Algal biofuels
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/153746 , vital:39507
- Description: Wastewater treatment plants (WWTPs) are designed to clean effluents, but they also consume resources and produce waste. Various treatment technologies allow for the recovery of energy, nutrients and water from effluents turning this waste into products, which increases their sustainability and decreases the impact of WWTPs on the environment. There is a lack of literature which comprehensively compares the treatment performances, environmental impacts and beneficial downstream uses of the biomass generated by high rate algal pond (HRAP) and activated sludge (AS) treatment systems. This thesis aimed to compare (1) effluent treatment performance, (2) emissions and (3) downstream use of algae cultured in HRAP to sludge produced in AS and to obtain data to conduct a life cycle analysis (LCA) to compare the systems. The focus was on adding value to the effluent treatment process, while identifying the associated environmental impacts and contributing to the first ever zero-waste brewery effluent treatment system. Furthermore, these data were used to provide a basis to critically review and contribute to improving the methods used in the LCA of effluent treatment systems; particularly since this was the first wastewater treatment LCA that compared AS and HRAP using data collected from the same temporal and geographic location and from a single effluent stream. The electrical consumption water emission and land application of waste biomass caused the major environmental impacts of both treatment systems. The HRAP had less than 50 % of the electrical energy consumption (0.11±0.01 kW/m3 of effluent treated) compared to the AS system (0.29±0.11 kW/m3) which resulted in the technology having a lower climate change, photochemical oxidant formation, freshwater and marine ecotoxicity and fossil fuel depletion impact. It is imperative to understand the method of electrical energy (fossil fuel vs renewable) generation when conducting a LCA and deciding which technologies to use, since they have a major influence on the aforementioned impacts. The biogas yield of algal and sludge substrates was similar with an average gas production of 241 ml/g volatile solids fed. Biogas from algae fed digesters had a significantly higher methane content (64.73±0.81 %) and lower carbon dioxide content (22.94±0.24 %) when compared to WAS fed digesters (60.08±0.18 % and 27.37±0.43 %) respectively due to it being a less oxidised substrate. Swiss chard plants (Beta vulgaris) fertilised with anaerobically digested (AD) algae or sludge had a significantly higher mean biweekly yield (5.08±0.73 kg/m2) when compared to the inorganic-fertiliser control (3.45±0.89 kg/m2; p<0.0001). No difference was observed in the soil’s physical fertility when algae or sludge were applied to the soil (p>0.05). The HRAP produced more biomass (317.18±27.76 g/m3) than the AS (83.12±64.91 g/m3), which resulted in a significantly greater downstream production of biogas and fertiliser per volume of effluent treated. According to the LCA, this also resulted in the HRAP system having a higher terrestrial ecotoxicity, due to the greater volume of solids and thus heavy metals applied to the soil. This interpretation can be misleading, because the mass of heavy metals released into the environment is the same for both systems, with a greater portion being applied to the land in the HRAP scenario and discharged into fresh water in the case of AS. Future LCA models should clarify if these biomasses are going to be applied to a single piece of land or multiple sites as this will influence the risk of contamination via pollutant build up in the soil. The application of sludge or algae on soil increased the soil’s sodium concentration and sodium absorption ratio from 774.80±13.66 mg/kg to 952.17±34.89 mg/kg and 2.91±0.04 to 3.53±0.13, respectively. Regulations on the application of algae or sludge on agricultural soils should be altered to consider the limit values for sodium and future LCA’s associated with effluent treatment facilities should incorporate the possibility of soil contamination through sodium build-up. This work also conceptualised the importance of reporting water emissions in wastewater treatment LCA in as much detail as possible, because this had a significant influence on the eutrophication impacts on water systems. Reporting water emissions as total nitrogen underestimated downstream eutrophication impacts compared with those using nitrogen-species concentration (ammonia, nitrite, nitrate etc). A marine eutrophication sensitivity co-efficient should be included in future LCA models which accounts for the probability of nitrogen and phosphorus emissions entering the coastal environment as well as the vulnerability of the marine environment to eutrophication. Activated sludge systems are favourable for situations where space is limited, were there are inadequate options for biomass disposal (biomass not be used in agriculture or AD) and were electricity is generated from a renewable source; whereas, HRAP are more suitable under circumstances where electricity production relies on fossil fuel that carries a high environmental impact and where options are available to use the biomass for economic gain such as biogas and fertiliser production. This thesis contributes towards a zero-waste brewery effluent treated process. The HRAP and AS treated effluent for reuse in the brewery or in agricultural irrigation. The solids were anaerobically digested, and the carbon was recovered as a biogas, while the digestate was applied as an agricultural fertiliser. This allowed for the recovery of water, nutrients and carbon.
