Characterization and antibiogram fingerprints of Enterobacteriaceae and Listeria monocytogenes in irrigation water and agricultural soil samples collected from Amathole and Chris Hani District Municipalities in the Eastern Cape Province, South Africa
- Authors: Iwu, Chidozie Declan
- Date: 2019
- Subjects: Listeria monocytogenes Enterobacteriaceae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10353/17187 , vital:40864
- Description: Characterization and antibiogram fingerprints of Enterobacteriaceae and Listeria monocytogenes in irrigation water and agricultural soil samples collected from Amathole and Chris Hani District Municipalities in the Eastern Cape Province, South Africa
- Full Text:
- Date Issued: 2019
- Authors: Iwu, Chidozie Declan
- Date: 2019
- Subjects: Listeria monocytogenes Enterobacteriaceae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10353/17187 , vital:40864
- Description: Characterization and antibiogram fingerprints of Enterobacteriaceae and Listeria monocytogenes in irrigation water and agricultural soil samples collected from Amathole and Chris Hani District Municipalities in the Eastern Cape Province, South Africa
- Full Text:
- Date Issued: 2019
The impact of intra- and inter- regional integration on trade flows in Africa
- Authors: Taylor, Nina-Mari
- Date: 2017
- Subjects: International trade Trade blocs Regionalism
- Language: English
- Type: Thesis , Doctoral , DCom
- Identifier: http://hdl.handle.net/10353/12408 , vital:39260
- Description: Regional integration is regarded as a formation which would allow African countries to improve their trade performance and economic growth. By subscribing to such a regional integration grouping, successful regional trade integration could assist African countries in achieving economies of scale, expand respective domestic markets, reduce marginalisation as well as the collective utilisation and exploitation of resources. Such achievements could, gradually, raise the competitiveness of African countries in respect of the global market. By collaborating in regional integration agreements, groups of countries are sought to increase their collective bargaining power and co-operation amongst the member countries. Regional integration can, therefore, be regarded as a necessary means by which economic development, growth and trade can be enhanced amongst African countries. The associated advantages and benefits of regional integration could improve the productive capacity of African counties and strengthen both their individual and continental position in the process of globalisation and integration into the world economy. This study endeavours to examine the impact of intra-regional integration and inter-regional integration on trade flows among and between: SADC, COMESA, ECOWAS and the EAC. The relevant theoretical and empirical literature regarding regional integration is considered as well as the challenges faced by regional economic communities in Africa. The study is based on an Augmented Gravity Model and it employs Panel Data Estimation Techniques and Panel Unit Root Tests. The Hausman test results proved the Fixed Effects Model to be the most applicable to the study. The empirical findings revealed that both intra-regional integration and inter-regional integration had a positive bearing on trade flows and between: SADC, COMESA, ECOWAS and the EAC. Hence, regional integration is concluded as having a prominent role in promoting trade flows in Africa and the study recommends that African countries and regional economic communities should pursue deeper economic integration and continental integration.
- Full Text:
- Date Issued: 2017
- Authors: Taylor, Nina-Mari
- Date: 2017
- Subjects: International trade Trade blocs Regionalism
- Language: English
- Type: Thesis , Doctoral , DCom
- Identifier: http://hdl.handle.net/10353/12408 , vital:39260
- Description: Regional integration is regarded as a formation which would allow African countries to improve their trade performance and economic growth. By subscribing to such a regional integration grouping, successful regional trade integration could assist African countries in achieving economies of scale, expand respective domestic markets, reduce marginalisation as well as the collective utilisation and exploitation of resources. Such achievements could, gradually, raise the competitiveness of African countries in respect of the global market. By collaborating in regional integration agreements, groups of countries are sought to increase their collective bargaining power and co-operation amongst the member countries. Regional integration can, therefore, be regarded as a necessary means by which economic development, growth and trade can be enhanced amongst African countries. The associated advantages and benefits of regional integration could improve the productive capacity of African counties and strengthen both their individual and continental position in the process of globalisation and integration into the world economy. This study endeavours to examine the impact of intra-regional integration and inter-regional integration on trade flows among and between: SADC, COMESA, ECOWAS and the EAC. The relevant theoretical and empirical literature regarding regional integration is considered as well as the challenges faced by regional economic communities in Africa. The study is based on an Augmented Gravity Model and it employs Panel Data Estimation Techniques and Panel Unit Root Tests. The Hausman test results proved the Fixed Effects Model to be the most applicable to the study. The empirical findings revealed that both intra-regional integration and inter-regional integration had a positive bearing on trade flows and between: SADC, COMESA, ECOWAS and the EAC. Hence, regional integration is concluded as having a prominent role in promoting trade flows in Africa and the study recommends that African countries and regional economic communities should pursue deeper economic integration and continental integration.
