Nutrient impacts on grasses and legumes growing in communal pasture soil in relation to mycorrhizal activity
- Authors: Mkile, Zolani
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/164512 , vital:41125 , doi:10.21504/10962/164512
- Description: Thesis (PhD)--Rhodes University, Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
- Authors: Mkile, Zolani
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/164512 , vital:41125 , doi:10.21504/10962/164512
- Description: Thesis (PhD)--Rhodes University, Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
Orchid mycorrhizal and endophytic fungal diversity of three co-occurring terrestrial orchids in the large African genus Disa (Orchidaceae)
- Khambule, Nondumiso Venessia
- Authors: Khambule, Nondumiso Venessia
- Date: 2020
- Subjects: Orchids South Africa , Mycorrhizal fungi South Africa , Endomycorrhizas South Africa , Endophytes , Orchids Roots
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/163341 , vital:41030
- Description: Orchids (in the family Orchidaceous) are one of the richest plant families and approximately 500 species are found in South Africa. A number of orchid species are found on disturbed areas and many of the terrestrial species grow in poor soils with low mineral nutrient availability. Most orchid species are thought to be associated with mycorrhizal fungi for germination and mycorrhiza provides nutrients for the survival of adult plants. The aim of this study was to select Orchidaceous plant species and to isolate, identify and characterize the orchid endophytes and assess these isolates for potential antimicrobial and enzymatic activities Isa is the largest genus in South Africa and three Disa species co-occurring in a small geographical area were selected. These included Disa bracteata, D. cornuta and D. polygonoides which span three sections of the genus. Roots were stained to confirm the mycorrhizal status of the Disa species. Mycorrhizal pelotons structures were microscopically observed inside root cells. The presence of pelotons is indictive of mycorrhizal fungal interactions within the orchid roots and areas associated with the site of nutrient exchange between plant and fungus. The presence of pelotons, however, does not give n indication of the fungal species involved. The endophytes were successfully isolated in pure cultures on potato dextrose agar (PDA). All slow growing isolates were selected, and further molecular identification undertaken; DNA was extracted, and PCR amplified using internal transcribed spacer (ITS1F and ITS4) fungal primers. The amplified products were then sequenced and analysed by comparison to sequences in the GenBank database. Trichoderma, Penicillium, Metapochonia, Talaromyces, Oidiodendron Neopestalotiopsis, and Chaetomium were identified from these sequences. The presence of other fungal root endophytes was suspected despite the rigorous surface sterilization procedure used. The primers used to amplify the ITS region are the universal barcoding primers which are specific to fungi. ITS1F is one of the primers designed to amplify a broad range of fungi. DNA was extracted from orchid roots and amplicons were cloned into a pGEMT plasmid vector. Individual clones were sequenced and aligned with Mega software and compared to sequences in the GenBank and UNITE database. Based on percentage sequence identity, unidentified Tulasnella species, Tullasnela colaspora, and various Ascomycota endophytes were identified as contributing to the endophytic root fungal diversity of the selected Disa species. The Disa species investigated in this study were associated with several soil endophytes. D. bracteata, D. polygonoides were collected from the same site along the road verge which is regarded as being disturbed. Based on both culture – dependent and independent techniques employed Oidiodendron was found associated with both species. Antimicrobial activity was determined using a well diffusion method using extracts from the isolated fungi against the bacterial isolates Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas puptida. Most of the isolated fungi showed at least one potential inhibition effect against one of the bacterial isolates. The extracts that showed potential antimicrobial activity could be further screened to determine the compounds produced as secondary metabolites using techniques such as LC-MS Enzymatic activities of protease, cellulose and amylase were determined using solid media amended with milk protein, carboxymethylcellulose (CMC) and starch. The majority of fungal isolates tested positive with amylase and cellulose with only a few fungal isolates testing positive for protease activity. Broth cultures containing CMC and starch were shown to enhance biomass production in approximately 40 % of the fungal isolates. Degradation of the substrates is required in order to provide carbon to the fungus under test in order to optimize fungal growth as well as to gain insight into their ecological role. Enzyme activity was evident particularly when cellulose and starch were provided as substrates. All the fungal isolates tested grew on the amended medium, with 40% of the isolates preferring to utilize CMC and/or starch, indicating the ability of these fungi to utilize various resources for carbon acquisitions. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
- Authors: Khambule, Nondumiso Venessia
- Date: 2020
- Subjects: Orchids South Africa , Mycorrhizal fungi South Africa , Endomycorrhizas South Africa , Endophytes , Orchids Roots
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/163341 , vital:41030
- Description: Orchids (in the family Orchidaceous) are one of the richest plant families and approximately 500 species are found in South Africa. A number of orchid species are found on disturbed areas and many of the terrestrial species grow in poor soils with low mineral nutrient availability. Most orchid species are thought to be associated with mycorrhizal fungi for germination and mycorrhiza provides nutrients for the survival of adult plants. The aim of this study was to select Orchidaceous plant species and to isolate, identify and characterize the orchid endophytes and assess these isolates for potential antimicrobial and enzymatic activities Isa is the largest genus in South Africa and three Disa species co-occurring in a small geographical area were selected. These included Disa bracteata, D. cornuta and D. polygonoides which span three sections of the genus. Roots were stained to confirm the mycorrhizal status of the Disa species. Mycorrhizal pelotons structures were microscopically observed inside root cells. The presence of pelotons is indictive of mycorrhizal fungal interactions within the orchid roots and areas associated with the site of nutrient exchange between plant and fungus. The presence of pelotons, however, does not give n indication of the fungal species involved. The endophytes were successfully isolated in pure cultures on potato dextrose agar (PDA). All slow growing isolates were selected, and further molecular identification undertaken; DNA was extracted, and PCR amplified using internal transcribed spacer (ITS1F and ITS4) fungal primers. The amplified products were then sequenced and analysed by comparison to sequences in the GenBank database. Trichoderma, Penicillium, Metapochonia, Talaromyces, Oidiodendron Neopestalotiopsis, and Chaetomium were identified from these sequences. The presence of other fungal root endophytes was suspected despite the rigorous surface sterilization procedure used. The primers used to amplify the ITS region are the universal barcoding primers which are specific to fungi. ITS1F is one of the primers designed to amplify a broad range of fungi. DNA was extracted from orchid roots and amplicons were cloned into a pGEMT plasmid vector. Individual clones were sequenced and aligned with Mega software and compared to sequences in the GenBank and UNITE database. Based on percentage sequence identity, unidentified Tulasnella species, Tullasnela colaspora, and various Ascomycota endophytes were identified as contributing to the endophytic root fungal diversity of the selected Disa species. The Disa species investigated in this study were associated with several soil endophytes. D. bracteata, D. polygonoides were collected from the same site along the road verge which is regarded as being disturbed. Based on both culture – dependent and independent techniques employed Oidiodendron was found associated with both species. Antimicrobial activity was determined using a well diffusion method using extracts from the isolated fungi against the bacterial isolates Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas puptida. Most of the isolated fungi showed at least one potential inhibition effect against one of the bacterial isolates. The extracts that showed potential antimicrobial activity could be further screened to determine the compounds produced as secondary metabolites using techniques such as LC-MS Enzymatic activities of protease, cellulose and amylase were determined using solid media amended with milk protein, carboxymethylcellulose (CMC) and starch. The majority of fungal isolates tested positive with amylase and cellulose with only a few fungal isolates testing positive for protease activity. Broth cultures containing CMC and starch were shown to enhance biomass production in approximately 40 % of the fungal isolates. Degradation of the substrates is required in order to provide carbon to the fungus under test in order to optimize fungal growth as well as to gain insight into their ecological role. Enzyme activity was evident particularly when cellulose and starch were provided as substrates. All the fungal isolates tested grew on the amended medium, with 40% of the isolates preferring to utilize CMC and/or starch, indicating the ability of these fungi to utilize various resources for carbon acquisitions. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
Prediction of mass spectra for natural products using an ab initio approach
- Authors: Novokoza, Yolanda
- Date: 2020
- Subjects: Molecular dynamics , Molecular dynamics -- Computer simulation , Mass spectroscopy , Electron impact ionization
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167166 , vital:41443
- Description: Mass spectrometry (MS) is a technique that measures the fragmentation of molecules, dependent on the molecule’s chemical composition and structure, by first introducing a charge on the molecules. The instrument records the mass to charge ratio, but the energy from the ionization process causes the molecule to fragment. The resultant mass spectrum is highly indicative of not only the molecule analyzed, but also its chemical composition. MS is used in research and industry for both routine and research purposes. One such way to ionize molecules for MS is by bombarding the molecule with electrons which is the basis of electron impact mass spectrometry (EIMS). Although EIMS is widely used, prediction of electron impact mass spectra from first principles is a challenging problem due to a need to accurately determine the probability of different fragmentation pathways of a molecule. Ab initio molecular dynamics based methods are able to explore in an automatic fashion the energetically available fragmentation paths thus give reaction mechanisms in an unbiased way. The mass spectra of five molecules have been explored in work-flows leading to the prediction of mass spectra. These molecules include three natural products alpha-hispanolol, PFB oxime derivative and boronolide (for which experimental mass spectra were not available) and two compounds from the NIST database (for which experimental mass spectra were available). For each of these systems many random conformations were generated using the RDKit library. To all conformations random velocities were applied to each atom. Ab initio molecular dynamics was performed on each conformer, using these initial random velocities using CP2K software, at DFTB+ level at a variety of highly raised temperatures (to accelerate the formation of fragments) Fragmentation was monitored by iterating through all bonds, and identifying bond breakages during dynamics. Graph theoretical packages were used then to track distinct fragments generated. For each of these fragments, charges were determined from Mulliken analysis for all atoms on the fragment from the QM calculations and sum of atomic spin densities per fragment was also plotted. The fragment with the greatest charge (corresponding to the formation of a cation fragment) was taken for plotting on the mass spectrum. Finally, from the mass of the fragment and its elemental composition, the isotopic distribution for the fragment was determined, and this distribution was included by addition in to the mass spectrum. For all trajectories, the sum of all isotopic distributions determined the final mass spectrum.
