Targeting allosteric sites of Escherichia coli heat shock protein 70 for antibiotic development
- Authors: Okeke, Chiamaka Jessica
- Date: 2019
- Subjects: Heat shock proteins , Escherichia coli , Allosteric proteins , Antibiotics , Molecular chaperones , Ligands (Biochemistry) , Molecular dynamics , Principal components analysis , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/115998 , vital:34287
- Description: Hsp70s are members of the heat shock proteins family with a molecular weight of 70-kDa and are the most abundant group in bacterial and eukaryotic systems, hence the most extensively studied ones. These proteins are molecular chaperones that play a significant role in protein homeostasis by facilitating appropriate folding of proteins, preventing proteins from aggregating and misfolding. They are also involved in translocation of proteins into subcellular compartments and protection of cells against stress. Stress caused by environmental or biological factors affects the functionality of the cell. In response to these stressful conditions, up-regulation of Hsp70s ensures that the cells are protected by balancing out unfolded proteins giving them ample time to repair denatured proteins. Hsp70s is connected to numerous illnesses such as autoimmune and neurodegenerative diseases, bacterial infection, cancer, malaria, and obesity. The multi-functional nature of Hsp70s predisposes them as promising therapeutic targets. Hsp70s play vital roles in various cell developments, and survival pathways, therefore targeting this protein will provide a new avenue towards the discovery of active therapeutic agents for the treatment of a wide range of diseases. Allosteric sites of these proteins in its multi-conformational states have not been explored for inhibitory properties hence the aim of this study. This study aims at identifying allosteric sites that inhibit the ATPase and substrate binding activities using computational approaches. Using E. coli as a model organism, molecular docking for high throughput virtual screening was carried out using 623 compounds from the South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/) against identified allosteric sites. Ligands with the highest binding affinity (good binders) interacting with critical allosteric residues that are druggable were identified. Molecular dynamics (MD) simulation was also performed on the identified hits to assess for protein-inhibitor complex stability. Finally, principal component analysis (PCA) was performed to understand the structural dynamics of the ligand-free and ligand-bound structures during MD simulation.
- Full Text:
- Date Issued: 2019
- Authors: Okeke, Chiamaka Jessica
- Date: 2019
- Subjects: Heat shock proteins , Escherichia coli , Allosteric proteins , Antibiotics , Molecular chaperones , Ligands (Biochemistry) , Molecular dynamics , Principal components analysis , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/115998 , vital:34287
- Description: Hsp70s are members of the heat shock proteins family with a molecular weight of 70-kDa and are the most abundant group in bacterial and eukaryotic systems, hence the most extensively studied ones. These proteins are molecular chaperones that play a significant role in protein homeostasis by facilitating appropriate folding of proteins, preventing proteins from aggregating and misfolding. They are also involved in translocation of proteins into subcellular compartments and protection of cells against stress. Stress caused by environmental or biological factors affects the functionality of the cell. In response to these stressful conditions, up-regulation of Hsp70s ensures that the cells are protected by balancing out unfolded proteins giving them ample time to repair denatured proteins. Hsp70s is connected to numerous illnesses such as autoimmune and neurodegenerative diseases, bacterial infection, cancer, malaria, and obesity. The multi-functional nature of Hsp70s predisposes them as promising therapeutic targets. Hsp70s play vital roles in various cell developments, and survival pathways, therefore targeting this protein will provide a new avenue towards the discovery of active therapeutic agents for the treatment of a wide range of diseases. Allosteric sites of these proteins in its multi-conformational states have not been explored for inhibitory properties hence the aim of this study. This study aims at identifying allosteric sites that inhibit the ATPase and substrate binding activities using computational approaches. Using E. coli as a model organism, molecular docking for high throughput virtual screening was carried out using 623 compounds from the South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/) against identified allosteric sites. Ligands with the highest binding affinity (good binders) interacting with critical allosteric residues that are druggable were identified. Molecular dynamics (MD) simulation was also performed on the identified hits to assess for protein-inhibitor complex stability. Finally, principal component analysis (PCA) was performed to understand the structural dynamics of the ligand-free and ligand-bound structures during MD simulation.
- Full Text:
- Date Issued: 2019
The development of high-throughput assays to screen for potential anticancer and antimalarial compounds that target ADP-ribosylation factor 6 and its signalling machineries
- Authors: Khan, Farrah Dilshaad
- Date: 2019
- Subjects: ADP-ribosylation , Proteins -- Metabolism , Nucleoproteins , Malaria -- Chemotherapy , Cancer -- Chemotherapy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92952 , vital:30810
- Description: ADP-ribosylation factors (Arfs) are small GTP-binding proteins that cycle between active GTP-bound forms and inactive GDP-bound forms. GDP/GTP cycling is regulated by large families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). ArfGEFs activate Arfs by mediating the exchange of GDP for GTP, while ArfGAPs terminate Arf function by stimulating the hydrolysis of the terminal phosphate group of GTP. Arf6 is a major regulator of endocytic trafficking and reorganization of the actin cytoskeleton in eukaryotic organisms. Owing to its participation in wide range of fundamentally distinct cellular processes, Arf6 may be a drug target for cancer and malaria amongst other diseases. As with cancer cells, rapid growth and viability of eukaryotic pathogens likely places a heavy burden on their endocytic pathways and a critical reliance on Arf6 activity. A putative malarial homolog of Arf6 (PfArf6) localises to numerous puncta along the periphery of the parasite in the mature trophozoite life stage of the parasite (T. Swart, MSc dissertation). Owing to highly inefficient parasite transfection procedures and a relative shortage of well described and validated parasite organelle markers, the possible functions of PfArf6 were explored using HeLa cells as a surrogate model for parasites by fluorescence microscopy of cells transfected with GFP-tagged PfArf6. Partial co-localisation was observed with the mammalian markers HsArf6 and LC3, which suggested possible roles in Arf6-dependent endocytosis and autophagy, respectively. While these possible roles are currently under investigation in parasites, an overall long-term goal which was initiated in this study was to determine whether PfArf6 is a valid drug target. To chemically validate PfArf6 as a drug target, a potent inhibitor needs to be identified. This requires the development of assays that may be employed for high-throughput screening of compound libraries. To support this goal, a novel plate-based assay was developed using human Arf6. The assay relies on the selective binding of an Arf effector protein domain (GGA3) fused to glutathione-S-transferase (GST), to His-tagged Arf6 immobilised on a nickel-coated plate. The assay format was developed and could robustly distinguish HsArf6-GDP (inactive) from HsArf6-GTP (active). Furthermore, it could be employed to detect the deactivation of Arf6 by ArfGAP1-stimualted GTP hydrolysis, but not Arf6 activation by ARNO-stimulated GDP/GTP exchange (ARNO is an ArfGEF). The ArfGAP1 deactivation assay was chemically validated using a known ArfGAP inhibitor, QS11. An improved assay was developed that employs JIP4 as an Arf6-specific binding partner instead of GGA3. In addition to superior performance, the alternative assay format could potentially be exploited for cancer drug discovery, since Arf6-JIP4 interaction has been implicated in cancer cell invasion and metastasis. Both assays may be employed to explore alternative ArfGEFs and ArfGAPs that act on Arf6 and contribute to the advancement of cancer. In parallel experiments, where development of PfArf6 assays was the focus, several issues arose. Firstly, we could not prepare GDP- and GTP-bound forms of PfArf6 since EDTA-mediated nucleotide exchange appeared to irreversibly destabilise the protein. However, PfArf6 activation (i.e. the preparation of PfArf6-GTP) was possible when mediated by ARNO and assessed by tryptophan fluorescence kinetic assays, suggesting that PfArf6 may be expressed in GDP-bound form in E. coli. As with human Arf6, ARNO-mediated GDP/GTP exchange on PfArf6 was not detectable in the immobilised PfArf6-GGA interaction GST assay format. However, a more sensitive assay was developed which relies on the use of nickel-horseradish peroxidase to detect the binding of His-tagged PfArf6 to JIP4-GST immobilised on glutathione plates and could detect ARNO-mediated PfArf6 activation. Since we could not prepare PfArf6-GTP (that did not rely on the presence of the ArfGEF, ARNO), malarial ArfGAP deactivation studies were conducted using PfArf1 instead of PfArf6 in the GGA-GST interaction assay. Both PfArfGAP1and PfArfGAP2 stimulated GTP hydrolysis by PfArf1, but only the former was inhibited by the standard human ArfGAP inhibitor, QS11. The development of these simple, cost-effective assays can be used in the high-throughput screening of novel anticancer and antimalarial compounds that target Arf signalling machineries. In theory, the assay could be extended as a tool to identify novel inhibitors of the multitude of Arfs, ArfGEFs and ArfGAPs originating from any organism and hence has broad clinical significance.
- Full Text:
- Date Issued: 2019
- Authors: Khan, Farrah Dilshaad
- Date: 2019
- Subjects: ADP-ribosylation , Proteins -- Metabolism , Nucleoproteins , Malaria -- Chemotherapy , Cancer -- Chemotherapy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92952 , vital:30810
- Description: ADP-ribosylation factors (Arfs) are small GTP-binding proteins that cycle between active GTP-bound forms and inactive GDP-bound forms. GDP/GTP cycling is regulated by large families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). ArfGEFs activate Arfs by mediating the exchange of GDP for GTP, while ArfGAPs terminate Arf function by stimulating the hydrolysis of the terminal phosphate group of GTP. Arf6 is a major regulator of endocytic trafficking and reorganization of the actin cytoskeleton in eukaryotic organisms. Owing to its participation in wide range of fundamentally distinct cellular processes, Arf6 may be a drug target for cancer and malaria amongst other diseases. As with cancer cells, rapid growth and viability of eukaryotic pathogens likely places a heavy burden on their endocytic pathways and a critical reliance on Arf6 activity. A putative malarial homolog of Arf6 (PfArf6) localises to numerous puncta along the periphery of the parasite in the mature trophozoite life stage of the parasite (T. Swart, MSc dissertation). Owing to highly inefficient parasite transfection procedures and a relative shortage of well described and validated parasite organelle markers, the possible functions of PfArf6 were explored using HeLa cells as a surrogate model for parasites by fluorescence microscopy of cells transfected with GFP-tagged PfArf6. Partial co-localisation was observed with the mammalian markers HsArf6 and LC3, which suggested possible roles in Arf6-dependent endocytosis and autophagy, respectively. While these possible roles are currently under investigation in parasites, an overall long-term goal which was initiated in this study was to determine whether PfArf6 is a valid drug target. To chemically validate PfArf6 as a drug target, a potent inhibitor needs to be identified. This requires the development of assays that may be employed for high-throughput screening of compound libraries. To support this goal, a novel plate-based assay was developed using human Arf6. The assay relies on the selective binding of an Arf effector protein domain (GGA3) fused to glutathione-S-transferase (GST), to His-tagged Arf6 immobilised on a nickel-coated plate. The assay format was developed and could robustly distinguish HsArf6-GDP (inactive) from HsArf6-GTP (active). Furthermore, it could be employed to detect the deactivation of Arf6 by ArfGAP1-stimualted GTP hydrolysis, but not Arf6 activation by ARNO-stimulated GDP/GTP exchange (ARNO is an ArfGEF). The ArfGAP1 deactivation assay was chemically validated using a known ArfGAP inhibitor, QS11. An improved assay was developed that employs JIP4 as an Arf6-specific binding partner instead of GGA3. In addition to superior performance, the alternative assay format could potentially be exploited for cancer drug discovery, since Arf6-JIP4 interaction has been implicated in cancer cell invasion and metastasis. Both assays may be employed to explore alternative ArfGEFs and ArfGAPs that act on Arf6 and contribute to the advancement of cancer. In parallel experiments, where development of PfArf6 assays was the focus, several issues arose. Firstly, we could not prepare GDP- and GTP-bound forms of PfArf6 since EDTA-mediated nucleotide exchange appeared to irreversibly destabilise the protein. However, PfArf6 activation (i.e. the preparation of PfArf6-GTP) was possible when mediated by ARNO and assessed by tryptophan fluorescence kinetic assays, suggesting that PfArf6 may be expressed in GDP-bound form in E. coli. As with human Arf6, ARNO-mediated GDP/GTP exchange on PfArf6 was not detectable in the immobilised PfArf6-GGA interaction GST assay format. However, a more sensitive assay was developed which relies on the use of nickel-horseradish peroxidase to detect the binding of His-tagged PfArf6 to JIP4-GST immobilised on glutathione plates and could detect ARNO-mediated PfArf6 activation. Since we could not prepare PfArf6-GTP (that did not rely on the presence of the ArfGEF, ARNO), malarial ArfGAP deactivation studies were conducted using PfArf1 instead of PfArf6 in the GGA-GST interaction assay. Both PfArfGAP1and PfArfGAP2 stimulated GTP hydrolysis by PfArf1, but only the former was inhibited by the standard human ArfGAP inhibitor, QS11. The development of these simple, cost-effective assays can be used in the high-throughput screening of novel anticancer and antimalarial compounds that target Arf signalling machineries. In theory, the assay could be extended as a tool to identify novel inhibitors of the multitude of Arfs, ArfGEFs and ArfGAPs originating from any organism and hence has broad clinical significance.