- Full Text:
- Date Issued: 2017
Evaluation of the incidence of enteric viruses, Vibrio species and Escherichia coli pathotypes in effluents of two wastewater treatment plants located in Keiskammahoek and Stutterheim in the Eastern Cape Province of South Africa
- Authors: Adefisoye, Martins Ajibade
- Date: 2016
- Subjects: Escherichia coli -- South Africa -- Eastern Cape Water -- Purification -- South Africa -- Eastern Cape Effluent quality -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: http://hdl.handle.net/10353/3165 , vital:28328
- Description: South Africa is currently experiencing water shortage crisis, a challenge that has been attributed not only to the scarcity of freshwater, but also to fast degrading water quality. Factors such as rapid urbanisation, population and economic growth, climate change as well as poor operational and maintenance of many of the exisiting water/wastewater treatment facilities have been acknowledged as important contributors to degrading water quality in the country. Untreated or inadequately treated discharged wastewater effluents constitute point source pollution to many freshwater environments in South Africa. Hence, it becomes imperative to evaluate wastewater discharges in other to protect the scarce freshwater resource, the environment and public health. Over a twelve-month sampling period (September 2012 to August 2013), we assessed the bacteriological, virological and physicochemical qualities of the discharged final effluents of two wastewater treatment facilities in the Eastern Cape Province of South Africa. For the physicochemical assessment, a total of 144 final effluent samples were collected from both the final effluent tanks (FE) and the discharge points (DP) of the treatment facilities. Physicochemical parameters including pH, temperature, turbidity, total dissolved solids (TDS), dissolved oxygen (DO), electrical conductivity (EC) and free chlorine concentration were determined on site while biological oxygen demand (BOD), nitrate (NO3-), nitrite (NO2-), phosphate (PO4-) and chemical oxygen demand (COD) were determined in the laboratory. The bacteriological analysis of the samples was done using standard membrane filtration (MF) technique. Bacterial group assessed included: faecal indicator bacteria (faecal coliforms and E. coli) and Vibrio species, while the antibiotic susceptibility profiles of selected E. coli and Vibrio species isolates against some selected antibiotics commonly used in human therapy and veterinary medicine were determind using the standard agar-disc diffusion method. The occurrence and concentrations of human enteric viruses including: human adenovirus (HAdV), hepatitis A virus (HAV) and rotavirus (RoV) in the samples were determined by TaqMan-based real-time polymerase chain reaction (qPCR) following concentration by adsorption-elution method. The physicochemical characteristics of the samples ranged as follows: pH (6.5 – 7.6), TDS (95 – 171 mg/L), EC (134 – 267 μS/cm), temperature (12 – 27 °C), turbidity (1.5 – 65.7 mg/L), free chlorine (0.08 – 0.72 mg/L), DO (2.06 – 9.81 mg/L), BOD (0.13 – 9.81 mg/L), NO3- (0 – 21.5 mg/L), NO2- (0 – 0.72 mg/L), PO4- (0 – 18.3 mg/L) and COD (27 – 680 mg/L). Some of the characteristic such as pH, TDS, EC, temperature, nitrite and DO (on most instances) complied with recommended guidelines. Other characteristics, however, including turbidity, BOD, nitrate, phosphate and COD fell short of the recommended guidelines. All the 48 samples analysed for bacteriological qualities tested positive for the presence of the bacterial groups with significant (P≤0.05) seasonal variation in their densities. Faecal coliforms were detected in counts ranging from 1 CFU/100ml to 2.7 × 104 CFU/100ml. Presumptive E. coli counts ranged generally between 1 CFU/100ml – 1.4 × 105 CFU/100ml while counts of presumptive Vibrio species ranged between 4 CFU/100ml – 1.4 × 104 CFU/100ml. Molecular identification of the presumptive isolates by polymerase chain reactions PCR gave positive reaction rates of 76.2 percent (381/500) and 69.8 percent (279/400) for E.coli and Vibrio species respectively. The antibiotic susceptibility profiling of 205 PCR-confirmed Vibiro isolates against 18 commomly used antibiotics showed resistance frequencies ranging from 0.5 percent (imipenem) to 96.1 percent (penicillin G) at recommended breakpoint concentrations. Eighty-one percent (166/205) of the Vibrio isolates showed multidrug resistance (resistance to 3 or more antibiotics) with the most common multiple antibiotic resistance phenotype (MARP) being AP-T-TM-SMX-PG-NI-PB, occurring in 8 isolates.