- Full Text:
- Date Issued: 2020
- Authors: Novokoza, Yolanda
- Date: 2020
- Subjects: Molecular dynamics , Molecular dynamics -- Computer simulation , Mass spectroscopy , Electron impact ionization
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167166 , vital:41443
- Description: Mass spectrometry (MS) is a technique that measures the fragmentation of molecules, dependent on the molecule’s chemical composition and structure, by first introducing a charge on the molecules. The instrument records the mass to charge ratio, but the energy from the ionization process causes the molecule to fragment. The resultant mass spectrum is highly indicative of not only the molecule analyzed, but also its chemical composition. MS is used in research and industry for both routine and research purposes. One such way to ionize molecules for MS is by bombarding the molecule with electrons which is the basis of electron impact mass spectrometry (EIMS). Although EIMS is widely used, prediction of electron impact mass spectra from first principles is a challenging problem due to a need to accurately determine the probability of different fragmentation pathways of a molecule. Ab initio molecular dynamics based methods are able to explore in an automatic fashion the energetically available fragmentation paths thus give reaction mechanisms in an unbiased way. The mass spectra of five molecules have been explored in work-flows leading to the prediction of mass spectra. These molecules include three natural products alpha-hispanolol, PFB oxime derivative and boronolide (for which experimental mass spectra were not available) and two compounds from the NIST database (for which experimental mass spectra were available). For each of these systems many random conformations were generated using the RDKit library. To all conformations random velocities were applied to each atom. Ab initio molecular dynamics was performed on each conformer, using these initial random velocities using CP2K software, at DFTB+ level at a variety of highly raised temperatures (to accelerate the formation of fragments) Fragmentation was monitored by iterating through all bonds, and identifying bond breakages during dynamics. Graph theoretical packages were used then to track distinct fragments generated. For each of these fragments, charges were determined from Mulliken analysis for all atoms on the fragment from the QM calculations and sum of atomic spin densities per fragment was also plotted. The fragment with the greatest charge (corresponding to the formation of a cation fragment) was taken for plotting on the mass spectrum. Finally, from the mass of the fragment and its elemental composition, the isotopic distribution for the fragment was determined, and this distribution was included by addition in to the mass spectrum. For all trajectories, the sum of all isotopic distributions determined the final mass spectrum.
- Full Text:
- Date Issued: 2020
Production, purification and characterization of a multifunctional, thermostable and acido/alkaline stable putative xylanase from the psychrotrophic bacterium, Sphingomonas aerolata
- Authors: Mathibe, Brian Nkanyiso
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164478 , vital:41122
- Description: Thesis (MSc)--Rhodes University, Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
- Authors: Mathibe, Brian Nkanyiso
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164478 , vital:41122
- Description: Thesis (MSc)--Rhodes University, Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
Structure and interaction studies of beta-amyloid in the search for new lead compounds for the treatment of Alzheimer’s disease
- Authors: Mtini, Onke
- Date: 2020
- Subjects: Alzheimer's disease -- Chemotherapy , Alzheimer's disease -- Treatment , Amyloid beta-protein , Oxidative stress , Protein binding , South African Natural Compounds Database
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167574 , vital:41493
- Description: Alzheimer’s disease (AD) is the most devastating neurodegenerative disorder that effects the aging population worldwide. In this study three hypotheses of AD are explored, the β-amyloid cascade hypothesis, the β-amyloid metal binding hypothesis and the oxidative stress hypothesis are explored. In the first case compounds from the South African Natural Compounds Database (SANCDB) are docked to models of β-amyloid fibrils and the properties of these fibrils under pulling simulations are compared to a known small molecule disruptor of β-amyloid, wgx-50. In these simulations SANCDB compounds are identified that disrupt β-amyloid in a similar manner to wgx-50. In these simulations the disruption to the free energy of binding of chains to the fibrils is quantified. For metal binding and oxidative stress hypotheses, problems in simulation arise due to only fragments of β-amyloid being present in the Research Collaboratory for Structural Bioinformatics protein data bank (RCSB PDB), as determined from NMR experiments. In this work, β-amyloid is set up under periodic boundary conditions to simulate a fibril under reasonable computational time. Within these periodic boundary conditions, β-amyloid has been solvated in copper and zinc rich environments and diffusion of these metals around the fibrils has been explored. The localization of these metals (in simulation only using van der Waal’s and electrostatic terms) around the fibril has led us to explore other possible metal binding sites. Metal bound to the infinite fibril has been optimized at the QM/MM level and some of the reactive oxygen species in the presence of the fibril are quantified.
- Full Text:
- Date Issued: 2020
- Authors: Mtini, Onke
- Date: 2020
- Subjects: Alzheimer's disease -- Chemotherapy , Alzheimer's disease -- Treatment , Amyloid beta-protein , Oxidative stress , Protein binding , South African Natural Compounds Database
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167574 , vital:41493
- Description: Alzheimer’s disease (AD) is the most devastating neurodegenerative disorder that effects the aging population worldwide. In this study three hypotheses of AD are explored, the β-amyloid cascade hypothesis, the β-amyloid metal binding hypothesis and the oxidative stress hypothesis are explored. In the first case compounds from the South African Natural Compounds Database (SANCDB) are docked to models of β-amyloid fibrils and the properties of these fibrils under pulling simulations are compared to a known small molecule disruptor of β-amyloid, wgx-50. In these simulations SANCDB compounds are identified that disrupt β-amyloid in a similar manner to wgx-50. In these simulations the disruption to the free energy of binding of chains to the fibrils is quantified. For metal binding and oxidative stress hypotheses, problems in simulation arise due to only fragments of β-amyloid being present in the Research Collaboratory for Structural Bioinformatics protein data bank (RCSB PDB), as determined from NMR experiments. In this work, β-amyloid is set up under periodic boundary conditions to simulate a fibril under reasonable computational time. Within these periodic boundary conditions, β-amyloid has been solvated in copper and zinc rich environments and diffusion of these metals around the fibrils has been explored. The localization of these metals (in simulation only using van der Waal’s and electrostatic terms) around the fibril has led us to explore other possible metal binding sites. Metal bound to the infinite fibril has been optimized at the QM/MM level and some of the reactive oxygen species in the presence of the fibril are quantified.
- Full Text:
- Date Issued: 2020
The exploration of ARF1 screening assays to determine the drug status of ARF1 in cancer and malaria
- Authors: Ntlantsana, Apelele
- Date: 2020
- Subjects: ADP ribosylation , Golgi apparatus , Guanosine triphosphatase , G proteins , Malariotherapy , Malaria -- Research , Cancer -- Chemotherapy , Malaria -- Chemotherpay
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167232 , vital:41458
- Description: ARF GTPases are key regulators of the secretory and endocytic pathways. ARF1 is involved in the secretory pathway. ARF1 has been implicated in the endoplasmic reticulum to Golgi transport, function of the Golgi apparatus and transport from the trans-Golgi network to endosomes. ARFs cycle between active GTP-bound and inactive GDP-bound conformations. GDP/GTP cycling is regulated by large families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). ARF GEFs facilitate the activation of ARFs by mediating the exchange of GDP for GTP, while ARF GAPs terminate ARF function by stimulating the hydrolysis of the terminal phosphate group of GTP. Based on existing evidence gained from gene manipulation and cell biological investigations, ARF1 has been shown to be fundamentally important for cancer cell proliferation and metastasis and may be a promising target for the development of anti-cancer drugs. Additionally, the conservation of ARFs in eukaryotic organisms leads to an interesting question of whether a single drug target can be used to target multiple diseases. In this case, can a human cancer drug employed for cancer therapy be used in anti-malarial drug therapies? To confirm the drug target status of ARFs using chemical validation experiments, novel inhibitory compounds are needed. This requires the development of complex in vitro protein- protein interaction assays that can be used to screen chemical libraries for ARF GTPase inhibitors. In this study, we developed a fluorescence resonance energy transfer (FRET) assay and a novel in vitro colorimetric plate-based assay to detect the activation status of truncated human and Plasmodium falciparum ARF1. In the case of the FRET assay, active (GTP-bound) and inactive (GDP-bound) ARF1 could be distinguished with Z-factor values >0.5, suggesting that further development of the assay format to identify GEF and GAP inhibitors may be feasible. In the case of the colorimetric assay, robust signals could be detected and the assay was useful for detecting the activation status of ARF1. However, although the activation of ARF1 by the Sec7 domains of the BIG1 and ARNO was detectable, signals were not robust enough to employ in screening campaigns.
- Full Text:
- Date Issued: 2020
- Authors: Ntlantsana, Apelele
- Date: 2020
- Subjects: ADP ribosylation , Golgi apparatus , Guanosine triphosphatase , G proteins , Malariotherapy , Malaria -- Research , Cancer -- Chemotherapy , Malaria -- Chemotherpay
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167232 , vital:41458
- Description: ARF GTPases are key regulators of the secretory and endocytic pathways. ARF1 is involved in the secretory pathway. ARF1 has been implicated in the endoplasmic reticulum to Golgi transport, function of the Golgi apparatus and transport from the trans-Golgi network to endosomes. ARFs cycle between active GTP-bound and inactive GDP-bound conformations. GDP/GTP cycling is regulated by large families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). ARF GEFs facilitate the activation of ARFs by mediating the exchange of GDP for GTP, while ARF GAPs terminate ARF function by stimulating the hydrolysis of the terminal phosphate group of GTP. Based on existing evidence gained from gene manipulation and cell biological investigations, ARF1 has been shown to be fundamentally important for cancer cell proliferation and metastasis and may be a promising target for the development of anti-cancer drugs. Additionally, the conservation of ARFs in eukaryotic organisms leads to an interesting question of whether a single drug target can be used to target multiple diseases. In this case, can a human cancer drug employed for cancer therapy be used in anti-malarial drug therapies? To confirm the drug target status of ARFs using chemical validation experiments, novel inhibitory compounds are needed. This requires the development of complex in vitro protein- protein interaction assays that can be used to screen chemical libraries for ARF GTPase inhibitors. In this study, we developed a fluorescence resonance energy transfer (FRET) assay and a novel in vitro colorimetric plate-based assay to detect the activation status of truncated human and Plasmodium falciparum ARF1. In the case of the FRET assay, active (GTP-bound) and inactive (GDP-bound) ARF1 could be distinguished with Z-factor values >0.5, suggesting that further development of the assay format to identify GEF and GAP inhibitors may be feasible. In the case of the colorimetric assay, robust signals could be detected and the assay was useful for detecting the activation status of ARF1. However, although the activation of ARF1 by the Sec7 domains of the BIG1 and ARNO was detectable, signals were not robust enough to employ in screening campaigns.