- Full Text:
- Date Issued: 2019
Towards a biological profile for South African perinatal remains: osteological and genetic perspectives
- Authors: Thornton, Roxanne
- Date: 2019
- Subjects: Identification , Forensic osteology , Methylation , RNA , Autopsy
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/68102 , vital:29198 , DOI 10.21504/10962/68102
- Description: Forensic identification of abandoned and suspected infanticide cases admitted to the South African Forensic Pathology Services is often impossible due to decomposition of the remains. In these cases, investigation of suspected criminal activity is almost never pursued. Ancillary tests in the form of anthropological and molecular analyses can assist with the forensic identification of perinatal remains. To provide fundamental information about bone development of perinatal skeleton, osteological and genetic techniques focusing on the pars basilaris, pars lateralis, sternal rib and left femur were used. Samples were obtained from unidentified and unclaimed remains originating from the Johannesburg Forensic Pathology Service (JFPS). To provide a biological age to individuals in the collection, dental aging was used to categorize remains for comparisons with anthropological and molecular data. A molecular protocol was designed to sex individuals using the X-linked G6PD and Y-linked SRY genes. Bone development was studied using osteometric and morphological data of dry bone remains coupled with bone mineral density analysis (Micro-CT). The methylation levels of CpG rich sites within the promoter region of selected bone-associated genes were incorporated to examine silencing of genes during development. Osteological results support the use of the pars basilaris, pars lateralis and femur for age-at-death estimations as well as provide the foundation for dry bone aging criteria for South African individuals. Data compared with established skeletal aging standards indicated developmental differences between populations. Through the use of animal models and the perinatal sternal rib tissue, insights and precautions into the use of post mortem bone derived RNA for forensic applications is communicated. The methylation status of CpG rich sites within the promoter regions support the hypothesis for interdependent machinery involving selected genes during early bone development. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2019
- Full Text:
- Date Issued: 2019
- Authors: Thornton, Roxanne
- Date: 2019
- Subjects: Identification , Forensic osteology , Methylation , RNA , Autopsy
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/68102 , vital:29198 , DOI 10.21504/10962/68102
- Description: Forensic identification of abandoned and suspected infanticide cases admitted to the South African Forensic Pathology Services is often impossible due to decomposition of the remains. In these cases, investigation of suspected criminal activity is almost never pursued. Ancillary tests in the form of anthropological and molecular analyses can assist with the forensic identification of perinatal remains. To provide fundamental information about bone development of perinatal skeleton, osteological and genetic techniques focusing on the pars basilaris, pars lateralis, sternal rib and left femur were used. Samples were obtained from unidentified and unclaimed remains originating from the Johannesburg Forensic Pathology Service (JFPS). To provide a biological age to individuals in the collection, dental aging was used to categorize remains for comparisons with anthropological and molecular data. A molecular protocol was designed to sex individuals using the X-linked G6PD and Y-linked SRY genes. Bone development was studied using osteometric and morphological data of dry bone remains coupled with bone mineral density analysis (Micro-CT). The methylation levels of CpG rich sites within the promoter region of selected bone-associated genes were incorporated to examine silencing of genes during development. Osteological results support the use of the pars basilaris, pars lateralis and femur for age-at-death estimations as well as provide the foundation for dry bone aging criteria for South African individuals. Data compared with established skeletal aging standards indicated developmental differences between populations. Through the use of animal models and the perinatal sternal rib tissue, insights and precautions into the use of post mortem bone derived RNA for forensic applications is communicated. The methylation status of CpG rich sites within the promoter regions support the hypothesis for interdependent machinery involving selected genes during early bone development. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2019
- Full Text:
- Date Issued: 2019
An investigation into the bacterial biosynthetic origins of bioactive natural products isolated from South African latrunculid sponges
- Authors: Waterworth, Samantha Che
- Date: 2018
- Subjects: Marine biodiversity , Metagenomics , Sponges Biotechnology , Spirochetes , Natural products Biotechnology
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/61826 , vital:28065
- Description: Several pyrroloiminoquinone alkaloids exhibiting cytotoxic, anti-tumour activity have been isolated from sponges within the Latrunculiidae family that are endemic to the South African coastline. Other, structurally similar pyrroloiminoquinone compounds have been isolated from geographically distant and phylogenetically distinct marine sponges, as well as terrestrial myxomycetes which suggested that sponge-associated bacteria may be the true biosynthetic origin of pyrroloiminoquinone compounds. Previous studies have shown that there is conservation of spirochete and betaproteobacterial species in the bacterial communities associated with South African Latrunculiidae sponges and it was proposed that these conserved bacteria represented candidate pyrroloiminoquinone-producers. This study aimed to confirm the conserved dominance of betaproteobacteria and spirochetes within bacterial communities associated with South African latrunculid sponges and employed a shotgun metagenomic approach to assess the functional and biosynthetic potential of associated microbiota in Tsitsikamma favus sponges. Clustering of assembled contigs revealed twenty-three putative bacterial genomes, of which, two were identified as representatives of the conserved betaproteobacteria and spirochete species previously identified in Tsitsikamma sponges. It was shown that the spirochete was most likely an obligate symbiont that benefitted the host sponge through possible defence against pathogenic bacteria and/or nutrient acquisition. The putative genome representing the conserved betaproteobacteria was found to be heavily contaminated and further sequencing is required to accurately resolve the genome for functional characterization. Several biosynthetic gene clusters were identified and demonstrated the bioactive potential of Tsitsikamma favus-associated bacteria. A biosynthetic gene cluster was identified on an unclustered contig that included several genetic features that were indicative of possible pyrroloiminoquinone production.
- Full Text:
- Date Issued: 2018
- Authors: Waterworth, Samantha Che
- Date: 2018
- Subjects: Marine biodiversity , Metagenomics , Sponges Biotechnology , Spirochetes , Natural products Biotechnology
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/61826 , vital:28065
- Description: Several pyrroloiminoquinone alkaloids exhibiting cytotoxic, anti-tumour activity have been isolated from sponges within the Latrunculiidae family that are endemic to the South African coastline. Other, structurally similar pyrroloiminoquinone compounds have been isolated from geographically distant and phylogenetically distinct marine sponges, as well as terrestrial myxomycetes which suggested that sponge-associated bacteria may be the true biosynthetic origin of pyrroloiminoquinone compounds. Previous studies have shown that there is conservation of spirochete and betaproteobacterial species in the bacterial communities associated with South African Latrunculiidae sponges and it was proposed that these conserved bacteria represented candidate pyrroloiminoquinone-producers. This study aimed to confirm the conserved dominance of betaproteobacteria and spirochetes within bacterial communities associated with South African latrunculid sponges and employed a shotgun metagenomic approach to assess the functional and biosynthetic potential of associated microbiota in Tsitsikamma favus sponges. Clustering of assembled contigs revealed twenty-three putative bacterial genomes, of which, two were identified as representatives of the conserved betaproteobacteria and spirochete species previously identified in Tsitsikamma sponges. It was shown that the spirochete was most likely an obligate symbiont that benefitted the host sponge through possible defence against pathogenic bacteria and/or nutrient acquisition. The putative genome representing the conserved betaproteobacteria was found to be heavily contaminated and further sequencing is required to accurately resolve the genome for functional characterization. Several biosynthetic gene clusters were identified and demonstrated the bioactive potential of Tsitsikamma favus-associated bacteria. A biosynthetic gene cluster was identified on an unclustered contig that included several genetic features that were indicative of possible pyrroloiminoquinone production.
- Full Text:
- Date Issued: 2018
An investigation into the bacterial communities associated with pyrroloiminoquinone-producing South African latrunculid sponges
- Authors: Hilliar, Storm Hannah
- Date: 2018
- Subjects: Sponges South Africa Algoa Bay , Betaproteobacteria , Spirochaeta , Symbiosis , Bacterial communities
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62112 , vital:28128
- Description: Marine sponges belonging to the family Latrunculiidae are known for their production of cytotoxic pyrroloiminoquinone alkaloids and the South African coast provides a unique environment for the exploitation of these potent bioactive compounds. The isolation of structurally similar pyrroloiminoquinone compounds from unrelated, non poriferan sources has led to the suggestion that South African latrunculid pyrroloiminoquinones may be secondary metabolites produced by sponge associated microbial symbionts. Previous studies investigating the bacterial communities of South African latrunculid sponges have shown the conservation of distinct microbial populations with unusual bacterial taxa dominated by a novel betaproteobacterial and spirochete species. This study describes the further investigation into these associated bacterial communities, their conservation and sponge microbiome comparisons across spatial, temporal and environmental scales. The bacterial communities associated with seven latrunculid species representing three genera (Tsitsikamma, Cyclacanthia and Latrunculia) were characterized as well as a Mycale and Tethya rubra species. Latrunculid sponge microbiomes were significantly different from those associated with sympatric outlier sponge species and the surrounding environment. The bacterial communities associated with latrunculid sponges appear host specific with the conservation of two dominant bacterial symbionts which mirror the phylogeny of their host species. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Hilliar, Storm Hannah
- Date: 2018
- Subjects: Sponges South Africa Algoa Bay , Betaproteobacteria , Spirochaeta , Symbiosis , Bacterial communities
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62112 , vital:28128
- Description: Marine sponges belonging to the family Latrunculiidae are known for their production of cytotoxic pyrroloiminoquinone alkaloids and the South African coast provides a unique environment for the exploitation of these potent bioactive compounds. The isolation of structurally similar pyrroloiminoquinone compounds from unrelated, non poriferan sources has led to the suggestion that South African latrunculid pyrroloiminoquinones may be secondary metabolites produced by sponge associated microbial symbionts. Previous studies investigating the bacterial communities of South African latrunculid sponges have shown the conservation of distinct microbial populations with unusual bacterial taxa dominated by a novel betaproteobacterial and spirochete species. This study describes the further investigation into these associated bacterial communities, their conservation and sponge microbiome comparisons across spatial, temporal and environmental scales. The bacterial communities associated with seven latrunculid species representing three genera (Tsitsikamma, Cyclacanthia and Latrunculia) were characterized as well as a Mycale and Tethya rubra species. Latrunculid sponge microbiomes were significantly different from those associated with sympatric outlier sponge species and the surrounding environment. The bacterial communities associated with latrunculid sponges appear host specific with the conservation of two dominant bacterial symbionts which mirror the phylogeny of their host species. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
Analysis of the human HSP70-HSP90 organising protein (HOP) gene - characterisation of the promoter and identification of a novel isoform
- Authors: Mattison, Stacey
- Date: 2018
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62821 , vital:28296
- Description: Expected release date-April 2020
- Full Text:
- Date Issued: 2018
- Authors: Mattison, Stacey
- Date: 2018
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62821 , vital:28296
- Description: Expected release date-April 2020
- Full Text:
- Date Issued: 2018
Baculovirus synergism: investigating mixed alphabaculovirus and betabaculovirus infections in the false codling moth, thaumatotibia leucotreta, for improved pest control
- Authors: Jukes, Michael David
- Date: 2018
- Subjects: Baculoviruses , Cryptophlebia leucotreta -- Biological control , Citrus -- Diseases and pests -- South Africa , Pests -- Integrated control , Nucleopolyhedroviruses , Natural pesticides , Cryptophlebia leucotreta granulovirus (CrleGV)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/61797 , vital:28061