- Full Text:
- Date Issued: 2016
- Authors: Adefisoye, Martins Ajibade
- Date: 2016
- Subjects: Escherichia coli -- South Africa -- Eastern Cape Water -- Purification -- South Africa -- Eastern Cape Effluent quality -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: http://hdl.handle.net/10353/3165 , vital:28328
- Description: South Africa is currently experiencing water shortage crisis, a challenge that has been attributed not only to the scarcity of freshwater, but also to fast degrading water quality. Factors such as rapid urbanisation, population and economic growth, climate change as well as poor operational and maintenance of many of the exisiting water/wastewater treatment facilities have been acknowledged as important contributors to degrading water quality in the country. Untreated or inadequately treated discharged wastewater effluents constitute point source pollution to many freshwater environments in South Africa. Hence, it becomes imperative to evaluate wastewater discharges in other to protect the scarce freshwater resource, the environment and public health. Over a twelve-month sampling period (September 2012 to August 2013), we assessed the bacteriological, virological and physicochemical qualities of the discharged final effluents of two wastewater treatment facilities in the Eastern Cape Province of South Africa. For the physicochemical assessment, a total of 144 final effluent samples were collected from both the final effluent tanks (FE) and the discharge points (DP) of the treatment facilities. Physicochemical parameters including pH, temperature, turbidity, total dissolved solids (TDS), dissolved oxygen (DO), electrical conductivity (EC) and free chlorine concentration were determined on site while biological oxygen demand (BOD), nitrate (NO3-), nitrite (NO2-), phosphate (PO4-) and chemical oxygen demand (COD) were determined in the laboratory. The bacteriological analysis of the samples was done using standard membrane filtration (MF) technique. Bacterial group assessed included: faecal indicator bacteria (faecal coliforms and E. coli) and Vibrio species, while the antibiotic susceptibility profiles of selected E. coli and Vibrio species isolates against some selected antibiotics commonly used in human therapy and veterinary medicine were determind using the standard agar-disc diffusion method. The occurrence and concentrations of human enteric viruses including: human adenovirus (HAdV), hepatitis A virus (HAV) and rotavirus (RoV) in the samples were determined by TaqMan-based real-time polymerase chain reaction (qPCR) following concentration by adsorption-elution method. The physicochemical characteristics of the samples ranged as follows: pH (6.5 – 7.6), TDS (95 – 171 mg/L), EC (134 – 267 μS/cm), temperature (12 – 27 °C), turbidity (1.5 – 65.7 mg/L), free chlorine (0.08 – 0.72 mg/L), DO (2.06 – 9.81 mg/L), BOD (0.13 – 9.81 mg/L), NO3- (0 – 21.5 mg/L), NO2- (0 – 0.72 mg/L), PO4- (0 – 18.3 mg/L) and COD (27 – 680 mg/L). Some of the characteristic such as pH, TDS, EC, temperature, nitrite and DO (on most instances) complied with recommended guidelines. Other characteristics, however, including turbidity, BOD, nitrate, phosphate and COD fell short of the recommended guidelines. All the 48 samples analysed for bacteriological qualities tested positive for the presence of the bacterial groups with significant (P≤0.05) seasonal variation in their densities. Faecal coliforms were detected in counts ranging from 1 CFU/100ml to 2.7 × 104 CFU/100ml. Presumptive E. coli counts ranged generally between 1 CFU/100ml – 1.4 × 105 CFU/100ml while counts of presumptive Vibrio species ranged between 4 CFU/100ml – 1.4 × 104 CFU/100ml. Molecular identification of the presumptive isolates by polymerase chain reactions PCR gave positive reaction rates of 76.2 percent (381/500) and 69.8 percent (279/400) for E.coli and Vibrio species respectively. The antibiotic susceptibility profiling of 205 PCR-confirmed Vibiro isolates against 18 commomly used antibiotics showed resistance frequencies ranging from 0.5 percent (imipenem) to 96.1 percent (penicillin G) at recommended breakpoint concentrations. Eighty-one percent (166/205) of the Vibrio isolates showed multidrug resistance (resistance to 3 or more antibiotics) with the most common multiple antibiotic resistance phenotype (MARP) being AP-T-TM-SMX-PG-NI-PB, occurring in 8 isolates.