- Full Text:
- Date Issued: 2020
The novobiocin-induced turnover of fibronectin via low density lipoprotein receptor-related protein 1 alters matrix morphology with physiological consequences on cell growth and migration
- Authors: Boёl, Natasha Marie-Eraine
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/114778 , vital:34034 , 10.21504/10962/114778
- Description: Fibronectin (FN), an extracellular matrix protein, is secreted as a soluble dimer which is assembled into an insoluble extracellular matrix. The dynamics of FN matrix assembly and degradation play a large role in cell migration and invasion thereby contributing to the metastatic potential of cancer cells. Previous studies have shown the direct binding of Heat Shock Protein 90 kDa (Hsp90) and FN in vitro, and that inhibition of Hsp90 with novobiocin (NOV) caused internalisation of the FN matrix. Low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous receptor known to bind both Hsp90 and FN. Using an LRP1 expressing Hs578T breast cancer cell line and an isogenic mouse embryonic fibroblast (MEF) model system of differential LRP1 expression we demonstrate that LRP1 is involved in turnover of FN in response to C-terminal Hsp90 inhibition. The first objective of this study was to identify the mechanism of NOV-induced LRP1-mediated FN turnover. Our data show that NOV-mediated FN turnover via LRP1 did not require the activity of matrix metalloproteinases (MMPs), which play an important role in processing and degradation of the extracellular matrix and FN. In addition, the levels of the main FN receptor responsible for its extracellular assembly, β1-integrin, did not change in response to NOV. LRP1 is known to undergo regulated intramembrane proteolysis (RIP) which generates smaller fragments that may translocate to the nucleus and modulate gene transcription. Using inhibitors of LRP1 cleavage and nuclear fractionation we determined that LRP1 processing was not required for the NOV-induced FN response suggesting that a mechanism unrelated to LRP1 RIP is involved. A possible mechanism may be in altered Hsp90-LRP1 cell signalling as we observed disruption of the FN-Hsp90-LRP1 complex at the cell surface in NOV treated cells. How this affects downstream eHsp90-LRP1 signalling is still to be determined but may be related to a significant increase in phospho-AKT and loss of phospho-ERK upon NOV-treatment; two key signalling proteins involved in FN matrix regulation and which are downstream of LRP1 signalling. The second objective of this study was to determine the physiological consequences associated with FN turnover in response to NOV treatment. Using migration assays we demonstrated that levels of insoluble matrix-associated FN and FN concentration are not solely responsible for migratory capacity of cells on decellularized extracellular matrices, but rather that structural composition and integrity of the matrix plays a bigger role. Using confocal and scanning electron microscopy, we identified NOV treated matrices to be flatter, less mature and contain thicker, rope-like FN fibrils to which cells adhered better but were generally less proliferative. Comparatively, cells adhered less to the more mature and 3-dimensional untreated matrices but exhibited increased spreading and cell growth, which may in part be due to the thinner fibrils and web-like matrix. In summary, this study substantiates the role of LRP1 in NOV-mediated FN turnover, and provides new insights into the possible mechanisms of the Hsp90-LRP1 mediated loss of FN matrix. This is the first study to demonstrate some of the functional consequences related to FN turnover by NOV at the ECM level. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text: false
- Date Issued: 2020
- Authors: Boёl, Natasha Marie-Eraine
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/114778 , vital:34034 , 10.21504/10962/114778
- Description: Fibronectin (FN), an extracellular matrix protein, is secreted as a soluble dimer which is assembled into an insoluble extracellular matrix. The dynamics of FN matrix assembly and degradation play a large role in cell migration and invasion thereby contributing to the metastatic potential of cancer cells. Previous studies have shown the direct binding of Heat Shock Protein 90 kDa (Hsp90) and FN in vitro, and that inhibition of Hsp90 with novobiocin (NOV) caused internalisation of the FN matrix. Low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous receptor known to bind both Hsp90 and FN. Using an LRP1 expressing Hs578T breast cancer cell line and an isogenic mouse embryonic fibroblast (MEF) model system of differential LRP1 expression we demonstrate that LRP1 is involved in turnover of FN in response to C-terminal Hsp90 inhibition. The first objective of this study was to identify the mechanism of NOV-induced LRP1-mediated FN turnover. Our data show that NOV-mediated FN turnover via LRP1 did not require the activity of matrix metalloproteinases (MMPs), which play an important role in processing and degradation of the extracellular matrix and FN. In addition, the levels of the main FN receptor responsible for its extracellular assembly, β1-integrin, did not change in response to NOV. LRP1 is known to undergo regulated intramembrane proteolysis (RIP) which generates smaller fragments that may translocate to the nucleus and modulate gene transcription. Using inhibitors of LRP1 cleavage and nuclear fractionation we determined that LRP1 processing was not required for the NOV-induced FN response suggesting that a mechanism unrelated to LRP1 RIP is involved. A possible mechanism may be in altered Hsp90-LRP1 cell signalling as we observed disruption of the FN-Hsp90-LRP1 complex at the cell surface in NOV treated cells. How this affects downstream eHsp90-LRP1 signalling is still to be determined but may be related to a significant increase in phospho-AKT and loss of phospho-ERK upon NOV-treatment; two key signalling proteins involved in FN matrix regulation and which are downstream of LRP1 signalling. The second objective of this study was to determine the physiological consequences associated with FN turnover in response to NOV treatment. Using migration assays we demonstrated that levels of insoluble matrix-associated FN and FN concentration are not solely responsible for migratory capacity of cells on decellularized extracellular matrices, but rather that structural composition and integrity of the matrix plays a bigger role. Using confocal and scanning electron microscopy, we identified NOV treated matrices to be flatter, less mature and contain thicker, rope-like FN fibrils to which cells adhered better but were generally less proliferative. Comparatively, cells adhered less to the more mature and 3-dimensional untreated matrices but exhibited increased spreading and cell growth, which may in part be due to the thinner fibrils and web-like matrix. In summary, this study substantiates the role of LRP1 in NOV-mediated FN turnover, and provides new insights into the possible mechanisms of the Hsp90-LRP1 mediated loss of FN matrix. This is the first study to demonstrate some of the functional consequences related to FN turnover by NOV at the ECM level. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text: false
- Date Issued: 2020
The Role of HSP70/HSP90 Organizing Protein (Hop) in the Heat Shock Factor 1 (HSF1)-mediated Stress Response
- Authors: Chakraborty, Abantika
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/163204 , vital:41018 , doi:10.21504/10962/163204
- Description: Molecular chaperones regulate cellular proteostasis. They control protein conformation and prevent misfolding and aggregation under both normal and stressful environments, ultimately resulting in cell survival. The project aimed to understand the role of the HSP70 – HSP90 Organizing Protein (Hop/STIP1) in the survival of stressed cells and the function of the stress-responsive transcription factor, Heat Shock Factor 1 (HSF1). HSF1 protein levels were significantly reduced in Hop-depleted HEK293T cells compared to controls by ELISA, western blot, and mass spectrometry. HSF1 transcriptional activity at the HSP70 promoter, and binding of a biotinylated HSE oligonucleotide under basal conditions were significantly reduced, consistent with the reduced levels of HSF1. In response to heat shock, HSF1 levels in Hop-depleted cells increased to that of controls, but there was still significantly lowerHSF1 transcriptional activity and HSE binding. Hop-depleted HEK293T cells were more sensitive than controls to the HSF1 inhibitor KRIBB11 and showed reduced short-term and long-term proliferation. Unlike the HSP90 inhibitor 17-DMAG, which had no effect, the HSP70 inhibitor JG98, further decreased the levels of HSF1 in Hop-depleted cells, suggesting a role for HSP70 in the Hop-mediated effects. There was punctate nuclear staining for HSF1 in Hop-depleted cells under both basal and heat shock conditions, as well as reduced nuclear localization and increased cytoplasmic accumulation of HSF1 in response to heat shock. Hop and HSF1 colocalized in cells, and HSF1 could be isolated in complex with Hop and HSP70. Loss of Hop reduced HSF1 in HSP70complexes but did not affect HSF1 abundance in HSP90 complexes. Hop-depleted cells showed reduced short-term and long-term survival compared to controls, an effect that was potentiated by the JG98 HSP70 inhibitor. Taken together, these data suggest that Hop regulation of HSF1activity is via a mechanism involving reductions in HSP70 interaction, as well as reduced nuclear localization, and DNA binding, and is consistent with reduced cellular fitness under basal and stress conditions. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
- Authors: Chakraborty, Abantika
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/163204 , vital:41018 , doi:10.21504/10962/163204
- Description: Molecular chaperones regulate cellular proteostasis. They control protein conformation and prevent misfolding and aggregation under both normal and stressful environments, ultimately resulting in cell survival. The project aimed to understand the role of the HSP70 – HSP90 Organizing Protein (Hop/STIP1) in the survival of stressed cells and the function of the stress-responsive transcription factor, Heat Shock Factor 1 (HSF1). HSF1 protein levels were significantly reduced in Hop-depleted HEK293T cells compared to controls by ELISA, western blot, and mass spectrometry. HSF1 transcriptional activity at the HSP70 promoter, and binding of a biotinylated HSE oligonucleotide under basal conditions were significantly reduced, consistent with the reduced levels of HSF1. In response to heat shock, HSF1 levels in Hop-depleted cells increased to that of controls, but there was still significantly lowerHSF1 transcriptional activity and HSE binding. Hop-depleted HEK293T cells were more sensitive than controls to the HSF1 inhibitor KRIBB11 and showed reduced short-term and long-term proliferation. Unlike the HSP90 inhibitor 17-DMAG, which had no effect, the HSP70 inhibitor JG98, further decreased the levels of HSF1 in Hop-depleted cells, suggesting a role for HSP70 in the Hop-mediated effects. There was punctate nuclear staining for HSF1 in Hop-depleted cells under both basal and heat shock conditions, as well as reduced nuclear localization and increased cytoplasmic accumulation of HSF1 in response to heat shock. Hop and HSF1 colocalized in cells, and HSF1 could be isolated in complex with Hop and HSP70. Loss of Hop reduced HSF1 in HSP70complexes but did not affect HSF1 abundance in HSP90 complexes. Hop-depleted cells showed reduced short-term and long-term survival compared to controls, an effect that was potentiated by the JG98 HSP70 inhibitor. Taken together, these data suggest that Hop regulation of HSF1activity is via a mechanism involving reductions in HSP70 interaction, as well as reduced nuclear localization, and DNA binding, and is consistent with reduced cellular fitness under basal and stress conditions. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
The role of the Hop co-chaperone in the formation of Hsp90 complexes: chaperone link to glycolysis
- Authors: Maharaj, Shantal
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/163593 , vital:41051 , doi:10.21504/10962/163593
- Description: Thesis (PhD)--Rhodes University, Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
- Authors: Maharaj, Shantal
- Date: 2020
- Subjects: Uncatalogued
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/163593 , vital:41051 , doi:10.21504/10962/163593
- Description: Thesis (PhD)--Rhodes University, Faculty of Science, Biochemistry and Microbiology, 2020
- Full Text:
- Date Issued: 2020
A computational analysis to decipher the pathways of stability, uncoating and antigenicity of human enterovirus capsids
- Authors: Ross, Caroline Jane
- Date: 2019
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/114788 , vital:34035 , 10.21504/10962/114788
- Description: Expected release date-April 2021
- Full Text: false
- Date Issued: 2019
- Authors: Ross, Caroline Jane
- Date: 2019
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/114788 , vital:34035 , 10.21504/10962/114788
- Description: Expected release date-April 2021
- Full Text: false
- Date Issued: 2019
A dynamics based analysis of allosteric modulation in heat shock proteins
- Authors: Penkler, David Lawrence
- Date: 2019