- Description: Baculovirus based biopesticides are an effective and environmentally friendly approach for the control of agriculturally important insect pests. The false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), is indigenous to southern Africa and is a major pest of citrus crops. This moth poses a serious risk to export of fruit to foreign markets and the control of this pest is therefore imperative. The Cryptophlebia leucotreta granulovirus (CrleGV) has been commercially formulated into the products Cryptogran™ and Cryptex®. These products have been used successfully for over a decade as part of a rigorous integrated pest management (IPM) programme to control T. leucotreta in South Africa. There is however, a continuous need to improve this programme while also addressing new challenges as they arise. An example of a rising concern is the possibility of resistance developing towards CrleGV. This was seen in Europe with field populations of the codling moth, Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae), which developed resistance to the Mexican isolate of the Cydia pomonella granulovirus (CpGV-M). To prevent such a scenario occurring in South Africa, there is a need to improve existing methods of control. For example, additional baculovirus variants can be isolated and characterised for determining virulence, which can then be developed as new biopesticides. Additionally, the potential for synergistic effects between different baculoviruses infecting the same host can be explored for improved virulence. A novel nucleopolyhedrovirus was recently identified in T. leucotreta larval homogenates which were also infected with CrleGV. This provided unique opportunities for continued research and development. In this study, a method using C. pomonella larvae, which can be infected by the NPV but not by CrleGV, was developed to separate the NPV from GV-NPV mixtures in an in vivo system. Examination of NPV OBs by transmission electron microscopy showed purified occlusion bodies with a single nucleopolyhedrovirus morphology (SNPV). Genetic characterisation identified the novel NPV as Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV), which was recently isolated from the litchi moth, Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae). To begin examining the potential for synergism between the two viruses, a multiplex PCR assay was developed to accurately detect CrleGV and/or CrpeNPV in mixed infections. This assay was applied to various samples to screen for the presence of CrpeNPV and CrleGV. Additionally, a validation experiment was performed using different combinations of CrpeNPV and/or CrleGV to evaluate the effectiveness of the mPCR assay. The results obtained indicated a high degree of specificity with the correct amplicons generated for each test sample. The biological activity of CrpeNPV and CrleGV were evaluated using surface dose bioassays, both individually and in various combinations, against T. leucotreta neonate larvae in a laboratory setting. A synergistic effect was recorded in the combination treatments, showing improved virulence when compared against each virus in isolation. The LC90 for CrpeNPV and CrleGV when applied alone against T. leucotreta was calculated to be 2.75*106 and 3.00*106 OBs.ml"1 respectively. These values decreased to 1.07*106 and 7.18*105 OBs.ml"1 when combinations of CrleGV and CrpeNPV were applied at ratios of 3:1 and 1:3 respectively. These results indicate a potential for developing improved biopesticides for the control of T. leucotreta in the field. To better understand the interactions between CrleGV and CrpeNPV, experiments involving the serial passage of these viruses through T. leucotreta larvae were performed. This was done using each virus in isolation as well as both viruses in different combinations. Genomic DNA was extracted from recovered occlusion bodies after each passage and examined by multiplex and quantitative PCR. This analysis enabled the detection of each virus present throughout this assay, as well as recording shifts in the ratio of CrleGV and CrpeNPV at each passage. CrleGV rapidly became the dominant virus in all treatments, indicating a potentially antagonistic interaction during serial passage. Additionally, CrpeNPV and CrleGV were detected in treatments which were not originally inoculated with one or either virus, indicating potential covert infections in T. leucotreta. Occlusion bodies recovered from the final passage were used to inoculate C. pomonella larvae to isolate CrpeNPV from CrleGV. Genomic DNA was extracted from these CrpeNPV OBs and examined by restriction endonuclease assays and next generation sequencing. This enabled the identification of potential recombination events which may have occurred during the dual GV and NPV infections throughout the passage assay. No recombination events were identified in the CrpeNPV genome sequences assembled from virus collected at the end of the passage assay. Lastly, the efficacy of CrpeNPV and CrleGV, both alone and in various combinations, was evaluated in the field. In two separate trials conducted on citrus, unfavorable field conditions resulted in no significant reduction in fruit infestation for both the virus and chemical treatments. While not statistically significant, virus treatments were recorded to have the lowest levels of fruit infestation with a measured reduction of up to 64 %. This study is the first to report a synergistic effect between CrleGV and CrpeNPV in T. leucotreta. The discovery of beneficial interactions creates an opportunity for the development of novel biopesticides for improved control of this pest in South Africa.
- Full Text:
- Date Issued: 2018
- Authors: Jukes, Michael David
- Date: 2018
- Subjects: Baculoviruses , Cryptophlebia leucotreta -- Biological control , Citrus -- Diseases and pests -- South Africa , Pests -- Integrated control , Nucleopolyhedroviruses , Natural pesticides , Cryptophlebia leucotreta granulovirus (CrleGV)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/61797 , vital:28061
- Description: Baculovirus based biopesticides are an effective and environmentally friendly approach for the control of agriculturally important insect pests. The false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), is indigenous to southern Africa and is a major pest of citrus crops. This moth poses a serious risk to export of fruit to foreign markets and the control of this pest is therefore imperative. The Cryptophlebia leucotreta granulovirus (CrleGV) has been commercially formulated into the products Cryptogran™ and Cryptex®. These products have been used successfully for over a decade as part of a rigorous integrated pest management (IPM) programme to control T. leucotreta in South Africa. There is however, a continuous need to improve this programme while also addressing new challenges as they arise. An example of a rising concern is the possibility of resistance developing towards CrleGV. This was seen in Europe with field populations of the codling moth, Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae), which developed resistance to the Mexican isolate of the Cydia pomonella granulovirus (CpGV-M). To prevent such a scenario occurring in South Africa, there is a need to improve existing methods of control. For example, additional baculovirus variants can be isolated and characterised for determining virulence, which can then be developed as new biopesticides. Additionally, the potential for synergistic effects between different baculoviruses infecting the same host can be explored for improved virulence. A novel nucleopolyhedrovirus was recently identified in T. leucotreta larval homogenates which were also infected with CrleGV. This provided unique opportunities for continued research and development. In this study, a method using C. pomonella larvae, which can be infected by the NPV but not by CrleGV, was developed to separate the NPV from GV-NPV mixtures in an in vivo system. Examination of NPV OBs by transmission electron microscopy showed purified occlusion bodies with a single nucleopolyhedrovirus morphology (SNPV). Genetic characterisation identified the novel NPV as Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV), which was recently isolated from the litchi moth, Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae). To begin examining the potential for synergism between the two viruses, a multiplex PCR assay was developed to accurately detect CrleGV and/or CrpeNPV in mixed infections. This assay was applied to various samples to screen for the presence of CrpeNPV and CrleGV. Additionally, a validation experiment was performed using different combinations of CrpeNPV and/or CrleGV to evaluate the effectiveness of the mPCR assay. The results obtained indicated a high degree of specificity with the correct amplicons generated for each test sample. The biological activity of CrpeNPV and CrleGV were evaluated using surface dose bioassays, both individually and in various combinations, against T. leucotreta neonate larvae in a laboratory setting. A synergistic effect was recorded in the combination treatments, showing improved virulence when compared against each virus in isolation. The LC90 for CrpeNPV and CrleGV when applied alone against T. leucotreta was calculated to be 2.75*106 and 3.00*106 OBs.ml"1 respectively. These values decreased to 1.07*106 and 7.18*105 OBs.ml"1 when combinations of CrleGV and CrpeNPV were applied at ratios of 3:1 and 1:3 respectively. These results indicate a potential for developing improved biopesticides for the control of T. leucotreta in the field. To better understand the interactions between CrleGV and CrpeNPV, experiments involving the serial passage of these viruses through T. leucotreta larvae were performed. This was done using each virus in isolation as well as both viruses in different combinations. Genomic DNA was extracted from recovered occlusion bodies after each passage and examined by multiplex and quantitative PCR. This analysis enabled the detection of each virus present throughout this assay, as well as recording shifts in the ratio of CrleGV and CrpeNPV at each passage. CrleGV rapidly became the dominant virus in all treatments, indicating a potentially antagonistic interaction during serial passage. Additionally, CrpeNPV and CrleGV were detected in treatments which were not originally inoculated with one or either virus, indicating potential covert infections in T. leucotreta. Occlusion bodies recovered from the final passage were used to inoculate C. pomonella larvae to isolate CrpeNPV from CrleGV. Genomic DNA was extracted from these CrpeNPV OBs and examined by restriction endonuclease assays and next generation sequencing. This enabled the identification of potential recombination events which may have occurred during the dual GV and NPV infections throughout the passage assay. No recombination events were identified in the CrpeNPV genome sequences assembled from virus collected at the end of the passage assay. Lastly, the efficacy of CrpeNPV and CrleGV, both alone and in various combinations, was evaluated in the field. In two separate trials conducted on citrus, unfavorable field conditions resulted in no significant reduction in fruit infestation for both the virus and chemical treatments. While not statistically significant, virus treatments were recorded to have the lowest levels of fruit infestation with a measured reduction of up to 64 %. This study is the first to report a synergistic effect between CrleGV and CrpeNPV in T. leucotreta. The discovery of beneficial interactions creates an opportunity for the development of novel biopesticides for improved control of this pest in South Africa.
- Full Text:
- Date Issued: 2018
Bioinformatics tool development with a focus on structural bioinformatics and the analysis of genetic variation in humans
- Authors: Brown, David K
- Date: 2018
- Subjects: Bioinformatics , Human genetics -- Variation , High performance computing , Workflow management systems , Molecular dynamics , Next generation sequencing , Human Mutation Analysis (HUMA)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/60708 , vital:27820
- Description: This thesis is divided into three parts, united under the general theme of bioinformatics tool development and variation analysis. Part 1 describes the design and development of the Job Management System (JMS), a workflow management system for high performance computing (HPC). HPC has become an integral part of bioinformatics. Computational methods for molecular dynamics and next generation sequencing (NGS) analysis, which require complex calculations on large datasets, are not yet feasible on desktop computers. As such, powerful computer clusters have been employed to perform these calculations. However, making use of these HPC clusters requires familiarity with command line interfaces. This excludes a large number of researchers from taking advantage of these resources. JMS was developed as a tool to make it easier for researchers without a computer science background to make use of HPC. Additionally, JMS can be used to host computational tools and pipelines and generates both web-based interfaces and RESTful APIs for those tools. The web-based interfaces can be used to quickly and easily submit jobs to the underlying cluster. The RESTful web API, on the other hand, allows JMS to provided backend functionality for external tools and web servers that want to run jobs on the cluster. Numerous tools and workflows have already been added to JMS, several of which have been incorporated into external web servers. One such web server is the Human Mutation Analysis (HUMA) web server and database. HUMA, the topic of part 2 of this thesis, is a platform for the analysis of genetic variation in humans. HUMA aggregates data from various existing databases into a single, connected and related database. The advantages of this are realized in the powerful querying abilities that it provides. HUMA includes protein, gene, disease, and variation data and can be searched from the angle of any one of these categories. For example, searching for a protein will return the protein data (e.g. protein sequences, structures, domains and families, and other meta-data). However, the related nature of the database means that genes, diseases, variation, and literature related to the protein will also be returned, giving users a powerful and holistic view of all data associated with the protein. HUMA also provides links to the original sources of the data, allowing users to follow the links to find additional details. HUMA aims to be a platform for the analysis of genetic variation. As such, it also provides tools to visualize and analyse the data (several of which run on the underlying cluster, via JMS). These tools include alignment and 3D structure visualization, homology modeling, variant analysis, and the ability to upload custom variation datasets and map them to proteins, genes and diseases. HUMA also provides collaboration features, allowing users to share and discuss datasets and job results. Finally, part 3 of this thesis focused on the development of a suite of tools, MD-TASK, to analyse genetic variation at the protein structure level via network analysis of molecular dynamics simulations. The use of MD-TASK in combination with the tools developed in the previous parts of this thesis is showcased via the analysis of variation in the renin-angiotensinogen complex, a vital part of the renin-angiotensin system.