- Full Text:
- Date Issued: 2020
A holistic investigation of amateur batters performance responses to a century protocol: a focused cognitive perspective
- Authors: Goble, David
- Date: 2017
- Subjects: Cricket -- Batting -- Physiological aspects , Cricket players -- Physiology , Cricket players -- Health and hygiene , Cognition -- Testing , Neurophysiology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/40725 , vital:25020
- Description: No cognitive study has implemented an exercise modality that requires both physical effort and cognitive control, therefore, the effects of such exercise are unknown. Additionally, no studies have investigated how prolonged batting impacts cognitive functioning nor how physical responses and cognitive functioning are related while batting. At intensities of 6070 percent heart rate maximum, acute and prolonged bouts of physical activity have been shown to improve cognitive functioning. At higher intensities, the beneficial effects are minimal and in some cases performance is impaired. Therefore, the aim of this investigation was to determine how prolonged intermittent batting (a task that requires high muscular and cardiovascular loads but also continuous cognitive control) affects cognitive, physiological, physical and biophysical responses in amateur batters. Further aims included to test the reliability of the method employed in assessing these responses. To answer this question, the investigation was separated into three studies: phase 1 (a large-scale pilot) and phase 2 and 3 (a repeated measures test-retest hypothesis). In each phase, batters completed the 30 over BATEX simulation, which replicated the demands of scoring a one-day international century. To establish physiological, physical and perceptual strain; heart rate, sprint times and perceived exertion data were collected each over. Changes in body mass over time were compared to determine the effects of fluid loss on cognitive performance. Before, during and after the simulation, psychomotor function, visual attention, working memory, visual learning and memory as well as executive functions were assessed (CogState brief test battery). During cognitive assessments, heart rate and heart rate variability parameters were sampled so that autonomic modulation of the heart could be determined. The methodological differences between phase 1 and phase 2 and 3, were (respectively); the frequency of cognitive assessments (five vs. three), the samples used (15 schoolboy vs. 16 academy batters), hydration protocols (250ml of Energade vs. water ad libitum) and a singular change in a physical dependent variable (batting accuracy vs. vertical jump). In schoolboy and academy batters, the prolonged batting simulation placed significant strain on the cardiovascular and muscular subsystems; increasing heart rate (p<0.01), decreasing body mass (p<0.01) and deteriorating sprint performance (p<0.01) over time. In each sample, batters’ perceived exertion increased significantly (p<0.01) and exertion was highest in the final over of the protocol. Interestingly, the changes in cardiovascular and muscular responses were larger in schoolboy batters. While the cognitive performance decrements over time were not significant in academy batters (p>0.05; d<0.2), the magnitude of impairment in psychomotor function (p>0.05; d = 0.37), visual attention (p>0.05; d = 0.56), working memory (p>0.05; d = 0.61) and executive function (p>0.05; d = 0.58) was larger in schoolboy batters. In both samples, the simulation altered the modulation of heart rate significantly. Heart rate variability decreased linearly with time spent batting (p<0.01; d>0.8). During cognitive assessments, heart rate variability increased with time-on-task, where responses were significantly higher (p<0.05) in the last task of the battery compared to the first. Importantly, the results of the retest phase were the same as in the test phase and only two condition effects were observed; (i) heart rate (retest lower: p<0.04;d = 0.39), (ii) body mass (retest lower: p<0.03;d = 0.09). A task-related condition effect in heart rate variability (PNN30) was also observed (retest higher: p<0.03; d = not calculated). Resultantly, the test-retest reliability of phase 2 and 3 was high. The results indicate that prolonged intermittent batting at an intensity of 64-77 %HRmax impaired cognitive functioning in amateur batters. However, the cardiovascular and muscular strain induced by prolonged intermittent batting and its effects on cognitive functioning are mediated by intrinsic and extrinsic factors (age, training status, playing experience and hydration). Therefore, while prolonged batting has similar effects on cognitive functioning as acute bouts of physical activity, they do not share the same relationship. The author hypothesises that the continuous cognitive component inherent in prolonged batting mitigates the beneficial effects of physical activity, as demonstrated previously. Future research is needed to elucidate this relationship. Additionally, player experience affects the way in which batters regulate performance while batting; which also affects the rate of and magnitude of impairment during batting. Finally, the methodological limitations of this study provide direction for future research into batting.