- Subjects: Heat shock proteins , Molecular chaperones , Allosteric regulation , Homeostasis , Protein kinases , Transcription factors , Adenosine triphosphatase , Cancer -- Chemotherapy , Molecular dynamics , High throughput screening (Drug development)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115948 , vital:34273
- Description: The 70 kDa and 90 kDa heat shock proteins (Hsp70 and Hsp90) are molecular chaperones that play central roles in maintaining cellular homeostasis in all organisms of life with the exception of archaea. In addition to their general chaperone function in protein quality control, Hsp70 and Hsp90 cooperate in the regulation and activity of some 200 known natively folded protein clients which include protein kinases, transcription factors and receptors, many of which are implicated as key regulators of essential signal transduction pathways. Both chaperones are considered to be large multi-domain proteins that rely on ATPase activity and co-chaperone interactions to regulate their conformational cycles for peptide binding and release. The unique positioning of Hsp90 at the crossroads of several fundamental cellular pathways coupled with its known association with diverse oncogenic peptide clients has brought the molecular chaperone under increasing interest as a potential anti-cancer target that is crucially implicated with all eight hallmarks of the disease. Current orthosteric drug discovery efforts aimed at the inhibition of the ATPase domain of Hsp90 have been limited due to high levels of associated toxicity. In an effort to circumnavigate this, the combined focus of research efforts is shifting toward alternative approaches such as interference with co-chaperone binding and the allosteric inhibition/activation of the molecular chaperone. The overriding aim of this thesis was to demonstrate how the computational technique of Perturbation response scanning (PRS) coupled with all-atom molecular dynamics simulations (MD) and dynamic residue interaction network (DRN) analysis can be used as a viable strategy to efficiently scan and accurately identify allosteric control element capable of modulating the functional dynamics of a protein. In pursuit of this goal, this thesis also contributes to the current understanding of the nucleotide dependent allosteric mechanisms at play in cellular functionality of both Hsp70 and Hsp90. All-atom MD simulations of E. coli DnaK provided evidence of nucleotide driven modulation of conformational dynamics in both the catalytically active and inactive states. PRS analysis employed on these trajectories demonstrated sensitivity toward bound nucleotide and peptide substrate, and provided evidence of a putative allosterically active intermediate state between the ATPase active and inactive conformational states. Simultaneous binding of ATP and peptide substrate was found to allosterically prime the chaperone for interstate conversion regardless of the transition direction. Detailed analysis of these allosterically primed states revealed select residue sites capable of selecting a coordinate shift towards the opposite conformational state. In an effort to validate these results, the predicted allosteric hot spot sites were cross-validated with known experimental works and found to overlap with functional sites implicated in allosteric signal propagation and ATPase activation in Hsp70. This study presented for the first time, the application of PRS as a suitable diagnostic tool for the elucidation and quantification of the allosteric potential of select residues to effect functionally relevant global conformational rearrangements. The PRS methodology described in this study was packaged within the Python programming environment in the MD-TASK software suite for command-line ease of use and made freely available. Homology modelling techniques were used to address the lack of experimental structural data for the human cytosolic isoform of Hsp90 and for the first time provided accurate full-length structural models of human Hsp90α in fully-closed and partially-open conformations. Long-range all-atom MD simulations of these structures revealed nucleotide driven modulation of conformational dynamics in Hsp90. Subsequent DRN and PRS analysis of these MD trajectories allowed for the quantification and elucidation of nucleotide driven allosteric modulation in the molecular chaperone. A detailed PRS analysis revealed allosteric inter-domain coupling between the extreme terminals of the chaperone in response to external force perturbations at either domain. Furthermore PRS also identified several individual residue sites that are capable of selecting conformational rearrangements towards functionally relevant states which may be considered to be putative allosteric target sites for future drug discovery efforts Molecular docking techniques were employed to investigate the modulation of conformational dynamics of human Hsp90α in response to ligand binding interactions at two identified allosteric sites at the C-terminal. High throughput screening of a small library of natural compounds indigenous to South Africa revealed three hit compounds at these sites: Cephalostatin 17, 20(29)-Lupene-3β isoferulate and 3'-Bromorubrolide F. All-atom MD simulations on these protein-ligand complexes coupled with DRN analysis and several advanced trajectory based analysis techniques provided evidence of selective allosteric modulation of Hsp90α conformational dynamics in response to the identity and location of the bound ligands. Ligands bound at the four-helix bundle presented as putative allosteric inhibitors of Hsp90α, driving conformational dynamics in favour of dimer opening and possibly dimer separation. Meanwhile, ligand interactions at an adjacent sub-pocket located near the interface between the middle and C-terminal domains demonstrated allosteric activation of the chaperone, modulating conformational dynamics in favour of the fully-closed catalytically active conformational state. Taken together, the data presented in this thesis contributes to the understanding of allosteric modulation of conformational dynamics in Hsp70 and Hsp90, and provides a suitable platform for future biochemical and drug discovery studies. Furthermore, the molecular docking and computational identification of allosteric compounds with suitable binding affinity for allosteric sites at the CTD of human Hsp90α provide for the first time “proof-of-principle” for the use of PRS in conjunction with MD simulations and DRN analysis as a suitable method for the rapid identification of allosteric sites in proteins that can be probed by small molecule interaction. The data presented in this section could pave the way for future allosteric drug discovery studies for the treatment of Hsp90 associated pathologies.
- Full Text:
- Date Issued: 2019
- Authors: Penkler, David Lawrence
- Date: 2019
- Subjects: Heat shock proteins , Molecular chaperones , Allosteric regulation , Homeostasis , Protein kinases , Transcription factors , Adenosine triphosphatase , Cancer -- Chemotherapy , Molecular dynamics , High throughput screening (Drug development)
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/115948 , vital:34273
- Description: The 70 kDa and 90 kDa heat shock proteins (Hsp70 and Hsp90) are molecular chaperones that play central roles in maintaining cellular homeostasis in all organisms of life with the exception of archaea. In addition to their general chaperone function in protein quality control, Hsp70 and Hsp90 cooperate in the regulation and activity of some 200 known natively folded protein clients which include protein kinases, transcription factors and receptors, many of which are implicated as key regulators of essential signal transduction pathways. Both chaperones are considered to be large multi-domain proteins that rely on ATPase activity and co-chaperone interactions to regulate their conformational cycles for peptide binding and release. The unique positioning of Hsp90 at the crossroads of several fundamental cellular pathways coupled with its known association with diverse oncogenic peptide clients has brought the molecular chaperone under increasing interest as a potential anti-cancer target that is crucially implicated with all eight hallmarks of the disease. Current orthosteric drug discovery efforts aimed at the inhibition of the ATPase domain of Hsp90 have been limited due to high levels of associated toxicity. In an effort to circumnavigate this, the combined focus of research efforts is shifting toward alternative approaches such as interference with co-chaperone binding and the allosteric inhibition/activation of the molecular chaperone. The overriding aim of this thesis was to demonstrate how the computational technique of Perturbation response scanning (PRS) coupled with all-atom molecular dynamics simulations (MD) and dynamic residue interaction network (DRN) analysis can be used as a viable strategy to efficiently scan and accurately identify allosteric control element capable of modulating the functional dynamics of a protein. In pursuit of this goal, this thesis also contributes to the current understanding of the nucleotide dependent allosteric mechanisms at play in cellular functionality of both Hsp70 and Hsp90. All-atom MD simulations of E. coli DnaK provided evidence of nucleotide driven modulation of conformational dynamics in both the catalytically active and inactive states. PRS analysis employed on these trajectories demonstrated sensitivity toward bound nucleotide and peptide substrate, and provided evidence of a putative allosterically active intermediate state between the ATPase active and inactive conformational states. Simultaneous binding of ATP and peptide substrate was found to allosterically prime the chaperone for interstate conversion regardless of the transition direction. Detailed analysis of these allosterically primed states revealed select residue sites capable of selecting a coordinate shift towards the opposite conformational state. In an effort to validate these results, the predicted allosteric hot spot sites were cross-validated with known experimental works and found to overlap with functional sites implicated in allosteric signal propagation and ATPase activation in Hsp70. This study presented for the first time, the application of PRS as a suitable diagnostic tool for the elucidation and quantification of the allosteric potential of select residues to effect functionally relevant global conformational rearrangements. The PRS methodology described in this study was packaged within the Python programming environment in the MD-TASK software suite for command-line ease of use and made freely available. Homology modelling techniques were used to address the lack of experimental structural data for the human cytosolic isoform of Hsp90 and for the first time provided accurate full-length structural models of human Hsp90α in fully-closed and partially-open conformations. Long-range all-atom MD simulations of these structures revealed nucleotide driven modulation of conformational dynamics in Hsp90. Subsequent DRN and PRS analysis of these MD trajectories allowed for the quantification and elucidation of nucleotide driven allosteric modulation in the molecular chaperone. A detailed PRS analysis revealed allosteric inter-domain coupling between the extreme terminals of the chaperone in response to external force perturbations at either domain. Furthermore PRS also identified several individual residue sites that are capable of selecting conformational rearrangements towards functionally relevant states which may be considered to be putative allosteric target sites for future drug discovery efforts Molecular docking techniques were employed to investigate the modulation of conformational dynamics of human Hsp90α in response to ligand binding interactions at two identified allosteric sites at the C-terminal. High throughput screening of a small library of natural compounds indigenous to South Africa revealed three hit compounds at these sites: Cephalostatin 17, 20(29)-Lupene-3β isoferulate and 3'-Bromorubrolide F. All-atom MD simulations on these protein-ligand complexes coupled with DRN analysis and several advanced trajectory based analysis techniques provided evidence of selective allosteric modulation of Hsp90α conformational dynamics in response to the identity and location of the bound ligands. Ligands bound at the four-helix bundle presented as putative allosteric inhibitors of Hsp90α, driving conformational dynamics in favour of dimer opening and possibly dimer separation. Meanwhile, ligand interactions at an adjacent sub-pocket located near the interface between the middle and C-terminal domains demonstrated allosteric activation of the chaperone, modulating conformational dynamics in favour of the fully-closed catalytically active conformational state. Taken together, the data presented in this thesis contributes to the understanding of allosteric modulation of conformational dynamics in Hsp70 and Hsp90, and provides a suitable platform for future biochemical and drug discovery studies. Furthermore, the molecular docking and computational identification of allosteric compounds with suitable binding affinity for allosteric sites at the CTD of human Hsp90α provide for the first time “proof-of-principle” for the use of PRS in conjunction with MD simulations and DRN analysis as a suitable method for the rapid identification of allosteric sites in proteins that can be probed by small molecule interaction. The data presented in this section could pave the way for future allosteric drug discovery studies for the treatment of Hsp90 associated pathologies.