- Full Text:
- Date Issued: 2018
- Authors: Brown, David K
- Date: 2018
- Subjects: Bioinformatics , Human genetics -- Variation , High performance computing , Workflow management systems , Molecular dynamics , Next generation sequencing , Human Mutation Analysis (HUMA)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/60708 , vital:27820
- Description: This thesis is divided into three parts, united under the general theme of bioinformatics tool development and variation analysis. Part 1 describes the design and development of the Job Management System (JMS), a workflow management system for high performance computing (HPC). HPC has become an integral part of bioinformatics. Computational methods for molecular dynamics and next generation sequencing (NGS) analysis, which require complex calculations on large datasets, are not yet feasible on desktop computers. As such, powerful computer clusters have been employed to perform these calculations. However, making use of these HPC clusters requires familiarity with command line interfaces. This excludes a large number of researchers from taking advantage of these resources. JMS was developed as a tool to make it easier for researchers without a computer science background to make use of HPC. Additionally, JMS can be used to host computational tools and pipelines and generates both web-based interfaces and RESTful APIs for those tools. The web-based interfaces can be used to quickly and easily submit jobs to the underlying cluster. The RESTful web API, on the other hand, allows JMS to provided backend functionality for external tools and web servers that want to run jobs on the cluster. Numerous tools and workflows have already been added to JMS, several of which have been incorporated into external web servers. One such web server is the Human Mutation Analysis (HUMA) web server and database. HUMA, the topic of part 2 of this thesis, is a platform for the analysis of genetic variation in humans. HUMA aggregates data from various existing databases into a single, connected and related database. The advantages of this are realized in the powerful querying abilities that it provides. HUMA includes protein, gene, disease, and variation data and can be searched from the angle of any one of these categories. For example, searching for a protein will return the protein data (e.g. protein sequences, structures, domains and families, and other meta-data). However, the related nature of the database means that genes, diseases, variation, and literature related to the protein will also be returned, giving users a powerful and holistic view of all data associated with the protein. HUMA also provides links to the original sources of the data, allowing users to follow the links to find additional details. HUMA aims to be a platform for the analysis of genetic variation. As such, it also provides tools to visualize and analyse the data (several of which run on the underlying cluster, via JMS). These tools include alignment and 3D structure visualization, homology modeling, variant analysis, and the ability to upload custom variation datasets and map them to proteins, genes and diseases. HUMA also provides collaboration features, allowing users to share and discuss datasets and job results. Finally, part 3 of this thesis focused on the development of a suite of tools, MD-TASK, to analyse genetic variation at the protein structure level via network analysis of molecular dynamics simulations. The use of MD-TASK in combination with the tools developed in the previous parts of this thesis is showcased via the analysis of variation in the renin-angiotensinogen complex, a vital part of the renin-angiotensin system.
- Full Text:
- Date Issued: 2018
Bioprospecting for amylases, cellulases and xylanases from ericoid associated fungi, their production and characterisation for the bio-economy
- Authors: Adeoyo, Olusegun Richard
- Date: 2018
- Subjects: Mycorrhizal fungi , Hydrolases , Ericaceae South Africa , Ericaceae Molecular aspects
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/64327 , vital:28533
- Description: South Africa is one of the most productive areas for ericaceous plants with about 850 identified species in the Cape Floral Region. The Albany Centre of Endemism where all fungi used in this study were isolated from, falls within this region. Ericaceous plants interact with some fungi via an association called the ericoid mycorrhizal (ERM) association. All fungi used in this study were isolated from roots of six ericaceous plants; Erica cerinthoides, Erica demissa, Erica chamissonis, Erica glumiflora, Erica caffra and Erica nemorosa. Fungal enzymes are known to play a significant role in the food, brewing, detergent, pharmaceutical and biofuel industries. The enzyme industry is among the major sectors of the world, and additional novel sources are being explored from time to time. This study focussed on amylases (amyloglucosidase, AMG), cellulases (endoglucanase) and xylanases (endo-1,4-P-xylanase) production from ERM fungal isolates. Out of the fifty-one (51), fungal isolates screened, ChemRU330 (Leohumicola sp.), EdRU083 and EdRU002 were among the fungi that had the highest activities of all the enzymes. They were tested for the ability to produce amylases and cellulases under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28°C in a modified Melin-Norkrans (MMN) liquid medium. Cellulase specific activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and ChemRU330, respectively, was produced at an optimal pH of 5.0. For amylase, ChemRU330 had the highest specific activity of 1.11 U/mg protein while EdRU083 and EdRU02 had a specific activity of 0.80 and 0.92 U/mg protein, respectively, at the same pH with corresponding biomass yield of 113, 125 and 97 mg/50 ml, respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone, while NaFe-EDTA and cobalt inhibited enzyme activity. ChemRU330 was selected to determine the consistency and amount of amylase, cellulase and xylanase formed after several in vitro subculturing events. AMG and endo-1,4-P-xylanase were found to have the most consistent production throughout the study period. The AMG was stable at 45oC (pH 5.0), retaining approximately 65% activity over a period of 24 h. The molecular mass of AMG and endo-1,4-P-xylanase were estimated to be 101 kDa and 72 kDa, respectively. The Km and kcat were 0.38 mg/ml and 70 s-1, respectively, using soluble starch (AMG). For endo-1,4-P-xylanase, the Km and Vmax were 0.93 mg/ml and 8.54 U/ml, respectively, using beechwood xylan (endo-1,4-P-xylanase) as substrate. Additionally, crude extracts of five root endophytes with unique morphological characteristics were screened for antibacterial properties and was followed by determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). L. incrustata (ChemRU330) and Chaetomium sp. extracts exhibited varying degrees of inhibition against two Gram-positive and Gram-negative bacteria. The crude extract of L. incrustata was the most effective which was found to inhibit Staphylococcus aureus (MIC: 1 mg/ml), Bacillus subtilis (MIC: 2 mg/ml) and Proteus vulgaris (MIC: 16 mg/ml). The L. incrustata displayed potential for antibacterial production and could be considered as an additional source of new antimicrobial agents in drug and food preservation. Also, the three isolates used for enzyme production were identified to genus and species levels, i.e., Leohumicola incrustata (ChemRU330), Leohumicola sp. (EdRU083) and Oidiodendron sp. (EdRU002) using both ITS and Cox1 DNA regions. The molecular analysis results indicated that these ERM mycorrhizal fungi were similar to those successfully described by some researchers in South Africa and Australia. Therefore, this study opens new opportunities for exploring ERM fungal biomolecules for the bio-economy. The promising physicochemical properties, starch and xylan hydrolysis end- products, and being non-pathogenic make AMG and endo-1,4-P-xylanase potential candidates for future applications as additives in the food industry for the production of glucose, glucose syrups, high-fructose corn syrups, and as well as the production of bioethanol. Finally, the findings of this study revealed that it is possible to produce hydrolytic enzymes from ERM fungi in vitro using chemically defined media. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Adeoyo, Olusegun Richard
- Date: 2018
- Subjects: Mycorrhizal fungi , Hydrolases , Ericaceae South Africa , Ericaceae Molecular aspects
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/64327 , vital:28533
- Description: South Africa is one of the most productive areas for ericaceous plants with about 850 identified species in the Cape Floral Region. The Albany Centre of Endemism where all fungi used in this study were isolated from, falls within this region. Ericaceous plants interact with some fungi via an association called the ericoid mycorrhizal (ERM) association. All fungi used in this study were isolated from roots of six ericaceous plants; Erica cerinthoides, Erica demissa, Erica chamissonis, Erica glumiflora, Erica caffra and Erica nemorosa. Fungal enzymes are known to play a significant role in the food, brewing, detergent, pharmaceutical and biofuel industries. The enzyme industry is among the major sectors of the world, and additional novel sources are being explored from time to time. This study focussed on amylases (amyloglucosidase, AMG), cellulases (endoglucanase) and xylanases (endo-1,4-P-xylanase) production from ERM fungal isolates. Out of the fifty-one (51), fungal isolates screened, ChemRU330 (Leohumicola sp.), EdRU083 and EdRU002 were among the fungi that had the highest activities of all the enzymes. They were tested for the ability to produce amylases and cellulases under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28°C in a modified Melin-Norkrans (MMN) liquid medium. Cellulase specific activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and ChemRU330, respectively, was produced at an optimal pH of 5.0. For amylase, ChemRU330 had the highest specific activity of 1.11 U/mg protein while EdRU083 and EdRU02 had a specific activity of 0.80 and 0.92 U/mg protein, respectively, at the same pH with corresponding biomass yield of 113, 125 and 97 mg/50 ml, respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone, while NaFe-EDTA and cobalt inhibited enzyme activity. ChemRU330 was selected to determine the consistency and amount of amylase, cellulase and xylanase formed after several in vitro subculturing events. AMG and endo-1,4-P-xylanase were found to have the most consistent production throughout the study period. The AMG was stable at 45oC (pH 5.0), retaining approximately 65% activity over a period of 24 h. The molecular mass of AMG and endo-1,4-P-xylanase were estimated to be 101 kDa and 72 kDa, respectively. The Km and kcat were 0.38 mg/ml and 70 s-1, respectively, using soluble starch (AMG). For endo-1,4-P-xylanase, the Km and Vmax were 0.93 mg/ml and 8.54 U/ml, respectively, using beechwood xylan (endo-1,4-P-xylanase) as substrate. Additionally, crude extracts of five root endophytes with unique morphological characteristics were screened for antibacterial properties and was followed by determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). L. incrustata (ChemRU330) and Chaetomium sp. extracts exhibited varying degrees of inhibition against two Gram-positive and Gram-negative bacteria. The crude extract of L. incrustata was the most effective which was found to inhibit Staphylococcus aureus (MIC: 1 mg/ml), Bacillus subtilis (MIC: 2 mg/ml) and Proteus vulgaris (MIC: 16 mg/ml). The L. incrustata displayed potential for antibacterial production and could be considered as an additional source of new antimicrobial agents in drug and food preservation. Also, the three isolates used for enzyme production were identified to genus and species levels, i.e., Leohumicola incrustata (ChemRU330), Leohumicola sp. (EdRU083) and Oidiodendron sp. (EdRU002) using both ITS and Cox1 DNA regions. The molecular analysis results indicated that these ERM mycorrhizal fungi were similar to those successfully described by some researchers in South Africa and Australia. Therefore, this study opens new opportunities for exploring ERM fungal biomolecules for the bio-economy. The promising physicochemical properties, starch and xylan hydrolysis end- products, and being non-pathogenic make AMG and endo-1,4-P-xylanase potential candidates for future applications as additives in the food industry for the production of glucose, glucose syrups, high-fructose corn syrups, and as well as the production of bioethanol. Finally, the findings of this study revealed that it is possible to produce hydrolytic enzymes from ERM fungi in vitro using chemically defined media. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
Citizen science, treatment and microbial compliance monitoring in rainwater harvesting in Namibia
- Angala, Hallo Angaleni Nameya
- Authors: Angala, Hallo Angaleni Nameya
- Date: 2018
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62082 , vital:28105
- Description: Expected release date-April 2020
- Full Text:
- Date Issued: 2018
- Authors: Angala, Hallo Angaleni Nameya
- Date: 2018
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62082 , vital:28105
- Description: Expected release date-April 2020
- Full Text:
- Date Issued: 2018
Development and evaluation of a web application employing artificial neural networks to facilitate the prediction of antiretroviral drug resistance in patients infected with HIV-1 subtype B
- Authors: Nabatanzi, Margaret
- Date: 2018
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63396 , vital:28406
- Description: Expected release date-April 2019
- Full Text:
- Date Issued: 2018
- Authors: Nabatanzi, Margaret
- Date: 2018
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63396 , vital:28406
- Description: Expected release date-April 2019
- Full Text:
- Date Issued: 2018
Development and optimisation of a novel Plasmodium falciparum Hsp90-Hop interaction assay
- Authors: Wambua, Lynn
- Date: 2018
- Subjects: Plasmodium falciparum , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Antimalarials
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62626 , vital:28216
- Description: Protein-protein interactions are involved in a range of disease processes and thus have become the focus of many drug discovery programs. Widespread drug resistance to all currently used antimalarial drugs drives the search for alternative drug targets with novel mechanisms of action that offer new therapeutic options. Molecular chaperones such as heat shock proteins facilitate protein folding, play a role in protein trafficking and prevent protein misfolding in cells under stress. Heat shock protein 90 (Hsp90) is a well-studied chaperone that has been the focus of cancer drug development with moderate success. In Plasmodium falciparum (P. falciparum), heat shock proteins are thought to play a vital role in parasite survival of the physiologically diverse habitats of the parasite lifecycle and because Hsp90 is prominently expressed in P. falciparum, the chaperone is considered a potentially ideal drug target. Hsp90 function in cells is regulated by interactions with co-chaperones, which includes Heat shock protein 70-Heat shock protein 90 organising protein (Hop). As opposed to directly inhibiting Hsp90 activity, targeting Hsp90 interaction with Hop has recently been suggested as an alternative method of Hsp90 inhibition that has not been explored in P. falciparum. The aim of this research project was to demonstrate PfHsp90 and PfHop robustly interact in vitro and to facilitate high-throughput screening of PfHsp90-PfHop inhibitors by developing and optimising a novel plate capture Hsp90-Hop interaction assay. To establish the assay, the respective domains of the proteins that mediate Hsp90-Hop interaction were used (Hsp90 C- terminal domain and Hop TPR2A domain). The human Hsp90 C-terminal domain and glutathione-S-transferase (GST) coding sequences were cloned into pET-28a(+) and murine and P. falciparum TPR2A sequences into pGEX-4T-1 plasmids to enable expression of histidine-tagged and GST fusion proteins, respectively, in Escherichia coli. The P. falciparum Hsp90 C-terminal domain sequence cloned into pET-28a(+) was supplied by GenScript. The constructs were transformed into T7 Express lysYcompetent E. coli cells and subsequent small- scale expression studies showed the recombinant proteins were expressed in a soluble form allowing for subsequent protein purification. Purification of the recombinant proteins was achieved using nickel-NTA and glutathione affinity chromatography for the His-tagged (Hsp90 C-terminal domains and GST) and GST fusion proteins (TPR2A domains), respectively. The purified proteins were used to establish and optimise mammalian and P. falciparum Hsp90- Hop interaction assays on nickel-coated plates by immobilising the His-tagged C-terminal domains on the plates and detecting the binding of the GST-TPR2A domains using a colorimetric GST enzyme assay. Z’-factor values above 0.5 were observed for both assays indicating good separation between the protein interaction signals and negative control background signals, although relatively high background signals were observed for the mammalian interaction due to non-specific binding of murine TPR2A to the plate. Designed human and P. falciparum TPR peptides were observed to be effective inhibitors of the mammalian and P. falciparum interactions, demonstrating the assay’s ability to respond to inhibitor compounds. Comparison of assay performance using GST assay kit reagents and lab- prepared reagents showed the assay was more efficient using lab-prepared reagents, however, lower GST signals were observed when comparing assay performance using a custom prepared Ni-NTA plate to a purchased Ni-NTA plate. The Hsp90-Hop interaction assays were also performed using an alternative assay format in which the GST-TPR2A fusion proteins were immobilised on glutathione-coated plates and binding of the His-tagged C-terminal domains detected with a nickel-horseradish peroxidase (HRP) conjugate and a colorimetric HRP substrate. The assay showed higher interaction signals for the P. falciparum proteins but comparatively low signals for the mammalian proteins. Z’-factor values for the assay were above 0.8 for both protein sets, suggesting this assay format is superior to the GST assay. However, further optimisation of this assay format is required. This study demonstrated direct binding of PfHsp90-PfHop in vitro and established a novel and robust PfHsp90-PfHop interaction assay format that can be used in future screening campaigns.