- Full Text:
- Date Issued: 2017
- Authors: Goble, David
- Date: 2017
- Subjects: Cricket -- Batting -- Physiological aspects , Cricket players -- Physiology , Cricket players -- Health and hygiene , Cognition -- Testing , Neurophysiology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/40725 , vital:25020
- Description: No cognitive study has implemented an exercise modality that requires both physical effort and cognitive control, therefore, the effects of such exercise are unknown. Additionally, no studies have investigated how prolonged batting impacts cognitive functioning nor how physical responses and cognitive functioning are related while batting. At intensities of 6070 percent heart rate maximum, acute and prolonged bouts of physical activity have been shown to improve cognitive functioning. At higher intensities, the beneficial effects are minimal and in some cases performance is impaired. Therefore, the aim of this investigation was to determine how prolonged intermittent batting (a task that requires high muscular and cardiovascular loads but also continuous cognitive control) affects cognitive, physiological, physical and biophysical responses in amateur batters. Further aims included to test the reliability of the method employed in assessing these responses. To answer this question, the investigation was separated into three studies: phase 1 (a large-scale pilot) and phase 2 and 3 (a repeated measures test-retest hypothesis). In each phase, batters completed the 30 over BATEX simulation, which replicated the demands of scoring a one-day international century. To establish physiological, physical and perceptual strain; heart rate, sprint times and perceived exertion data were collected each over. Changes in body mass over time were compared to determine the effects of fluid loss on cognitive performance. Before, during and after the simulation, psychomotor function, visual attention, working memory, visual learning and memory as well as executive functions were assessed (CogState brief test battery). During cognitive assessments, heart rate and heart rate variability parameters were sampled so that autonomic modulation of the heart could be determined. The methodological differences between phase 1 and phase 2 and 3, were (respectively); the frequency of cognitive assessments (five vs. three), the samples used (15 schoolboy vs. 16 academy batters), hydration protocols (250ml of Energade vs. water ad libitum) and a singular change in a physical dependent variable (batting accuracy vs. vertical jump). In schoolboy and academy batters, the prolonged batting simulation placed significant strain on the cardiovascular and muscular subsystems; increasing heart rate (p<0.01), decreasing body mass (p<0.01) and deteriorating sprint performance (p<0.01) over time. In each sample, batters’ perceived exertion increased significantly (p<0.01) and exertion was highest in the final over of the protocol. Interestingly, the changes in cardiovascular and muscular responses were larger in schoolboy batters. While the cognitive performance decrements over time were not significant in academy batters (p>0.05; d<0.2), the magnitude of impairment in psychomotor function (p>0.05; d = 0.37), visual attention (p>0.05; d = 0.56), working memory (p>0.05; d = 0.61) and executive function (p>0.05; d = 0.58) was larger in schoolboy batters. In both samples, the simulation altered the modulation of heart rate significantly. Heart rate variability decreased linearly with time spent batting (p<0.01; d>0.8). During cognitive assessments, heart rate variability increased with time-on-task, where responses were significantly higher (p<0.05) in the last task of the battery compared to the first. Importantly, the results of the retest phase were the same as in the test phase and only two condition effects were observed; (i) heart rate (retest lower: p<0.04;d = 0.39), (ii) body mass (retest lower: p<0.03;d = 0.09). A task-related condition effect in heart rate variability (PNN30) was also observed (retest higher: p<0.03; d = not calculated). Resultantly, the test-retest reliability of phase 2 and 3 was high. The results indicate that prolonged intermittent batting at an intensity of 64-77 %HRmax impaired cognitive functioning in amateur batters. However, the cardiovascular and muscular strain induced by prolonged intermittent batting and its effects on cognitive functioning are mediated by intrinsic and extrinsic factors (age, training status, playing experience and hydration). Therefore, while prolonged batting has similar effects on cognitive functioning as acute bouts of physical activity, they do not share the same relationship. The author hypothesises that the continuous cognitive component inherent in prolonged batting mitigates the beneficial effects of physical activity, as demonstrated previously. Future research is needed to elucidate this relationship. Additionally, player experience affects the way in which batters regulate performance while batting; which also affects the rate of and magnitude of impairment during batting. Finally, the methodological limitations of this study provide direction for future research into batting.