- Full Text:
- Date Issued: 2019
Arbuscular mycorrhizal fungi as a bio-indicator of soil health under agricultural management practices in South Africa
- Authors: Sekgota, Wendy Maphefo
- Date: 2019
- Subjects: Soils -- Quality -- South Africa , Soil fertility -- South Africa , Fungi in agriculture -- South Africa , Mycorrhizal fungi , Vesicular-arbuscular mycorrhizas , Fungi -- Spores , Soils -- Agricultural chemical content
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/72161 , vital:30011
- Description: This study investigated the activity of arbuscular mycorrhizal (AM) fungi as a potential biological indicator of soil health under conventional and conservation agricultural management in South Africa. An experimental trial consisting of three replicates plots under conventional and reduced tillage subdivided into twelve treatments of six crops and two fertilizer inputs was assessed over four growing seasons for various AM fungal parameters such as spore density, most probable number (MPN) of propagules percentage root colonisation and easily extractable glomalin (EEG). Cropping combinations were maize monoculture; maize soybean rotation; maize cowpea rotation; maize cowpea intercropping; maize oats intercropping and maize vetch intercropping. Resident AM fungal spore numbers and EEG protein levels were very low and no root colonization was recorded in the first two growing seasons. These findings prompted the need for the inoculation of the study site in the third growing season with a commercial AM fungal product (MycorootTM). Spore numbers, EEG concentrations and percentage root colonisation increased 8 weeks after inoculation but were significantly reduced in the fourth growing season that was not inoculated. MPN infectivity increased with inoculation particularly under conventional tillage and maize monoculture. Resident spore taxa were morphologically identified into three genera Gigaspora, Scutellospora, and Glomus. For the first two growing seasons, the maize roots were heavily colonized by a pathogenic fungus after mycorrhizal inoculation no evidence of pathogenic fungi was observed. In the fourth growing season which did not receive inoculation, root colonization started to decline. Reduced tillage, high fertilizer input combined with maize cowpea rotation (MC) and maize hairy vetch intercropping (Mv) had a significant effect (P = 0.01) on AM fungal spore numbers. Cropping systems and high fertilizer input had a significant effect on EEG concentrations in the second growing season. Overall, fertilizer application and crop type had implications for mycorrhizal activity. The soil health status in this study site was deemed low as measured by the impaired mycorrhizal activity due to agricultural management practices. Field inoculation combined with classical and molecular tools could provide a more realistic assessment of the effect of agricultural management practices on AM fungi as potential bioindicators of soil health. Therefore, AM fungi could be used as bioindicators of soil health under agricultural management practices in South African soil conditions.
- Full Text:
- Date Issued: 2019
- Authors: Sekgota, Wendy Maphefo
- Date: 2019
- Subjects: Soils -- Quality -- South Africa , Soil fertility -- South Africa , Fungi in agriculture -- South Africa , Mycorrhizal fungi , Vesicular-arbuscular mycorrhizas , Fungi -- Spores , Soils -- Agricultural chemical content
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/72161 , vital:30011
- Description: This study investigated the activity of arbuscular mycorrhizal (AM) fungi as a potential biological indicator of soil health under conventional and conservation agricultural management in South Africa. An experimental trial consisting of three replicates plots under conventional and reduced tillage subdivided into twelve treatments of six crops and two fertilizer inputs was assessed over four growing seasons for various AM fungal parameters such as spore density, most probable number (MPN) of propagules percentage root colonisation and easily extractable glomalin (EEG). Cropping combinations were maize monoculture; maize soybean rotation; maize cowpea rotation; maize cowpea intercropping; maize oats intercropping and maize vetch intercropping. Resident AM fungal spore numbers and EEG protein levels were very low and no root colonization was recorded in the first two growing seasons. These findings prompted the need for the inoculation of the study site in the third growing season with a commercial AM fungal product (MycorootTM). Spore numbers, EEG concentrations and percentage root colonisation increased 8 weeks after inoculation but were significantly reduced in the fourth growing season that was not inoculated. MPN infectivity increased with inoculation particularly under conventional tillage and maize monoculture. Resident spore taxa were morphologically identified into three genera Gigaspora, Scutellospora, and Glomus. For the first two growing seasons, the maize roots were heavily colonized by a pathogenic fungus after mycorrhizal inoculation no evidence of pathogenic fungi was observed. In the fourth growing season which did not receive inoculation, root colonization started to decline. Reduced tillage, high fertilizer input combined with maize cowpea rotation (MC) and maize hairy vetch intercropping (Mv) had a significant effect (P = 0.01) on AM fungal spore numbers. Cropping systems and high fertilizer input had a significant effect on EEG concentrations in the second growing season. Overall, fertilizer application and crop type had implications for mycorrhizal activity. The soil health status in this study site was deemed low as measured by the impaired mycorrhizal activity due to agricultural management practices. Field inoculation combined with classical and molecular tools could provide a more realistic assessment of the effect of agricultural management practices on AM fungi as potential bioindicators of soil health. Therefore, AM fungi could be used as bioindicators of soil health under agricultural management practices in South African soil conditions.
- Full Text:
- Date Issued: 2019
Biochemical characterization of the β-mannanase activity of Bacillus paralicheniformis SVD1
- Authors: Clarke, Matthew David
- Date: 2019
- Subjects: Mycobacterium avium paratuberculosis , Enzymes -- Biotechnology , Lignocellulose -- Biotechnology
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67570 , vital:29112
- Description: Products produced via the enzymatic hydrolysis of lignocellulosic biomass, the most abundant renewable terrestrial source of carbon, can potentially replace a lot of the fuels and chemicals currently produced using non-renewable hydrocarbons. Mannan is a polysaccharide component of lignocellulose that is abundant in softwoods and legume seeds. Enzymatic hydrolysis of mannan by β-mannanases has various industrial applications, including use in biofuel and prebiotic mannooligosaccharide (MOS) production for the improvement of human and animal health. The industrial use of β-mannanases depends on their biochemical characteristics, such as their activity, stability and substrate specificity. Knowledge of their synergistic interactions with other enzymes is also useful for effective hydrolysis. Bacillus paralicheniformis SVD1 was used as a source for β-mannanases. The two mannanases of B. paralicheniformis SVD1 have not been biochemically characterized apart from minor characterization of crude β-mannanase activity. The protein sequences of the two β-mannanases, of glycosyl hydrolase family 5 and 26, have a 95% - 96% identity to the β-mannanases of B. licheniformis DSM13T (=ATCC14580T). These small protein sequence differences could lead to quite different biochemical characteristics. These mannanases were characterized as these enzymes may have industrially useful characteristics. To induce mannanase production, B. paralicheniformis SVD1 was cultured in broth containing the mannan substrate locust bean gum. Various growth curve parameters were measured over 72 h. Mannanase activity was the highest after 48 h of growth - this was the time at which mannanase activity was concentrated, using 3 kDa centrifugal filtration devices, for biochemical characterization of the crude activity. Zymography revealed that the crude concentrated mannanase fraction consisted of at least two mannanases with relative molecular weights (MWs) of 29.6 kDa and 33 kDa. This was smaller than expected – based on their theoretical molecular masses. Protease activity, which was detected in the broth, was probably the reason. There were two pH optima, pH 5.0 and pH 7.0, which also indicated the presence of two mannanases. The concentrated mannanase displayed characteristics that were expected of a B. paralicheniformis β-mannanase. The temperature optimum was 50°C and the activity loss was less than 7% at 50°C after 24 h. Substrate specificity assays revealed that there was predominantly mannanase activity present. Thin layer chromatography (TLC) analysis of mannan and MOS hydrolysis showed that mainly M2 and M3 MOS were produced; only MOS with a degree of polymerization of 4 or higher were hydrolyzed. Hydrolysis was minimal on mannoligosaccharides with galactose substituents. Activity and MOS production was the highest on soluble, low branched mannan substrates. The highest activity observed was on konjac glucomannan. Purification of the mannanase activity was then attempted using various methods. Ammonium sulfate precipitation, acetone precipitation, as well as centrifugal filtration device concentration was assessed for concentration of the mannanase activity.Concentration was not very successful due to low activity yields (≤ 20%). Anion exchange chromatography (AEC) and size exclusion chromatography (SEC) was used for purification. AEC gave good activity yield and fold purification, but SDS-PAGE analysis revealed the presence of many different proteins so further purification was necessary. SDS-PAGE analysis showed that there were only a few protein contaminants in the SEC fraction. However, the yield was too low to allow for biochemical characterization. The optimized purification procedure, which partially purified the mannanase activity, used 85% ammonium sulfate precipitation, followed by AEC. The fold purification was high (88.9) and the specific activity was 29.5 U.mg-1. A zymogram of the partially purified mannanase showed a mannanase active band with a MW of 40 - 41 kDa. A serine protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), was added during the purification steps. This indicated that the mannanase/s in the crude concentrate, without PMSF added, was hydrolyzed by serine protease activity. Native PAGE zymograms suggested that at least two different isoforms of mannanases were present. Additional purification would be required to determine the true characteristics of the mannanase/s. The biochemical characteristics of the crude and partially purified mannanases were similar. The pH optima of the partially purified mannanases were different; the pH optima were 6.0 and 9.0. The substrate specificities were similar, except that the partially purified mannanases displayed no cellulase and β-D-galactosidase activity, but showed a small amount of α-L-arabinase activity. The partially purified mannanase and a Cyamopsis tetragonolobus GH27 α-galactosidase synergistically hydrolyzed locust bean gum. The M50G50 combination displayed the highest extent of hydrolysis; after 24 h there was a 1.39 fold increase in reducing sugar release and the degree of synergy (DS) was 4.64. TLC analysis indicated that synergy increased the release of small MOS. These MOS could be useful as prebiotics. The synergy between the partially purified mannanase and the commercial cellulase mixture Cellic® CTec2 (Novozymes) on spent coffee grounds (SCG) was also determined. SCG is an abundant industrial waste product that has high mannan content. The SCG was pretreated using NaOH, and the monosaccharide, soluble phenolics and insoluble contents were determined. Glucose and mannose were the dominant monosaccharides in the SCG; the pretreated SCG contained 20.4% (w/w) glucose and 18.5% (w/w) mannose, respectively. The NaOH pretreatment improved mannanase hydrolysis of SCG. It resulted in the opening up and swelling of the SCG particles and removed some of the insoluble solids. The partially purified B. paralicheniformis SVD1 mannanase displayed no detectable activity on SCG, but showed synergy with CTec2, in terms of DS, on untreated and NaOH pretreated SCG. This is the first report of mannanasecellulase synergy on SCG; other studies found that increased hydrolysis was due to additive effects. The results obtained in this study are only an initial assessment of the biochemical properties of B. paralicheniformis SVD1 mannanase activity and its synergy with other enzymes. These results can be used to inform future studies.