- Full Text:
- Date Issued: 2018
- Authors: Wambua, Lynn
- Date: 2018
- Subjects: Plasmodium falciparum , Molecular chaperones , Heat shock proteins , Protein-protein interactions , Antimalarials
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/62626 , vital:28216
- Description: Protein-protein interactions are involved in a range of disease processes and thus have become the focus of many drug discovery programs. Widespread drug resistance to all currently used antimalarial drugs drives the search for alternative drug targets with novel mechanisms of action that offer new therapeutic options. Molecular chaperones such as heat shock proteins facilitate protein folding, play a role in protein trafficking and prevent protein misfolding in cells under stress. Heat shock protein 90 (Hsp90) is a well-studied chaperone that has been the focus of cancer drug development with moderate success. In Plasmodium falciparum (P. falciparum), heat shock proteins are thought to play a vital role in parasite survival of the physiologically diverse habitats of the parasite lifecycle and because Hsp90 is prominently expressed in P. falciparum, the chaperone is considered a potentially ideal drug target. Hsp90 function in cells is regulated by interactions with co-chaperones, which includes Heat shock protein 70-Heat shock protein 90 organising protein (Hop). As opposed to directly inhibiting Hsp90 activity, targeting Hsp90 interaction with Hop has recently been suggested as an alternative method of Hsp90 inhibition that has not been explored in P. falciparum. The aim of this research project was to demonstrate PfHsp90 and PfHop robustly interact in vitro and to facilitate high-throughput screening of PfHsp90-PfHop inhibitors by developing and optimising a novel plate capture Hsp90-Hop interaction assay. To establish the assay, the respective domains of the proteins that mediate Hsp90-Hop interaction were used (Hsp90 C- terminal domain and Hop TPR2A domain). The human Hsp90 C-terminal domain and glutathione-S-transferase (GST) coding sequences were cloned into pET-28a(+) and murine and P. falciparum TPR2A sequences into pGEX-4T-1 plasmids to enable expression of histidine-tagged and GST fusion proteins, respectively, in Escherichia coli. The P. falciparum Hsp90 C-terminal domain sequence cloned into pET-28a(+) was supplied by GenScript. The constructs were transformed into T7 Express lysYcompetent E. coli cells and subsequent small- scale expression studies showed the recombinant proteins were expressed in a soluble form allowing for subsequent protein purification. Purification of the recombinant proteins was achieved using nickel-NTA and glutathione affinity chromatography for the His-tagged (Hsp90 C-terminal domains and GST) and GST fusion proteins (TPR2A domains), respectively. The purified proteins were used to establish and optimise mammalian and P. falciparum Hsp90- Hop interaction assays on nickel-coated plates by immobilising the His-tagged C-terminal domains on the plates and detecting the binding of the GST-TPR2A domains using a colorimetric GST enzyme assay. Z’-factor values above 0.5 were observed for both assays indicating good separation between the protein interaction signals and negative control background signals, although relatively high background signals were observed for the mammalian interaction due to non-specific binding of murine TPR2A to the plate. Designed human and P. falciparum TPR peptides were observed to be effective inhibitors of the mammalian and P. falciparum interactions, demonstrating the assay’s ability to respond to inhibitor compounds. Comparison of assay performance using GST assay kit reagents and lab- prepared reagents showed the assay was more efficient using lab-prepared reagents, however, lower GST signals were observed when comparing assay performance using a custom prepared Ni-NTA plate to a purchased Ni-NTA plate. The Hsp90-Hop interaction assays were also performed using an alternative assay format in which the GST-TPR2A fusion proteins were immobilised on glutathione-coated plates and binding of the His-tagged C-terminal domains detected with a nickel-horseradish peroxidase (HRP) conjugate and a colorimetric HRP substrate. The assay showed higher interaction signals for the P. falciparum proteins but comparatively low signals for the mammalian proteins. Z’-factor values for the assay were above 0.8 for both protein sets, suggesting this assay format is superior to the GST assay. However, further optimisation of this assay format is required. This study demonstrated direct binding of PfHsp90-PfHop in vitro and established a novel and robust PfHsp90-PfHop interaction assay format that can be used in future screening campaigns.
- Full Text:
- Date Issued: 2018
Formulation of an enzyme cocktail, HoloMix, using cellulolytic and xylanolytic enzyme core-sets for effective degradation of various pre-treated hardwoods
- Authors: Malgas, Samkelo
- Date: 2018
- Subjects: Biomass , Cellulase , Hardwoods , Xylanases
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/62827 , vital:28297 , DOI https://doi.org/10.21504/10962/62827
- Description: Currently, there is a growing interest in utilising hardwoods as feedstocks for bioethanol production due to the vast advantages they have over other feedstocks for fermentable sugar production. In this study, two selected hardwoods, Acacia and Populus spp., were subjected to two pre-treatment processes (Sodium chlorite delignification and Steam explosion) and compared with respect to how these pre-treatments affect their enzymatic saccharification. Hardwoods were selected for this study, because hardwoods are easier to delignify when compared to softwoods, and therefore their polysaccharides are more easily accessible by enzymes for the purpose of producing fermentable sugars. Currently available commercial enzyme mixtures have been developed for optimal hydrolysis of acid-pre-treated corn stover and are therefore not optimal for saccharification of pre-treated hardwoods. In this work, we attempted the empirical design of a hardwood specific enzyme cocktail, HoloMix. Firstly, a cellulolytic core-set, CelMix (in a ratio of Egl 68%: Cel7A 17%: Cel6A 6%: Bgl1 9%), for the optimal release of glucose, and a xylanolytic core-set, XynMix (in a ratio of Xyn2A 60%: XT6 20%: AguA 11%: SXA 9%), for the optimal release of xylose, were formulated using an empirical enzyme ratio approach after biochemically characterising these enzymes. As it is well ̶ known that biomass pre-treatment may result in the generation of compounds that hamper enzymatic hydrolysis and microbial fermentation, the effects of these compounds on CelMix and XynMix were evaluated. Using the optimised CelMix and XynMix cocktails, a HoloMix cocktail was established for optimal reducing sugar, glucose and xylose release from the various pre-treated hardwoods. For delignified biomass, the optimized HoloMix consisted of CelMix to XynMix at 75% to 25% protein loading, while for the untreated and steam exploded biomass the HoloMix consisted of CelMix to XynMix at 93.75% to 6.25% protein loading. Sugar release by the HoloMix at a loading of 27.5 mg protein/g of biomass (or 55 mg protein/g of glucan) after 24 h gave 70-100% sugar yield. Treatment of the hardwoods with a laccase from Agaricus bisporus, especially wood biomass with a higher proportion of lignin, significantly improved saccharification by the formulated HoloMix enzyme cocktails. This study provided insights into the enzymatic hydrolysis of various pre-treated hardwood substrates and assessed whether the same lignocellulolytic cocktail can be used to efficiently hydrolyse different hardwood species. The present study also demonstrated that the hydrolysis efficiency of the optimised HoloMix was comparable to (if not better) than commercial enzyme preparations during hardwood biomass saccharification. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Malgas, Samkelo
- Date: 2018
- Subjects: Biomass , Cellulase , Hardwoods , Xylanases
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/62827 , vital:28297 , DOI https://doi.org/10.21504/10962/62827
- Description: Currently, there is a growing interest in utilising hardwoods as feedstocks for bioethanol production due to the vast advantages they have over other feedstocks for fermentable sugar production. In this study, two selected hardwoods, Acacia and Populus spp., were subjected to two pre-treatment processes (Sodium chlorite delignification and Steam explosion) and compared with respect to how these pre-treatments affect their enzymatic saccharification. Hardwoods were selected for this study, because hardwoods are easier to delignify when compared to softwoods, and therefore their polysaccharides are more easily accessible by enzymes for the purpose of producing fermentable sugars. Currently available commercial enzyme mixtures have been developed for optimal hydrolysis of acid-pre-treated corn stover and are therefore not optimal for saccharification of pre-treated hardwoods. In this work, we attempted the empirical design of a hardwood specific enzyme cocktail, HoloMix. Firstly, a cellulolytic core-set, CelMix (in a ratio of Egl 68%: Cel7A 17%: Cel6A 6%: Bgl1 9%), for the optimal release of glucose, and a xylanolytic core-set, XynMix (in a ratio of Xyn2A 60%: XT6 20%: AguA 11%: SXA 9%), for the optimal release of xylose, were formulated using an empirical enzyme ratio approach after biochemically characterising these enzymes. As it is well ̶ known that biomass pre-treatment may result in the generation of compounds that hamper enzymatic hydrolysis and microbial fermentation, the effects of these compounds on CelMix and XynMix were evaluated. Using the optimised CelMix and XynMix cocktails, a HoloMix cocktail was established for optimal reducing sugar, glucose and xylose release from the various pre-treated hardwoods. For delignified biomass, the optimized HoloMix consisted of CelMix to XynMix at 75% to 25% protein loading, while for the untreated and steam exploded biomass the HoloMix consisted of CelMix to XynMix at 93.75% to 6.25% protein loading. Sugar release by the HoloMix at a loading of 27.5 mg protein/g of biomass (or 55 mg protein/g of glucan) after 24 h gave 70-100% sugar yield. Treatment of the hardwoods with a laccase from Agaricus bisporus, especially wood biomass with a higher proportion of lignin, significantly improved saccharification by the formulated HoloMix enzyme cocktails. This study provided insights into the enzymatic hydrolysis of various pre-treated hardwood substrates and assessed whether the same lignocellulolytic cocktail can be used to efficiently hydrolyse different hardwood species. The present study also demonstrated that the hydrolysis efficiency of the optimised HoloMix was comparable to (if not better) than commercial enzyme preparations during hardwood biomass saccharification. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
In silico characterization of plasmodial transketolases as potential malaria drug target
- Authors: Boateng, Rita Afriyie
- Date: 2018
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63540 , vital:28433
- Description: Expected release date-April 2019
- Full Text:
- Date Issued: 2018
- Authors: Boateng, Rita Afriyie
- Date: 2018
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63540 , vital:28433
- Description: Expected release date-April 2019
- Full Text:
- Date Issued: 2018
In silico study of Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase (DXR) for identification of novel inhibitors from SANCDB
- Authors: Diallo, Bakary N'tji
- Date: 2018
- Subjects: Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase , Isoprenoids , Plasmodium , Antimalarials , Malaria -- Chemotherapy , Molecules -- Models , Molecular dynamics , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/64012 , vital:28523
- Description: Malaria remains a major health concern with a complex parasite constantly developing resistance to the different drugs introduced to treat it, threatening the efficacy of the current ACT treatment recommended by WHO (World Health Organization). Different antimalarial compounds with different mechanisms of action are ideal as this decreases chances of resistance occurring. Inhibiting DXR and consequently the MEP pathway is a good strategy to find a new antimalarial with a novel mode of action. From literature, all the enzymes of the MEP pathway have also been shown to be indispensable for the synthesis of isoprenoids. They have been validated as drug targets and the X-ray structure of each of the enzymes has been solved. DXR is a protein which catalyses the second step of the MEP pathway. There are currently 255 DXR inhibitors in the Binding Database (accessed November 2017) generally based on the fosmidomycin structural scaffold and thus often showing poor drug likeness properties. This study aims to research new DXR inhibitors using in silico techniques. We analysed the protein sequence and built 3D models in close and open conformations for the different Plasmodium sequences. Then SANCDB compounds were screened to identify new potential DXR inhibitors with new chemical scaffolds. Finally, the identified hits were submitted to molecular dynamics studies, preceded by a parameterization of the manganese atom in the protein active site.