- Full Text:
- Date Issued: 2017
COSATU Education Conference
- Congress of South African Trade Unions (COSATU)
- Authors: Congress of South African Trade Unions (COSATU)
- Date: 1996-11
- Subjects: Uncatalogued
- Language: English
- Type: text
- Identifier: http://hdl.handle.net/10962/106307 , vital:32630
- Description: Women leadership development should be a priority in all our training efforts, with an emphasis on training. Affiliates should agree to a quota system for participants on courses. Women development should be defined clearly and should target shop floor specifically for building of leadership at all levels. The programme should target not only a few women and should have specific focus
- Full Text:
- Date Issued: 1996-11
- Authors: Congress of South African Trade Unions (COSATU)
- Date: 1996-11
- Subjects: Uncatalogued
- Language: English
- Type: text
- Identifier: http://hdl.handle.net/10962/106307 , vital:32630
- Description: Women leadership development should be a priority in all our training efforts, with an emphasis on training. Affiliates should agree to a quota system for participants on courses. Women development should be defined clearly and should target shop floor specifically for building of leadership at all levels. The programme should target not only a few women and should have specific focus
- Full Text:
- Date Issued: 1996-11
The utilization of tilting-filter photometry in airglow and auroral research
- Authors: Dore, Ian Stuart
- Date: 1992
- Subjects: Photometry -- Research , Airglow -- Research , Auroras -- Research , Auroral photography -- Research
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5494 , http://hdl.handle.net/10962/d1005280 , Photometry -- Research , Airglow -- Research , Auroras -- Research , Auroral photography -- Research
- Description: This thesis describes the application of tilting-filter photometry to the study of the airglow and aurora. Previous South African photometric research is reviewed. Optical instrumentation and techniques used in airglow and auroral research are reviewed. The transmission characteristics of narrowband interference filters are discussed. The analogue meridian-scanning tilting-filter photometry system used at Sanae, Antarctica is described. Shortcomings of this system have been identified, and modifications have been made to improve its spatial and temporal resolution. Details are given of the computer-controlled digital photometry system which replaced the analogue system. Equations are derived for the conversion of raw photometric data (analogue chart deflections or digital photon counts) to absolute emission intensities. The accuracy of the intensities obtained depends on the absolute calibration of the photometer, the transmission characteristics of the filter used to isolate the spectral feature of interest, and the effects of atmospheric extinction and scattering. The influence of these factors on observed emission intensities is discussed. Various models used to determine atmospheric correction factors are reviewed. It is shown that atmospheric correction factors can have a significant effect on both emission intensities and intensity ratios. The procedure used to determine the transmission characteristics of interference filters is described, as is the procedure used to cross-calibrate secondary light sources. The transmission characteristics of the filters and the brightnesses of the light sources were both found to have changed appreciably with age. The observation of a magnetospheric substorm at Sanae (L ≃ 4) is used to illustrate the use of a meridian-scanning tilting-filter photometer system in auroral research. The ratio I(557.7)/ I(391.4) observed at Sanae was found to be lower than expected, as were the OJ airglow emission intensities. A prototype digital photometer system was used aboard a ship, to observe the airglow in the region of the South Atlantic Anomaly. Significant N₂⁺ lNG emissions at 391.4 nm were measured, confirming the presence of discernable particle precipitation in the region. The 0I557.7 and 630.0 nm intensities measured from the ship were found to be lower than expected. This, combined with low airglow and auroral intensities measured at Sanae, is a cause for concern. It is recommended that further checks be made regarding the brightness of the calibration sources.
- Full Text:
- Date Issued: 1992
- Authors: Dore, Ian Stuart
- Date: 1992
- Subjects: Photometry -- Research , Airglow -- Research , Auroras -- Research , Auroral photography -- Research
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5494 , http://hdl.handle.net/10962/d1005280 , Photometry -- Research , Airglow -- Research , Auroras -- Research , Auroral photography -- Research
- Description: This thesis describes the application of tilting-filter photometry to the study of the airglow and aurora. Previous South African photometric research is reviewed. Optical instrumentation and techniques used in airglow and auroral research are reviewed. The transmission characteristics of narrowband interference filters are discussed. The analogue meridian-scanning tilting-filter photometry system used at Sanae, Antarctica is described. Shortcomings of this system have been identified, and modifications have been made to improve its spatial and temporal resolution. Details are given of the computer-controlled digital photometry system which replaced the analogue system. Equations are derived for the conversion of raw photometric data (analogue chart deflections or digital photon counts) to absolute emission intensities. The accuracy of the intensities obtained depends on the absolute calibration of the photometer, the transmission characteristics of the filter used to isolate the spectral feature of interest, and the effects of atmospheric extinction and scattering. The influence of these factors on observed emission intensities is discussed. Various models used to determine atmospheric correction factors are reviewed. It is shown that atmospheric correction factors can have a significant effect on both emission intensities and intensity ratios. The procedure used to determine the transmission characteristics of interference filters is described, as is the procedure used to cross-calibrate secondary light sources. The transmission characteristics of the filters and the brightnesses of the light sources were both found to have changed appreciably with age. The observation of a magnetospheric substorm at Sanae (L ≃ 4) is used to illustrate the use of a meridian-scanning tilting-filter photometer system in auroral research. The ratio I(557.7)/ I(391.4) observed at Sanae was found to be lower than expected, as were the OJ airglow emission intensities. A prototype digital photometer system was used aboard a ship, to observe the airglow in the region of the South Atlantic Anomaly. Significant N₂⁺ lNG emissions at 391.4 nm were measured, confirming the presence of discernable particle precipitation in the region. The 0I557.7 and 630.0 nm intensities measured from the ship were found to be lower than expected. This, combined with low airglow and auroral intensities measured at Sanae, is a cause for concern. It is recommended that further checks be made regarding the brightness of the calibration sources.
- Full Text:
- Date Issued: 1992
- «
- ‹
- 1
- ›
- »