- Full Text:
- Date Issued: 2019
- Authors: Clarke, Matthew David
- Date: 2019
- Subjects: Mycobacterium avium paratuberculosis , Enzymes -- Biotechnology , Lignocellulose -- Biotechnology
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67570 , vital:29112
- Description: Products produced via the enzymatic hydrolysis of lignocellulosic biomass, the most abundant renewable terrestrial source of carbon, can potentially replace a lot of the fuels and chemicals currently produced using non-renewable hydrocarbons. Mannan is a polysaccharide component of lignocellulose that is abundant in softwoods and legume seeds. Enzymatic hydrolysis of mannan by β-mannanases has various industrial applications, including use in biofuel and prebiotic mannooligosaccharide (MOS) production for the improvement of human and animal health. The industrial use of β-mannanases depends on their biochemical characteristics, such as their activity, stability and substrate specificity. Knowledge of their synergistic interactions with other enzymes is also useful for effective hydrolysis. Bacillus paralicheniformis SVD1 was used as a source for β-mannanases. The two mannanases of B. paralicheniformis SVD1 have not been biochemically characterized apart from minor characterization of crude β-mannanase activity. The protein sequences of the two β-mannanases, of glycosyl hydrolase family 5 and 26, have a 95% - 96% identity to the β-mannanases of B. licheniformis DSM13T (=ATCC14580T). These small protein sequence differences could lead to quite different biochemical characteristics. These mannanases were characterized as these enzymes may have industrially useful characteristics. To induce mannanase production, B. paralicheniformis SVD1 was cultured in broth containing the mannan substrate locust bean gum. Various growth curve parameters were measured over 72 h. Mannanase activity was the highest after 48 h of growth - this was the time at which mannanase activity was concentrated, using 3 kDa centrifugal filtration devices, for biochemical characterization of the crude activity. Zymography revealed that the crude concentrated mannanase fraction consisted of at least two mannanases with relative molecular weights (MWs) of 29.6 kDa and 33 kDa. This was smaller than expected – based on their theoretical molecular masses. Protease activity, which was detected in the broth, was probably the reason. There were two pH optima, pH 5.0 and pH 7.0, which also indicated the presence of two mannanases. The concentrated mannanase displayed characteristics that were expected of a B. paralicheniformis β-mannanase. The temperature optimum was 50°C and the activity loss was less than 7% at 50°C after 24 h. Substrate specificity assays revealed that there was predominantly mannanase activity present. Thin layer chromatography (TLC) analysis of mannan and MOS hydrolysis showed that mainly M2 and M3 MOS were produced; only MOS with a degree of polymerization of 4 or higher were hydrolyzed. Hydrolysis was minimal on mannoligosaccharides with galactose substituents. Activity and MOS production was the highest on soluble, low branched mannan substrates. The highest activity observed was on konjac glucomannan. Purification of the mannanase activity was then attempted using various methods. Ammonium sulfate precipitation, acetone precipitation, as well as centrifugal filtration device concentration was assessed for concentration of the mannanase activity.Concentration was not very successful due to low activity yields (≤ 20%). Anion exchange chromatography (AEC) and size exclusion chromatography (SEC) was used for purification. AEC gave good activity yield and fold purification, but SDS-PAGE analysis revealed the presence of many different proteins so further purification was necessary. SDS-PAGE analysis showed that there were only a few protein contaminants in the SEC fraction. However, the yield was too low to allow for biochemical characterization. The optimized purification procedure, which partially purified the mannanase activity, used 85% ammonium sulfate precipitation, followed by AEC. The fold purification was high (88.9) and the specific activity was 29.5 U.mg-1. A zymogram of the partially purified mannanase showed a mannanase active band with a MW of 40 - 41 kDa. A serine protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), was added during the purification steps. This indicated that the mannanase/s in the crude concentrate, without PMSF added, was hydrolyzed by serine protease activity. Native PAGE zymograms suggested that at least two different isoforms of mannanases were present. Additional purification would be required to determine the true characteristics of the mannanase/s. The biochemical characteristics of the crude and partially purified mannanases were similar. The pH optima of the partially purified mannanases were different; the pH optima were 6.0 and 9.0. The substrate specificities were similar, except that the partially purified mannanases displayed no cellulase and β-D-galactosidase activity, but showed a small amount of α-L-arabinase activity. The partially purified mannanase and a Cyamopsis tetragonolobus GH27 α-galactosidase synergistically hydrolyzed locust bean gum. The M50G50 combination displayed the highest extent of hydrolysis; after 24 h there was a 1.39 fold increase in reducing sugar release and the degree of synergy (DS) was 4.64. TLC analysis indicated that synergy increased the release of small MOS. These MOS could be useful as prebiotics. The synergy between the partially purified mannanase and the commercial cellulase mixture Cellic® CTec2 (Novozymes) on spent coffee grounds (SCG) was also determined. SCG is an abundant industrial waste product that has high mannan content. The SCG was pretreated using NaOH, and the monosaccharide, soluble phenolics and insoluble contents were determined. Glucose and mannose were the dominant monosaccharides in the SCG; the pretreated SCG contained 20.4% (w/w) glucose and 18.5% (w/w) mannose, respectively. The NaOH pretreatment improved mannanase hydrolysis of SCG. It resulted in the opening up and swelling of the SCG particles and removed some of the insoluble solids. The partially purified B. paralicheniformis SVD1 mannanase displayed no detectable activity on SCG, but showed synergy with CTec2, in terms of DS, on untreated and NaOH pretreated SCG. This is the first report of mannanasecellulase synergy on SCG; other studies found that increased hydrolysis was due to additive effects. The results obtained in this study are only an initial assessment of the biochemical properties of B. paralicheniformis SVD1 mannanase activity and its synergy with other enzymes. These results can be used to inform future studies.
- Full Text:
- Date Issued: 2019
Biological properties and interactions of Kalaharituber pfeilii
- Authors: Krele, Viwe
- Date: 2019
- Subjects: Kalaharituber pfeilii , Pezizales -- South Africa , Desert plants -- South Africa , Truffle culture -- South Africa , Plant biochemical genetics , Enzymes -- Analysis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/72257 , vital:30022
- Description: Dessert truffles are seasonal macro fungi and have been identified in several parts of the world including South Africa. The first part of the present study dealt with the assessment of the biologically active compounds of the Kalahari truffles found in the Northern Cape of South Africa. Truffles extracts (methanol, ethanol, aqueous) were investigated for their antimicrobial properties towards Gram-positive and Gram-negative bacteria. The results demonstrated that the truffle extracts tested had no inhibitory effects against the bacterial isolates. The truffle mycelial growth was also noted to be ineffective against the selected bacteria. The bacteria tested in the present study showed some antagonistic effects against the fungus. Cultures of K. pfeilii were also screened for enzyme production including amylase, protease, cellulose, and laccase. Evaluation of the potential of K. pfeilii mycelia to produce these industrially and economically important enzymes demonstrated both amylase and protease activity. However, for laccase and cellulose, no activity was detected. The second part of the present study aimed at optimizing biomass production by K. pfeilii in liquid culture media. FF Microplate containing 95 discreet carbon sources were employed to test for substrate utilization. Blanked readings above 0.1 were regarded as positive for utilization, and 4 substrates were selected as potential substrates and were included in liquid media. Media was evaluated for mycelial biomass production. Of the carbon sources tested sucrose proved to be the most suitable for supporting mycelial growth. The third part of the current study included investigating the diversity of microbial communities colonizing the rhizosheath of Stipagrostis ciliata var. capensis (the host plant of K. pfeilii) and these were identified by means of next-generation sequencing using Illumina Miseq. Bioinformatics tools were utilized in analyzing the data. Actinobacteria were found to be the most dominant bacterial phylum, followed by unclassified bacteria, Proteobacteria, and Acidobacteria. The top 25 sequences were selected and clustered into bacterial OTUs (at 97% threshold) which were assigned into 1 phylum (Actinobacteria), 1 family (Geodermatophilaceae) and 23 genera. This phylum is well known for its secondary metabolites. Streptomyces sp. was the most frequently encountered genus. The results from this study necessitate further investigations with regards to the function and evolution of fungal-bacterial associations. Wheather these bacteria have a contribution towards the truffle development, it is still not confirmed.