- Full Text:
- Date Issued: 2018
- Authors: Diallo, Bakary N'tji
- Date: 2018
- Subjects: Plasmodium 1-deoxy-dxylulose 5-phosphate reductoisomerase , Isoprenoids , Plasmodium , Antimalarials , Malaria -- Chemotherapy , Molecules -- Models , Molecular dynamics , South African Natural Compounds Database
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/64012 , vital:28523
- Description: Malaria remains a major health concern with a complex parasite constantly developing resistance to the different drugs introduced to treat it, threatening the efficacy of the current ACT treatment recommended by WHO (World Health Organization). Different antimalarial compounds with different mechanisms of action are ideal as this decreases chances of resistance occurring. Inhibiting DXR and consequently the MEP pathway is a good strategy to find a new antimalarial with a novel mode of action. From literature, all the enzymes of the MEP pathway have also been shown to be indispensable for the synthesis of isoprenoids. They have been validated as drug targets and the X-ray structure of each of the enzymes has been solved. DXR is a protein which catalyses the second step of the MEP pathway. There are currently 255 DXR inhibitors in the Binding Database (accessed November 2017) generally based on the fosmidomycin structural scaffold and thus often showing poor drug likeness properties. This study aims to research new DXR inhibitors using in silico techniques. We analysed the protein sequence and built 3D models in close and open conformations for the different Plasmodium sequences. Then SANCDB compounds were screened to identify new potential DXR inhibitors with new chemical scaffolds. Finally, the identified hits were submitted to molecular dynamics studies, preceded by a parameterization of the manganese atom in the protein active site.
- Full Text:
- Date Issued: 2018
Interaction of catechol O-methyltransferase with gold and silver nanoparticles
- Authors: Usman, Aminu
- Date: 2018
- Subjects: Parkinson's disease , Methyltransferases , Catechol , Nanoparticles
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/61818 , vital:28063 , DOI https://doi.org/10.21504/10962/61818
- Description: Catechol O-methyltransferase (S-adenosyl-Z-methionine: catechol O-methyltransferase; COMT; EC 2.1.1.6) is a ubiquitous enzyme that catalyses the transfer of a methyl group from the cofactor, S-adenosyl-Z-methionine (SAM) to a hydroxyl group of endogenous and exogenous catechol-containing moieties. The physiological role of this enzyme is the methylation and thereby inactivation of the catechol-containing bio-active and bio-toxic compounds, including catechol-neurotransmitters, catechol-estrogens and catechol-containing drugs. Activity of this enzyme is implicated in the treatment of Parkinson’s disease and is associated with other diseases including breast cancer and an array neuropsychological disorders, such as schizophrenia. This thesis explores the use of gold and silver nanoparticles (NPs) (AuNPs and AgNPs) to inhibit the catalytic activity of mammalian COMT. Because of its accessibility and availability, we initially investigated bovine soluble COMT (BSCOMT) from liver tissue. Bioinformatic analyses and structural modeling revealed high (>90%) sequence similarity between BSCOMT and human soluble COMT (HSCOMT). BSCOMT was partially purified to 7.78 fold, 1.65% yield and had a specific activity of 0.052 U/mg. It had pH and temperature optima of 8.5 and 40oC, respectively. The Km, Vmax, Kcat and Kcat/Km towards esculetin methylation were respectively 1.475±0.130 pM, 0.0353±0.001 pmol/ml/min, 1.748 x 10-2±5.0x10-4 min-1 and 1.18x10-2 M-1. min-1. HSCOMT was expressed in Escherichia coli BL21(DE3) which showed optimal activity for esculetin methylation at pH and temperature of 7.0 and 30°C, respectively. It was purified to 5.62 fold, 22.6% yield with a specific activity of 3.85 U/mg. HSCOMT kinetic plots, upon incubation of the reaction mixture at 30°C for 5 min before addition of SAM was hyperbolic with Km, Vmax, Kcat and Kcat/Km values of 1.79 pM, 0.412 pmol/ml/min, 2.08 min-1 and 1.165 M-1. min-1, respectively. AuNPs and AgNPs showed a concentration dependent inhibition of HSCOMT activity upon increasing the 5 min incubation time to 1 h. Interestingly, HSCOMT kinetics, with 1 h incubation at 30°C, showed a sigmoidal curve, as well as increased activity. Incubation of the reaction mixture in the presence of 60 pM AuNPs and/or AgNPs for 1 hreversed the observed sigmoidal to a hyperbolic curve, with kinetic parameters comparable to those of 5 min incubation. SDS-PAGE analyses of HSCOMT after the kinetic experiments showed the enzyme incubated for 5 min as a monomer, while that which was incubated for 1 h migrated substantially as dimer. However, the HSCOMT incubated for 1 h in the presence of 60 pM AuNPs and/or AgNPs migrated as a monomer. This indicated that the extension of the incubation period allowed the dimerization of HSCOMT, which exhibited sigmoidal kinetics and higher activity. The presence of NPs impeded the HSCOMT dimerization which decreased the activity. Varying the concentration of SAM suggested that SAM had an allosteric modulatory effect on HSCOMT. Absorption spectroscopy indicated adsorption of HSCOMT on the gold and silver NP surfaces and the formation of NPs-HSCOMT corona. Fluorescence spectroscopy showed that the interaction of HSCOMT with both gold and silver NPs was governed by a static quenching mechanism, implying the formation of a non-fluorescent fluorophore-NP complex at the ground state. Further fluorometric analyses indicated that both gold and silver NPs had contact with Trp143; that the interactions were spontaneous and were driven by electrostatic interactions. Fourier transform infrared spectroscopic studies showed the adsorption of HSCOMT of the NPs surfaces to cause relaxation of the enzyme’s B-sheet structures. Molecular docking studies indicated involvement of largely hydrophilic amino acids, with the interacting distances of less than 3.5A. These findings signify the potential of nanotechnology in the control of COMT catalytic activity for the management of the COMT-related disorders. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Usman, Aminu
- Date: 2018
- Subjects: Parkinson's disease , Methyltransferases , Catechol , Nanoparticles
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/61818 , vital:28063 , DOI https://doi.org/10.21504/10962/61818
- Description: Catechol O-methyltransferase (S-adenosyl-Z-methionine: catechol O-methyltransferase; COMT; EC 2.1.1.6) is a ubiquitous enzyme that catalyses the transfer of a methyl group from the cofactor, S-adenosyl-Z-methionine (SAM) to a hydroxyl group of endogenous and exogenous catechol-containing moieties. The physiological role of this enzyme is the methylation and thereby inactivation of the catechol-containing bio-active and bio-toxic compounds, including catechol-neurotransmitters, catechol-estrogens and catechol-containing drugs. Activity of this enzyme is implicated in the treatment of Parkinson’s disease and is associated with other diseases including breast cancer and an array neuropsychological disorders, such as schizophrenia. This thesis explores the use of gold and silver nanoparticles (NPs) (AuNPs and AgNPs) to inhibit the catalytic activity of mammalian COMT. Because of its accessibility and availability, we initially investigated bovine soluble COMT (BSCOMT) from liver tissue. Bioinformatic analyses and structural modeling revealed high (>90%) sequence similarity between BSCOMT and human soluble COMT (HSCOMT). BSCOMT was partially purified to 7.78 fold, 1.65% yield and had a specific activity of 0.052 U/mg. It had pH and temperature optima of 8.5 and 40oC, respectively. The Km, Vmax, Kcat and Kcat/Km towards esculetin methylation were respectively 1.475±0.130 pM, 0.0353±0.001 pmol/ml/min, 1.748 x 10-2±5.0x10-4 min-1 and 1.18x10-2 M-1. min-1. HSCOMT was expressed in Escherichia coli BL21(DE3) which showed optimal activity for esculetin methylation at pH and temperature of 7.0 and 30°C, respectively. It was purified to 5.62 fold, 22.6% yield with a specific activity of 3.85 U/mg. HSCOMT kinetic plots, upon incubation of the reaction mixture at 30°C for 5 min before addition of SAM was hyperbolic with Km, Vmax, Kcat and Kcat/Km values of 1.79 pM, 0.412 pmol/ml/min, 2.08 min-1 and 1.165 M-1. min-1, respectively. AuNPs and AgNPs showed a concentration dependent inhibition of HSCOMT activity upon increasing the 5 min incubation time to 1 h. Interestingly, HSCOMT kinetics, with 1 h incubation at 30°C, showed a sigmoidal curve, as well as increased activity. Incubation of the reaction mixture in the presence of 60 pM AuNPs and/or AgNPs for 1 hreversed the observed sigmoidal to a hyperbolic curve, with kinetic parameters comparable to those of 5 min incubation. SDS-PAGE analyses of HSCOMT after the kinetic experiments showed the enzyme incubated for 5 min as a monomer, while that which was incubated for 1 h migrated substantially as dimer. However, the HSCOMT incubated for 1 h in the presence of 60 pM AuNPs and/or AgNPs migrated as a monomer. This indicated that the extension of the incubation period allowed the dimerization of HSCOMT, which exhibited sigmoidal kinetics and higher activity. The presence of NPs impeded the HSCOMT dimerization which decreased the activity. Varying the concentration of SAM suggested that SAM had an allosteric modulatory effect on HSCOMT. Absorption spectroscopy indicated adsorption of HSCOMT on the gold and silver NP surfaces and the formation of NPs-HSCOMT corona. Fluorescence spectroscopy showed that the interaction of HSCOMT with both gold and silver NPs was governed by a static quenching mechanism, implying the formation of a non-fluorescent fluorophore-NP complex at the ground state. Further fluorometric analyses indicated that both gold and silver NPs had contact with Trp143; that the interactions were spontaneous and were driven by electrostatic interactions. Fourier transform infrared spectroscopic studies showed the adsorption of HSCOMT of the NPs surfaces to cause relaxation of the enzyme’s B-sheet structures. Molecular docking studies indicated involvement of largely hydrophilic amino acids, with the interacting distances of less than 3.5A. These findings signify the potential of nanotechnology in the control of COMT catalytic activity for the management of the COMT-related disorders. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
Isolation, identification and genetic characterisation of a microsporidium isolated from the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae)
- Authors: Lloyd, Melissa
- Date: 2018
- Subjects: Pyralidae , Pyralidae -- Genetics , Pyralidae -- Phylogeny , Pyralidae -- Pathogens , Cladistic analysis , Transmission electron microscopy , Carob moth (Ectomyelois ceratoniae)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/61894 , vital:28075
- Description: Carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae) is an economically important pest, yet its biology and pest status on citrus in South Africa was, until recently, poorly understood. A study was initiated to determine the cause of collapse of a laboratory carob moth colony that was established to investigate the biology of carob moth on citrus and to develop integrated management strategies for the pest. An organism was isolated from deceased larvae and was morphologically identified as a microsporidium, based on transmission electron microscopy. Microsporidia are obligate intracellular parasites that have been found to infect almost all eukaryotes. Several Nosema species have been isolated from economically important insect pests, yet little genetic information is available from online databases for identification. Mature spores were recovered and measured using transmission electron microscopy. Spores were ovocylindrical with a wrinkled exospore, and had a length of 2.8 ± 0.02 pm and a width of 1.6 ± 0.04 pm. The identity of the microsporidium was confirmed by PCR amplification, sequencing and analysis of the regions encoding the ribosomal RNA. BLAST analysis of the different rRNA regions amplified showed that the microsporidium shared a 96 - 99 % identity with Nosema sp. M-Pr, Nosema carpocapsae, Nosema oulemae, Nosema sp. CO1, Microsporidium 57864, and Nosema bombi. Phylogenetic analysis of the SSU and LSU rRNA genes showed that the microsporidium clustered with the Nosema / Vairimorpha clade, supported by a bootstrap value of 100. The organisation of the RNA cistron was determined by PCR amplification using the primer set 18f and L1328r to be 5’-SSU-ITS-LSU-IGS-5S-3’, which confirms the placement of the microsporidium within the Nosema / Vairimorpha clade. Because the BLAST results showed a close relationship with Nosema carpocapsae, a microsporidium infecting codling moth, the pathogenicity of the microsporidium was tested against codling moth by inoculating artificial diet with a high spore concentration of 1.1 x 107 spores/ml and a low spore concentration of 1.1 x 104 spores/ml. DNA was extracted from deceased larvae inoculated with the high concentration, and PCR of the SSU rRNA gene and bacterial 16S region was performed. Mortality in the high concentration experiment was significant (p = 0.05), but the cause of infection was determined to be a bacterium, through sequencing and BLAST analysis of the bacterial 16S rDNA. The bacterium shared a 99 % identity with Bacillus cereus. Percentage mortality (p = 0.09), larval mass (p = 0.09) and instar (p = 0.24) did not differ significantly between treatments in the low concentration experiment. DNA was extracted from the larvae and PCR amplification of the SSU rRNA gene was performed to determine whether microsporidia were present. No SSU bands were observed in any of the treatments and percentage mortality was not significant, thus it was determined that no infection occurred. This is the first study to report the genetic characterisation of a microsporidium isolated from carob moth and provides important genetic information for classification of microsporidia within the Nosema / Vairimorpha clade. It is also one of few studies in which the complete rRNA cistron of a species within the Nosema / Vairimorpha clade has been sequenced. The identification of a microsporidium from a laboratory colony of carob moth is important as it provides information about pathogens infecting the carob moth and constraints to carob moth rearing, which is useful for further studies on rearing carob moth and for establishment of a clean colony for research purposes.