- Full Text:
- Date Issued: 2016
Bioaccumulation of metal cations by yeast and yeast cell components
- Authors: Brady, Dean
- Date: 1993
- Subjects: Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4046 , http://hdl.handle.net/10962/d1004107 , Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Description: The aim of the project was to determine whether a by-product of industrial fermentations, Saccharomyces cerevisiae, could be utilized to bioaccumulate heavy metal cations and to partially define the mechanism of accumulation. S. cerevisiae cells were found to be capable of accumulating Cu²⁺in a manner that was proportional to the external Cu²⁺ concentration and inversely proportional to the concentration of biomass. The accumulation process was only minimally affected by temperature variations between 5 and 40°C or high ambient concentrations of sodium chloride. The accumulation process was however considerably affected by variations in pH, bioaccumulation being most efficient at pH 5 - 9 but becoming rapidly less so at either extreme of pH. Selection for copper resistant or tolerant yeast diminished the yeast's capacity for Cu²⁺ accumulation. For this and other reasons the development of heavy metal tolerance in yeasts was deemed to be generally counterproductive to heavy metal bioaccumulation. The yeast biomass was also capable of accumulating other heavy metal cations such as c0²⁺ or Cd²⁺. The yeast biomass could be harvested after bioaccumulation by tangential filtration methods, or alternatively could be packed into hollow fibre microfilter membrane cartridges and used as a fixed-bed bioaccumulator. By immobilizing the yeast in polyacrylamide gel and packing this material into columns, cu²⁺, C0²⁺ or Cd²⁺ could be removed from influent aqueous solutions yielding effluents with no detectable heavy metal, until breakthrough point was reached. This capacity was hypothesized to be a function of numerous "theoretical plates of equilibrium" within the column. The immobilized biomass could be eluted with EDTA and recycled for further bioaccumulation processes with minor loss of bioaccumulation capacity. Yeast cells were fractionated to permit identification of the major cell fractions and molecular components responsible for metal binding. Isolation of the yeast cell walls permitted investigation of their role in heavy metal accumulation. Although the amino groups of chitosan and proteins, the carboxyl groups of proteins, and the phosphate groups of phosphomannans were found to be efficient groups for the accumulation of copper, the less effective hydroxyl groups of the carbohydrate polymers (glucans and mannans) had a similar overall capacity for copper accumulation owing to their predominance in the yeast cell wall. The outer (protein-mannan) layer of the yeast cell wall was found to be a better Cu²⁺ chelator than the inner (chitinglucan) layer. It appeared that the physical condition of the cell wall may be more important than the individual macromolecular components of the cell wall in metal accumulation. It was apparent that the cell wall was the major, if not the sole contributor to heavy metal accumulation at low ambient heavy metal concentrations. At higher ambient metal concentrations the cytosol and vacuole become involved in bioaccumulation. Copper and other metals caused rapid loss of 70% of the intracellular potassium, implying permeation of the plasma membrane. This was followed by a slower "leakage" of magnesium from the vacuole which paralleled Cu²⁺ accumulation, suggesting that it may represent some form of ion-exchange. An intracellular copper chelating agent of approximately 2 kDalton molecular mass was isolated from copper tolerant yeast. This chelator was not a metallothionein and bound relatively low molar equivalents of copper compared to those reported for metallothionein. Treatment of the biomass with hot alkali yielded two biosorbents, one soluble (which could be used as a heavy metal flocculent), and an insoluble biosorbent which could be formed into a granular product to be used in fixed-bed biosorption columns. The granular biosorbent could accumulate a wide range of heavy metal cations in a semispecific manner and could be stored in a dehydrated form indefinitely, and rehydrated when required. Bioaccumulation by live algae was investigated as an alternative to yeast based processes. Various strains of algae, of which Scenedesmus and Selenastrum were the most effective, were found to be capable of accumulating heavy metals such as Cu²⁺, Pb²⁺ and Cr³⁺.