- Full Text:
- Date Issued: 2019
- Authors: Krele, Viwe
- Date: 2019
- Subjects: Kalaharituber pfeilii , Pezizales -- South Africa , Desert plants -- South Africa , Truffle culture -- South Africa , Plant biochemical genetics , Enzymes -- Analysis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/72257 , vital:30022
- Description: Dessert truffles are seasonal macro fungi and have been identified in several parts of the world including South Africa. The first part of the present study dealt with the assessment of the biologically active compounds of the Kalahari truffles found in the Northern Cape of South Africa. Truffles extracts (methanol, ethanol, aqueous) were investigated for their antimicrobial properties towards Gram-positive and Gram-negative bacteria. The results demonstrated that the truffle extracts tested had no inhibitory effects against the bacterial isolates. The truffle mycelial growth was also noted to be ineffective against the selected bacteria. The bacteria tested in the present study showed some antagonistic effects against the fungus. Cultures of K. pfeilii were also screened for enzyme production including amylase, protease, cellulose, and laccase. Evaluation of the potential of K. pfeilii mycelia to produce these industrially and economically important enzymes demonstrated both amylase and protease activity. However, for laccase and cellulose, no activity was detected. The second part of the present study aimed at optimizing biomass production by K. pfeilii in liquid culture media. FF Microplate containing 95 discreet carbon sources were employed to test for substrate utilization. Blanked readings above 0.1 were regarded as positive for utilization, and 4 substrates were selected as potential substrates and were included in liquid media. Media was evaluated for mycelial biomass production. Of the carbon sources tested sucrose proved to be the most suitable for supporting mycelial growth. The third part of the current study included investigating the diversity of microbial communities colonizing the rhizosheath of Stipagrostis ciliata var. capensis (the host plant of K. pfeilii) and these were identified by means of next-generation sequencing using Illumina Miseq. Bioinformatics tools were utilized in analyzing the data. Actinobacteria were found to be the most dominant bacterial phylum, followed by unclassified bacteria, Proteobacteria, and Acidobacteria. The top 25 sequences were selected and clustered into bacterial OTUs (at 97% threshold) which were assigned into 1 phylum (Actinobacteria), 1 family (Geodermatophilaceae) and 23 genera. This phylum is well known for its secondary metabolites. Streptomyces sp. was the most frequently encountered genus. The results from this study necessitate further investigations with regards to the function and evolution of fungal-bacterial associations. Wheather these bacteria have a contribution towards the truffle development, it is still not confirmed.
- Full Text:
- Date Issued: 2019
Characterization of termite Trinervitermes trinervoides metagenome-derived glycoside hydrolases, the formulation of synergistic core enzyme sets for effective sweet sorghum and corncob saccharification, and their potential industrial applications
- Authors: Mafa, Mpho Stephen
- Date: 2019
- Subjects: Termites , Metagenomics , Glucosides , Hydrolases , Enzymes , Feedstock
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/72414 , vital:30044 , DOI https://doi.org/10.21504/10962/72414
- Description: The current study investigated the biochemical properties of endo-glucanase (GH5E), exo-glucanase (GH5D), xylanase (GH5H) and endo-glucanase/xylanase (GH45), derived from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) for their potential role in the biotechnology industry. All these enzymes, except GH5D, exhibited activities on cellulosic and xylan-rich polymeric substrates, which only displayed activity on p-nitrophenyl cellobioside. GH5D, GH5E, GH5H and GH45 enzymes retained more than 80% of their activities at pH 5.5 and also retained more than 80% of their activities at 40ºC. Furthermore, these enzymes were thermostable at 37ºC for 72 hours. GH5E, GH5H and GH45 were generally stable over a range of metal-ion. The kinetic parameters for GH5E were 5.68 mg/ml (KM) and 34.36 U/mg protein (Vmax). GH5D activity did not follow classical Michaelis-Menten kinetics, suggesting product inhibition. GH5H displayed KM values of 5.53, 95.03 and 2.10 mg/ml and Vmax values of 112.36, 144.45 and 180.32 U/mg protein on beechwood xylan, CMC, and xyloglucan, respectively. GH45 displayed a KM of 6.94 mg/ml and a Vmax of 12.30 U/mg protein on CMC. GH5D [cellobiohydrolase (CBH)] and a commercial CBHII (GH6) enzyme outperformed a commercial CBHI (GH7) enzyme when these enzymes hydrolysed β-glucan. GH5D and CBHII also displayed a higher degree of synergy on β-glucan but failed to show synergy on Avicel. We therefore concluded that GH5D and CBHII are β-glucan-specific cellobiohydrolases. The corncob (CC) and sweet sorghum bagasse (SSB) substrates were pretreated with lime, NaOH and NaClO2. Subsequent to pretreatment, these substrates were used to investigate if GH5D, GH5E, GH5H and GH45 could operate in synergy. Results revealed that out of 12 possible core enzyme sets constructed, only two (referred to as CES-E and CES-H) displayed higher activities on pretreated CC or SSB. Simultaneous synergy was generally the most effective mode of synergy during hydrolysis of alkaline pretreated SSB and CC samples by both CES-E and CES-H. Both core enzyme sets did not display synergy on oxidative pretreated substrates. These findings suggest that lime and NaOH are more effective pretreatments for CC and SSB substrates. We used PRotein Interactive MOdeling (PRIMO) software to demonstrate that GH5D protein structure is an (α/β)8 barrel with a tunnel-like active site. Enzymes with this type of protein structure are able to perform transglycosylation, a process in which GH5D produced methyl, ethyl and propyl cellobiosides. We concluded that the GH5D, GH5E, GH5H and GH45 enzymes possess novel biochemical properties and that they form synergy during the hydrolysis of complex substrates (SSB and CC). GH5D transglycosylation could be used to produce novel biodegradable chemicals with special properties (e.g. anti-microbial properties). In conclusion, our findings suggest that GH5D, GH5E, GH5H and GH45 can potentially be used to improve biorefinery processes. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2019
- Full Text:
- Date Issued: 2019
- Authors: Mafa, Mpho Stephen
- Date: 2019
- Subjects: Termites , Metagenomics , Glucosides , Hydrolases , Enzymes , Feedstock
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/72414 , vital:30044 , DOI https://doi.org/10.21504/10962/72414
- Description: The current study investigated the biochemical properties of endo-glucanase (GH5E), exo-glucanase (GH5D), xylanase (GH5H) and endo-glucanase/xylanase (GH45), derived from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) for their potential role in the biotechnology industry. All these enzymes, except GH5D, exhibited activities on cellulosic and xylan-rich polymeric substrates, which only displayed activity on p-nitrophenyl cellobioside. GH5D, GH5E, GH5H and GH45 enzymes retained more than 80% of their activities at pH 5.5 and also retained more than 80% of their activities at 40ºC. Furthermore, these enzymes were thermostable at 37ºC for 72 hours. GH5E, GH5H and GH45 were generally stable over a range of metal-ion. The kinetic parameters for GH5E were 5.68 mg/ml (KM) and 34.36 U/mg protein (Vmax). GH5D activity did not follow classical Michaelis-Menten kinetics, suggesting product inhibition. GH5H displayed KM values of 5.53, 95.03 and 2.10 mg/ml and Vmax values of 112.36, 144.45 and 180.32 U/mg protein on beechwood xylan, CMC, and xyloglucan, respectively. GH45 displayed a KM of 6.94 mg/ml and a Vmax of 12.30 U/mg protein on CMC. GH5D [cellobiohydrolase (CBH)] and a commercial CBHII (GH6) enzyme outperformed a commercial CBHI (GH7) enzyme when these enzymes hydrolysed β-glucan. GH5D and CBHII also displayed a higher degree of synergy on β-glucan but failed to show synergy on Avicel. We therefore concluded that GH5D and CBHII are β-glucan-specific cellobiohydrolases. The corncob (CC) and sweet sorghum bagasse (SSB) substrates were pretreated with lime, NaOH and NaClO2. Subsequent to pretreatment, these substrates were used to investigate if GH5D, GH5E, GH5H and GH45 could operate in synergy. Results revealed that out of 12 possible core enzyme sets constructed, only two (referred to as CES-E and CES-H) displayed higher activities on pretreated CC or SSB. Simultaneous synergy was generally the most effective mode of synergy during hydrolysis of alkaline pretreated SSB and CC samples by both CES-E and CES-H. Both core enzyme sets did not display synergy on oxidative pretreated substrates. These findings suggest that lime and NaOH are more effective pretreatments for CC and SSB substrates. We used PRotein Interactive MOdeling (PRIMO) software to demonstrate that GH5D protein structure is an (α/β)8 barrel with a tunnel-like active site. Enzymes with this type of protein structure are able to perform transglycosylation, a process in which GH5D produced methyl, ethyl and propyl cellobiosides. We concluded that the GH5D, GH5E, GH5H and GH45 enzymes possess novel biochemical properties and that they form synergy during the hydrolysis of complex substrates (SSB and CC). GH5D transglycosylation could be used to produce novel biodegradable chemicals with special properties (e.g. anti-microbial properties). In conclusion, our findings suggest that GH5D, GH5E, GH5H and GH45 can potentially be used to improve biorefinery processes. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2019
- Full Text:
- Date Issued: 2019
Chitin hydrolysis with chitinolytic enzymes for the production of chitooligomers with antimicrobial properties
- Authors: Oree, Glynis
- Date: 2019
- Subjects: Chitin -- Biotechnology , Enzymes -- Biotechnology , Hydrolysis , Chitooligomers -- Biotechnology
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67887 , vital:29165