- Full Text:
- Date Issued: 2018
- Authors: Lloyd, Melissa
- Date: 2018
- Subjects: Pyralidae , Pyralidae -- Genetics , Pyralidae -- Phylogeny , Pyralidae -- Pathogens , Cladistic analysis , Transmission electron microscopy , Carob moth (Ectomyelois ceratoniae)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/61894 , vital:28075
- Description: Carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae) is an economically important pest, yet its biology and pest status on citrus in South Africa was, until recently, poorly understood. A study was initiated to determine the cause of collapse of a laboratory carob moth colony that was established to investigate the biology of carob moth on citrus and to develop integrated management strategies for the pest. An organism was isolated from deceased larvae and was morphologically identified as a microsporidium, based on transmission electron microscopy. Microsporidia are obligate intracellular parasites that have been found to infect almost all eukaryotes. Several Nosema species have been isolated from economically important insect pests, yet little genetic information is available from online databases for identification. Mature spores were recovered and measured using transmission electron microscopy. Spores were ovocylindrical with a wrinkled exospore, and had a length of 2.8 ± 0.02 pm and a width of 1.6 ± 0.04 pm. The identity of the microsporidium was confirmed by PCR amplification, sequencing and analysis of the regions encoding the ribosomal RNA. BLAST analysis of the different rRNA regions amplified showed that the microsporidium shared a 96 - 99 % identity with Nosema sp. M-Pr, Nosema carpocapsae, Nosema oulemae, Nosema sp. CO1, Microsporidium 57864, and Nosema bombi. Phylogenetic analysis of the SSU and LSU rRNA genes showed that the microsporidium clustered with the Nosema / Vairimorpha clade, supported by a bootstrap value of 100. The organisation of the RNA cistron was determined by PCR amplification using the primer set 18f and L1328r to be 5’-SSU-ITS-LSU-IGS-5S-3’, which confirms the placement of the microsporidium within the Nosema / Vairimorpha clade. Because the BLAST results showed a close relationship with Nosema carpocapsae, a microsporidium infecting codling moth, the pathogenicity of the microsporidium was tested against codling moth by inoculating artificial diet with a high spore concentration of 1.1 x 107 spores/ml and a low spore concentration of 1.1 x 104 spores/ml. DNA was extracted from deceased larvae inoculated with the high concentration, and PCR of the SSU rRNA gene and bacterial 16S region was performed. Mortality in the high concentration experiment was significant (p = 0.05), but the cause of infection was determined to be a bacterium, through sequencing and BLAST analysis of the bacterial 16S rDNA. The bacterium shared a 99 % identity with Bacillus cereus. Percentage mortality (p = 0.09), larval mass (p = 0.09) and instar (p = 0.24) did not differ significantly between treatments in the low concentration experiment. DNA was extracted from the larvae and PCR amplification of the SSU rRNA gene was performed to determine whether microsporidia were present. No SSU bands were observed in any of the treatments and percentage mortality was not significant, thus it was determined that no infection occurred. This is the first study to report the genetic characterisation of a microsporidium isolated from carob moth and provides important genetic information for classification of microsporidia within the Nosema / Vairimorpha clade. It is also one of few studies in which the complete rRNA cistron of a species within the Nosema / Vairimorpha clade has been sequenced. The identification of a microsporidium from a laboratory colony of carob moth is important as it provides information about pathogens infecting the carob moth and constraints to carob moth rearing, which is useful for further studies on rearing carob moth and for establishment of a clean colony for research purposes.
- Full Text:
- Date Issued: 2018
Production, purification, and characterisation of proteases from an ericoid mycorrhizal fungus, Oidiodendron maius
- Authors: Manyumwa, Colleen Varaidzo
- Date: 2018
- Subjects: Ascomycetes , Mycorrhizal fungi , Ericaceae , Proteolytic enzymes , Silver Recycling
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62833 , vital:28298
- Description: The aim of this study was to produce, purify and characterise proteases from the ericoid mycorrhizal fungus, Oidiodendron maius (CafRU082b/KP119480), as well as to explore their potential application in the recovery of silver from X-ray film. Firstly, the growth of the ericoid mycorrhizal fungus, Oidiodendron maius (CafRU082b), was studied, and its ability to produce proteolytic enzymes was investigated. O. maius proved to grow well in the dark, submerged in Modified Melin Norkran’s liquid medium at a pH of 5 and at 25°C. Pure cultures of the fungus were maintained on Potato Dextrose Agar (PDA). The fungus grew on PDA plates containing different substrates including haemoglobin, casein, gelatin as well as azocasein. Zones of clearance, however, were only observed on plates containing gelatin after treatment with mercuric chloride, HgCl2. Proteases were successfully produced after 14 days when gelatin was incorporated into the growth medium. After production of the proteases, purification and characterisation of the enzymes was performed. Purification of the enzymes was performed by acetone precipitation followed by ultrafiltration with 50 kDa and 30 kDa cut off membrane filters. A final purification fold of approximately 37.6 was achieved. Unusual yields of above 100% were observed after each purification step with the final yield achieved being 196% with a final specific activity of 2707 U/mg. SDS-PAGE revealed a protease band of 35 kDa which was also visible on the zymogram at approximately 36 kDa. The zymogram showed clear hydrolysis bands against a blue background after staining with Coomassie Brilliant Blue. Physico-chemical characterisation of the protease revealed its pH optimum to be pH 3.0 and its temperature optimum 68°C. Another peak was observed on the pH profile at pH 7.0. The protease exhibited high thermostability at temperatures 37°C, 80°C as well as 100°C with the enzyme retaining close to 50% of its initial activity after 4 h of exposure to all three temperatures. All ions tested for their effects on the proteases, except Ca2+, enhanced protease activity. Ca2+ did not exhibit any significant effect on the enzyme’s activity while Zn2+ had the highest effect, enhancing enzyme activity by 305%. The proteases, however, were not significantly inhibited by EDTA, a metal chelating agent and a known metalloprotease inhibitor. The enzyme was classified as an aspartic protease due to complete inhibition by 25 μM of pepstatin A, coupled to its low pH optimum of 3.0. Addition of trans-Epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64), a cysteine protease inhibitor, and 2-mercaptoethanol increased protease activity. The proteases exhibited a narrow substrate specificity towards gelatin and no other substrate. Substrate kinetics values were plotted on a Michaelis-Menten Graph and showed that the enzyme had a Vmax of 55.25 U/ml and a Km of 2.7 mg/ml gelatin. A low Km indicated that the protease had a high affinity for gelatin. Silver recovery studies from X-ray film revealed the proteases’ capability to remove silver from X-ray film, leaving the film intact. The recovery of silver was perceived visually, by film observation, as well as by scan electron microscopy (SEM) images, where clearance of the film was observed after incubation with the enzyme. Energy dispersive X-ray spectroscopy (EDS) profiles also confirmed removal of silver from the film, with a Ag peak showing on the profile of the film before treatment with the proteases and no peak after treatment. The crude protease sample was, however, catalytically more efficient compared to the partially purified sample. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Manyumwa, Colleen Varaidzo
- Date: 2018
- Subjects: Ascomycetes , Mycorrhizal fungi , Ericaceae , Proteolytic enzymes , Silver Recycling
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/62833 , vital:28298
- Description: The aim of this study was to produce, purify and characterise proteases from the ericoid mycorrhizal fungus, Oidiodendron maius (CafRU082b/KP119480), as well as to explore their potential application in the recovery of silver from X-ray film. Firstly, the growth of the ericoid mycorrhizal fungus, Oidiodendron maius (CafRU082b), was studied, and its ability to produce proteolytic enzymes was investigated. O. maius proved to grow well in the dark, submerged in Modified Melin Norkran’s liquid medium at a pH of 5 and at 25°C. Pure cultures of the fungus were maintained on Potato Dextrose Agar (PDA). The fungus grew on PDA plates containing different substrates including haemoglobin, casein, gelatin as well as azocasein. Zones of clearance, however, were only observed on plates containing gelatin after treatment with mercuric chloride, HgCl2. Proteases were successfully produced after 14 days when gelatin was incorporated into the growth medium. After production of the proteases, purification and characterisation of the enzymes was performed. Purification of the enzymes was performed by acetone precipitation followed by ultrafiltration with 50 kDa and 30 kDa cut off membrane filters. A final purification fold of approximately 37.6 was achieved. Unusual yields of above 100% were observed after each purification step with the final yield achieved being 196% with a final specific activity of 2707 U/mg. SDS-PAGE revealed a protease band of 35 kDa which was also visible on the zymogram at approximately 36 kDa. The zymogram showed clear hydrolysis bands against a blue background after staining with Coomassie Brilliant Blue. Physico-chemical characterisation of the protease revealed its pH optimum to be pH 3.0 and its temperature optimum 68°C. Another peak was observed on the pH profile at pH 7.0. The protease exhibited high thermostability at temperatures 37°C, 80°C as well as 100°C with the enzyme retaining close to 50% of its initial activity after 4 h of exposure to all three temperatures. All ions tested for their effects on the proteases, except Ca2+, enhanced protease activity. Ca2+ did not exhibit any significant effect on the enzyme’s activity while Zn2+ had the highest effect, enhancing enzyme activity by 305%. The proteases, however, were not significantly inhibited by EDTA, a metal chelating agent and a known metalloprotease inhibitor. The enzyme was classified as an aspartic protease due to complete inhibition by 25 μM of pepstatin A, coupled to its low pH optimum of 3.0. Addition of trans-Epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64), a cysteine protease inhibitor, and 2-mercaptoethanol increased protease activity. The proteases exhibited a narrow substrate specificity towards gelatin and no other substrate. Substrate kinetics values were plotted on a Michaelis-Menten Graph and showed that the enzyme had a Vmax of 55.25 U/ml and a Km of 2.7 mg/ml gelatin. A low Km indicated that the protease had a high affinity for gelatin. Silver recovery studies from X-ray film revealed the proteases’ capability to remove silver from X-ray film, leaving the film intact. The recovery of silver was perceived visually, by film observation, as well as by scan electron microscopy (SEM) images, where clearance of the film was observed after incubation with the enzyme. Energy dispersive X-ray spectroscopy (EDS) profiles also confirmed removal of silver from the film, with a Ag peak showing on the profile of the film before treatment with the proteases and no peak after treatment. The crude protease sample was, however, catalytically more efficient compared to the partially purified sample. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
The investigation of type-specific features of the copper coordinating AA9 proteins and their effect on the interaction with crystalline cellulose using molecular dynamics studies
- Authors: Moses, Vuyani
- Date: 2018
- Subjects: Copper proteins , Cellulose , Molecular dynamics , Cellulose -- Biodegradation , Bioinformatics
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/58327 , vital:27230