- Full Text:
- Date Issued: 1993
- Authors: Brady, Dean
- Date: 1993
- Subjects: Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4046 , http://hdl.handle.net/10962/d1004107 , Yeast , Yeast fungi -- Biotechnology , Cations , Metal ions
- Description: The aim of the project was to determine whether a by-product of industrial fermentations, Saccharomyces cerevisiae, could be utilized to bioaccumulate heavy metal cations and to partially define the mechanism of accumulation. S. cerevisiae cells were found to be capable of accumulating Cu²⁺in a manner that was proportional to the external Cu²⁺ concentration and inversely proportional to the concentration of biomass. The accumulation process was only minimally affected by temperature variations between 5 and 40°C or high ambient concentrations of sodium chloride. The accumulation process was however considerably affected by variations in pH, bioaccumulation being most efficient at pH 5 - 9 but becoming rapidly less so at either extreme of pH. Selection for copper resistant or tolerant yeast diminished the yeast's capacity for Cu²⁺ accumulation. For this and other reasons the development of heavy metal tolerance in yeasts was deemed to be generally counterproductive to heavy metal bioaccumulation. The yeast biomass was also capable of accumulating other heavy metal cations such as c0²⁺ or Cd²⁺. The yeast biomass could be harvested after bioaccumulation by tangential filtration methods, or alternatively could be packed into hollow fibre microfilter membrane cartridges and used as a fixed-bed bioaccumulator. By immobilizing the yeast in polyacrylamide gel and packing this material into columns, cu²⁺, C0²⁺ or Cd²⁺ could be removed from influent aqueous solutions yielding effluents with no detectable heavy metal, until breakthrough point was reached. This capacity was hypothesized to be a function of numerous "theoretical plates of equilibrium" within the column. The immobilized biomass could be eluted with EDTA and recycled for further bioaccumulation processes with minor loss of bioaccumulation capacity. Yeast cells were fractionated to permit identification of the major cell fractions and molecular components responsible for metal binding. Isolation of the yeast cell walls permitted investigation of their role in heavy metal accumulation. Although the amino groups of chitosan and proteins, the carboxyl groups of proteins, and the phosphate groups of phosphomannans were found to be efficient groups for the accumulation of copper, the less effective hydroxyl groups of the carbohydrate polymers (glucans and mannans) had a similar overall capacity for copper accumulation owing to their predominance in the yeast cell wall. The outer (protein-mannan) layer of the yeast cell wall was found to be a better Cu²⁺ chelator than the inner (chitinglucan) layer. It appeared that the physical condition of the cell wall may be more important than the individual macromolecular components of the cell wall in metal accumulation. It was apparent that the cell wall was the major, if not the sole contributor to heavy metal accumulation at low ambient heavy metal concentrations. At higher ambient metal concentrations the cytosol and vacuole become involved in bioaccumulation. Copper and other metals caused rapid loss of 70% of the intracellular potassium, implying permeation of the plasma membrane. This was followed by a slower "leakage" of magnesium from the vacuole which paralleled Cu²⁺ accumulation, suggesting that it may represent some form of ion-exchange. An intracellular copper chelating agent of approximately 2 kDalton molecular mass was isolated from copper tolerant yeast. This chelator was not a metallothionein and bound relatively low molar equivalents of copper compared to those reported for metallothionein. Treatment of the biomass with hot alkali yielded two biosorbents, one soluble (which could be used as a heavy metal flocculent), and an insoluble biosorbent which could be formed into a granular product to be used in fixed-bed biosorption columns. The granular biosorbent could accumulate a wide range of heavy metal cations in a semispecific manner and could be stored in a dehydrated form indefinitely, and rehydrated when required. Bioaccumulation by live algae was investigated as an alternative to yeast based processes. Various strains of algae, of which Scenedesmus and Selenastrum were the most effective, were found to be capable of accumulating heavy metals such as Cu²⁺, Pb²⁺ and Cr³⁺.
- Full Text:
- Date Issued: 1993
- «
- ‹
- 1
- ›
- »