- Description: AA9 proteins are metallo-enzymes which are crucial for the early stages of cellulose degradation. AA9 proteins have been suggested to cleave glycosidic bonds linking cellulose through the use of their Cu2+ coordinating active site. AA9 proteins possess different regioselectivities depending on the resulting cleavage they form and as result, are grouped accordingly. Type 1 AA9 proteins cleave the C1 carbon of cellulose while Type 2 AA9 proteins cleave the C4 carbon and Type 3 AA9 proteins cleave either C1 or C4 carbons. The steric congestion of the AA9 active site has been proposed to be a contributor to the observed regioselectivity. As such, a bioinformatics characterisation of type-specific sequence and structural features was performed. Initially AA9 protein sequences were obtained from the Pfam database and multiple sequence alignment was performed. The sequences were phylogenetically characterised and sequences were grouped into their respective types and sub-groups were identified. A selection analysis was performed on AA9 LPMO types to determine the selective pressure acting on AA9 protein residues. Motif discovery was then performed to identify conserved sequence motifs in AA9 proteins. Once type-specific sequence features were identified structural mapping was performed to assess possible effects on substrate interaction. Physicochemical property analysis was also performed to assess biochemical differences between AA9 LPMO types. Molecular dynamics (MD) simulations were then employed to dynamically assess the consequences of the discovered type-specific features on AA9-cellulose interaction. Due to the absence of AA9 specific force field parameters MD simulations were not readily applicable. As a result, Potential Energy Surface (PES) scans were performed to evaluate the force field parameters for the AA9 active site using the PM6 semi empirical approach and least squares fitting. A Type 1 AA9 active site was constructed from the crystal structure 4B5Q, encompassing only the Cu2+ coordinating residues, the Cu2+ ion and two water residues. Due to the similarity in AA9 active sites, the Type force field parameters were validated on all three AA9 LPMO types. Two MD simulations for each AA9 LPMO types were conducted using two separate Lennard-Jones parameter sets. Once completed, the MD trajectories were analysed for various features including the RMSD, RMSF, radius of gyration, coordination during simulation, hydrogen bonding, secondary structure conservation and overall protein movement. Force field parameters were successfully evaluated and validated for AA9 proteins. MD simulations of AA9 proteins were able to reveal the presence of unique type-specific binding modes of AA9 active sites to cellulose. These binding modes were characterised by the presence of unique type-specific loops which were present in Type 2 and 3 AA9 proteins but not in Type 1 AA9 proteins. The loops were found to result in steric congestion that affects how the Cu2+ ion interacts with cellulose. As a result, Cu2+ binding to cellulose was observed for Type 1 and not Type 2 and 3 AA9 proteins. In this study force field parameters have been evaluated for the Type 1 active site of AA9 proteins and this parameters were evaluated on all three types and binding. Future work will focus on identifying the nature of the reactive oxygen species and performing QM/MM calculations to elucidate the reactive mechanism of all three AA9 LPMO types.
- Full Text:
- Date Issued: 2018
- Authors: Moses, Vuyani
- Date: 2018
- Subjects: Copper proteins , Cellulose , Molecular dynamics , Cellulose -- Biodegradation , Bioinformatics
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/58327 , vital:27230
- Description: AA9 proteins are metallo-enzymes which are crucial for the early stages of cellulose degradation. AA9 proteins have been suggested to cleave glycosidic bonds linking cellulose through the use of their Cu2+ coordinating active site. AA9 proteins possess different regioselectivities depending on the resulting cleavage they form and as result, are grouped accordingly. Type 1 AA9 proteins cleave the C1 carbon of cellulose while Type 2 AA9 proteins cleave the C4 carbon and Type 3 AA9 proteins cleave either C1 or C4 carbons. The steric congestion of the AA9 active site has been proposed to be a contributor to the observed regioselectivity. As such, a bioinformatics characterisation of type-specific sequence and structural features was performed. Initially AA9 protein sequences were obtained from the Pfam database and multiple sequence alignment was performed. The sequences were phylogenetically characterised and sequences were grouped into their respective types and sub-groups were identified. A selection analysis was performed on AA9 LPMO types to determine the selective pressure acting on AA9 protein residues. Motif discovery was then performed to identify conserved sequence motifs in AA9 proteins. Once type-specific sequence features were identified structural mapping was performed to assess possible effects on substrate interaction. Physicochemical property analysis was also performed to assess biochemical differences between AA9 LPMO types. Molecular dynamics (MD) simulations were then employed to dynamically assess the consequences of the discovered type-specific features on AA9-cellulose interaction. Due to the absence of AA9 specific force field parameters MD simulations were not readily applicable. As a result, Potential Energy Surface (PES) scans were performed to evaluate the force field parameters for the AA9 active site using the PM6 semi empirical approach and least squares fitting. A Type 1 AA9 active site was constructed from the crystal structure 4B5Q, encompassing only the Cu2+ coordinating residues, the Cu2+ ion and two water residues. Due to the similarity in AA9 active sites, the Type force field parameters were validated on all three AA9 LPMO types. Two MD simulations for each AA9 LPMO types were conducted using two separate Lennard-Jones parameter sets. Once completed, the MD trajectories were analysed for various features including the RMSD, RMSF, radius of gyration, coordination during simulation, hydrogen bonding, secondary structure conservation and overall protein movement. Force field parameters were successfully evaluated and validated for AA9 proteins. MD simulations of AA9 proteins were able to reveal the presence of unique type-specific binding modes of AA9 active sites to cellulose. These binding modes were characterised by the presence of unique type-specific loops which were present in Type 2 and 3 AA9 proteins but not in Type 1 AA9 proteins. The loops were found to result in steric congestion that affects how the Cu2+ ion interacts with cellulose. As a result, Cu2+ binding to cellulose was observed for Type 1 and not Type 2 and 3 AA9 proteins. In this study force field parameters have been evaluated for the Type 1 active site of AA9 proteins and this parameters were evaluated on all three types and binding. Future work will focus on identifying the nature of the reactive oxygen species and performing QM/MM calculations to elucidate the reactive mechanism of all three AA9 LPMO types.
- Full Text:
- Date Issued: 2018
Vachellia erioloba (camel thorn) and microbial interactions
- Authors: Van Aswegen, Sunet
- Date: 2018
- Subjects: Vesicular-arbuscular mycorrhizas , Cadmium , Rhizobacteria , Plant growth-promoting rhizobacteria , Acacia erioloba
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/63716 , vital:28475
- Description: Vachellia erioloba (camel thorn) is one of South Africa’s economically important tree species and therefore requires further investigation to improve its health and growth. Beneficial soil microbes have positive effects on plants through various mechanisms such as nitrogen fixation, phosphate solubilisation, indole acetic acid and siderophore production and biofilm formation. These traits enhance plant growth and protect the host plant against parasitic organisms that are present in soil. The arbuscular mycorrhizal (AM) fungi are well known for their beneficial symbiotic effects on host plants. The objective of this study was to determine the role of AM fungi and associated beneficial rhizobacteria in improving the growth of V. erioloba seedlings. Soil and root samples were collected from a farm in the Northern Cape, South Africa. Fifty-seven bacterial cultures were isolated from the soil and tested for plant growth promoting characteristics. Fourteen isolates showing at least four beneficial traits were molecularly identified using the GenBank database. The AM fungal and bacterial populations in the soil samples were assessed using Illumina sequencing. Sequences were identified using the MaarJAM and GenBank databases, respectively. Three separate pot trials were conducted to determine; 1) the effects of cadmium (Cd) on seedling growth; 2) the individual effects of three selected bacterial isolates and AM fungi alone and combined on seedling growth, and 3) the combined effects of the selected bacteria on AM fungal inoculated and uninoculated seedlings. Of the fourteen isolates the Enterobacter genera was the dominant species identified, with Acinetobacter, Pantoea and Bacillus each having one isolate. All were described as plant growth promoting rhizobacteria. One isolate from each genus, excluding Pantoea, was used in the pot trials. Three genera were identified in the AM fungal population that was assessed, namely Ambispora, Paraglomus and Glomus with Ambispora being the dominant genus. The bacterial population assessed showed a high diversity of bacteria from the Actinobacteria phylum being the dominant group. The results of the heavy metal pot trial showed that the symbiotic relationship between the seedlings and AM fungi increased the seedlings’ health and growth during heavy metal stress. The combination of bacteria and AM fungi increased growth parameters in all the inoculated seedlings, but not when compared to uninoculated seedlings indicating a possible competition for nutrients. The results were influenced by the presence of a nematode, which was suspected to have been seed borne. Further investigations on these interactions are required. Inoculation of AM fungi and selected PGPR is recommended for V. erioloba seedling production. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018
- Authors: Van Aswegen, Sunet
- Date: 2018
- Subjects: Vesicular-arbuscular mycorrhizas , Cadmium , Rhizobacteria , Plant growth-promoting rhizobacteria , Acacia erioloba
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/63716 , vital:28475
- Description: Vachellia erioloba (camel thorn) is one of South Africa’s economically important tree species and therefore requires further investigation to improve its health and growth. Beneficial soil microbes have positive effects on plants through various mechanisms such as nitrogen fixation, phosphate solubilisation, indole acetic acid and siderophore production and biofilm formation. These traits enhance plant growth and protect the host plant against parasitic organisms that are present in soil. The arbuscular mycorrhizal (AM) fungi are well known for their beneficial symbiotic effects on host plants. The objective of this study was to determine the role of AM fungi and associated beneficial rhizobacteria in improving the growth of V. erioloba seedlings. Soil and root samples were collected from a farm in the Northern Cape, South Africa. Fifty-seven bacterial cultures were isolated from the soil and tested for plant growth promoting characteristics. Fourteen isolates showing at least four beneficial traits were molecularly identified using the GenBank database. The AM fungal and bacterial populations in the soil samples were assessed using Illumina sequencing. Sequences were identified using the MaarJAM and GenBank databases, respectively. Three separate pot trials were conducted to determine; 1) the effects of cadmium (Cd) on seedling growth; 2) the individual effects of three selected bacterial isolates and AM fungi alone and combined on seedling growth, and 3) the combined effects of the selected bacteria on AM fungal inoculated and uninoculated seedlings. Of the fourteen isolates the Enterobacter genera was the dominant species identified, with Acinetobacter, Pantoea and Bacillus each having one isolate. All were described as plant growth promoting rhizobacteria. One isolate from each genus, excluding Pantoea, was used in the pot trials. Three genera were identified in the AM fungal population that was assessed, namely Ambispora, Paraglomus and Glomus with Ambispora being the dominant genus. The bacterial population assessed showed a high diversity of bacteria from the Actinobacteria phylum being the dominant group. The results of the heavy metal pot trial showed that the symbiotic relationship between the seedlings and AM fungi increased the seedlings’ health and growth during heavy metal stress. The combination of bacteria and AM fungi increased growth parameters in all the inoculated seedlings, but not when compared to uninoculated seedlings indicating a possible competition for nutrients. The results were influenced by the presence of a nematode, which was suspected to have been seed borne. Further investigations on these interactions are required. Inoculation of AM fungi and selected PGPR is recommended for V. erioloba seedling production. , Thesis (MSc) -- Faculty of Science, Biochemistry and Microbiology, 2018
- Full Text:
- Date Issued: 2018