- Description: There are many diseases and illnesses in the world that require new drug treatments and chitin has been shown to produce chitooligomeric derivatives which exhibit promising antimicrobial and immune-enhancing properties. However, the rate-limiting step is associated with the high recalcitrance of chitinous substrates, and low hydrolytic activities of chitinolytic enzymes, resulting in low product release. To improve and create a more sustainable and economical process, enhancing chitin hydrolysis through various treatment procedures is essential for obtaining high enzyme hydrolysis rates, resulting in a higher yield of chitooligomers (CHOS). In literature, pre-treatment of insoluble biomass is generally associated with an increase in accessibility of the carbohydrate to hydrolytic enzymes, thus generating more products. The first part of this study investigated the effect of alkali- (NaOH) and acid pre-treatments (HCl and phosphoric acid) on chitin biomass, and chemical and morphological modifications were assessed by the employment of scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Energy-Dispersive X-ray spectrometery (EDX) and x-ray diffraction (XRD). Data obtained confirmed that pre-treated substrates were more chemically and morphologically modified. These results confirmed the fact that pre-treatment of chitin disrupts the structure of the biomass, rendering the polymer more accessible for enzymatic hydrolysis. The commercial chitinases from Bacillus cereus and Streptomyces griseus (CHB and CHS) are costly. Bio-prospecting for other chitin-degrading enzymes from alternate sources such as Oidiodendron maius, or the recombinant expression of CHOS, was a more economically feasible avenue. The chit1 gene from Thermomyces lanuginosus, expressed in Pichia pastoris, produced a large range CHOS with a degree of polymerisation (DP) ranging from 1 to above 6. TLC analysis showed that O. maius exhibited chitin-degrading properties by producing CHOS with a DP length of 1 to 3. These two sources were therefore successful in producing chitin-degrading enzymes. The physico-chemical properties of commercial (CHB and CHS) and expressed (Chit1) chitinolytic enzymes were investigated, to determine under which biochemical conditions and on which type of biomass they can function on optimally, for the production of value-added products such as CHOS. Substrate affinity assays were conducted on the un-treated and pre-treated biomass. TLC revealed that chitosan hydrolysis by the commercial chitinases produced the largest range of CHOS with a DP length ranging from 1 to 6. A range of temperatures (35-90oC) were investigated and CHB, CHS and Chit1 displayed optimum activities at 50, 40 and 45 oC, respectively. Thermostability studies that were conducted at 37 and 50oC revealed that CHB and CHS were most stable at 37oC. Chit1 showed great thermostablity at both temperatures, rendering this enzyme suitable for industrial processes at high temperatures. pH optima studies demonstrated that the pH optima for CHB, CHS and Chit1 was at a pH of 5.0, with specific activities of 33.459, 46.2 and 5.776 μmol/h/mg, respectively. The chain cleaving patterns of the commercial enzymes were determined and exo-chitinase activity was exhibited, due to the production of CHOS that were predominantly of a DP length of 2. Enzyme binary synergy studies were conducted with commercial chitinases (CHB and CHS) on colloidal chitin. Studies illustrated that the simultaneous combination of CHB 75%: CHS 25% produced the highest specific activity (3.526 μmol/h/mg), with no synergy. TLC analysis of this enzyme combination over time revealed that predominantly chitobiose was produced. This suggested that the substrate crystallinity and morphology played an important role in the way the enzymes cleaved the carbohydrate. Since CHOS have shown great promise for their antimicrobial properties, the CHOS generated from the chitinous substrates were tested for antimicrobial properties on Bacillus subtilis, Escherichia coli, Klebsiella and Staphlococcus aureus. This study revealed that certain CHOS produced have inhibitory effects on certain bacteria and could potentially be used in the pharamceutical or medical industries. In conclusion, this study revealed that chitinases can be produced and found in alternate sources and be used for the hydrolysis of chitinous biomass in a more sustainabe and economically viable manner. The chitinases investigated (CHB, CHS and Chit1) exhibited different cleaving patterns of the chitinous substrates due to the chemical and morphological properties of the biomass. CHOS produced from chitinous biomass exhibited some inhibitory effects on bacterial growth and show potential for use in the medical industry.
- Full Text:
- Date Issued: 2019
- Authors: Oree, Glynis
- Date: 2019
- Subjects: Chitin -- Biotechnology , Enzymes -- Biotechnology , Hydrolysis , Chitooligomers -- Biotechnology
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67887 , vital:29165
- Description: There are many diseases and illnesses in the world that require new drug treatments and chitin has been shown to produce chitooligomeric derivatives which exhibit promising antimicrobial and immune-enhancing properties. However, the rate-limiting step is associated with the high recalcitrance of chitinous substrates, and low hydrolytic activities of chitinolytic enzymes, resulting in low product release. To improve and create a more sustainable and economical process, enhancing chitin hydrolysis through various treatment procedures is essential for obtaining high enzyme hydrolysis rates, resulting in a higher yield of chitooligomers (CHOS). In literature, pre-treatment of insoluble biomass is generally associated with an increase in accessibility of the carbohydrate to hydrolytic enzymes, thus generating more products. The first part of this study investigated the effect of alkali- (NaOH) and acid pre-treatments (HCl and phosphoric acid) on chitin biomass, and chemical and morphological modifications were assessed by the employment of scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Energy-Dispersive X-ray spectrometery (EDX) and x-ray diffraction (XRD). Data obtained confirmed that pre-treated substrates were more chemically and morphologically modified. These results confirmed the fact that pre-treatment of chitin disrupts the structure of the biomass, rendering the polymer more accessible for enzymatic hydrolysis. The commercial chitinases from Bacillus cereus and Streptomyces griseus (CHB and CHS) are costly. Bio-prospecting for other chitin-degrading enzymes from alternate sources such as Oidiodendron maius, or the recombinant expression of CHOS, was a more economically feasible avenue. The chit1 gene from Thermomyces lanuginosus, expressed in Pichia pastoris, produced a large range CHOS with a degree of polymerisation (DP) ranging from 1 to above 6. TLC analysis showed that O. maius exhibited chitin-degrading properties by producing CHOS with a DP length of 1 to 3. These two sources were therefore successful in producing chitin-degrading enzymes. The physico-chemical properties of commercial (CHB and CHS) and expressed (Chit1) chitinolytic enzymes were investigated, to determine under which biochemical conditions and on which type of biomass they can function on optimally, for the production of value-added products such as CHOS. Substrate affinity assays were conducted on the un-treated and pre-treated biomass. TLC revealed that chitosan hydrolysis by the commercial chitinases produced the largest range of CHOS with a DP length ranging from 1 to 6. A range of temperatures (35-90oC) were investigated and CHB, CHS and Chit1 displayed optimum activities at 50, 40 and 45 oC, respectively. Thermostability studies that were conducted at 37 and 50oC revealed that CHB and CHS were most stable at 37oC. Chit1 showed great thermostablity at both temperatures, rendering this enzyme suitable for industrial processes at high temperatures. pH optima studies demonstrated that the pH optima for CHB, CHS and Chit1 was at a pH of 5.0, with specific activities of 33.459, 46.2 and 5.776 μmol/h/mg, respectively. The chain cleaving patterns of the commercial enzymes were determined and exo-chitinase activity was exhibited, due to the production of CHOS that were predominantly of a DP length of 2. Enzyme binary synergy studies were conducted with commercial chitinases (CHB and CHS) on colloidal chitin. Studies illustrated that the simultaneous combination of CHB 75%: CHS 25% produced the highest specific activity (3.526 μmol/h/mg), with no synergy. TLC analysis of this enzyme combination over time revealed that predominantly chitobiose was produced. This suggested that the substrate crystallinity and morphology played an important role in the way the enzymes cleaved the carbohydrate. Since CHOS have shown great promise for their antimicrobial properties, the CHOS generated from the chitinous substrates were tested for antimicrobial properties on Bacillus subtilis, Escherichia coli, Klebsiella and Staphlococcus aureus. This study revealed that certain CHOS produced have inhibitory effects on certain bacteria and could potentially be used in the pharamceutical or medical industries. In conclusion, this study revealed that chitinases can be produced and found in alternate sources and be used for the hydrolysis of chitinous biomass in a more sustainabe and economically viable manner. The chitinases investigated (CHB, CHS and Chit1) exhibited different cleaving patterns of the chitinous substrates due to the chemical and morphological properties of the biomass. CHOS produced from chitinous biomass exhibited some inhibitory effects on bacterial growth and show potential for use in the medical industry.
- Full Text:
- Date Issued: 2019
Ectomycorrhizal fungal assessment of South African Pinus patula seedlings and their biological control potential to enhance seedling growth
- FitzGerald, Véronique Chartier
- Authors: FitzGerald, Véronique Chartier
- Date: 2019
- Subjects: Ectomycorrhizal fungi , Pinus patula Diseases and pests Biological control South Africa , Fusarium , Forest nurseries , Seedlings Growth , Seedlings Diseases and pests
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/67902 , vital:29167
- Description: The South Africa forestry industry, covering 1.3 million hectares, is dependent on exotic pine and eucalyptus species. Nursery seedlings are not inoculated with ectomycorrhizal (ECM) fungi or other beneficial microbes. Fusarium circinatum is an economically important pathogen affecting seedling survival. The purpose of this investigation was to assess levels of naturally occurring ECM colonisation in South African nurseries and to determine the effects of seedling inoculation with selected ECM and bacterial isolates on plant growth and resistance to the fungal pathogen F. circiantum. Pinus patula seedlings from 10 different South African nurseries were assessed for ECM colonisation using a grid line intersect method and molecularly identified using morphological and next-generation Illumina sequencing. Explants from ECM basidiocarps, collected from Pinus stands, were plated onto MMN medium to obtain isolates which were verified using molecular techniques. Mycorrhizal helper bacteria (MHB) were also isolated from these basiocarps, tested for MHB properties, siderophore production, phospahte solubilising and IAA production. ECM and associated bacterial isolates were used to inoculate seedlings and growth was assessed over a 5 month period. Colonisation of seedlings in production nurseries was low (2-21%). Morphologically the ECM fungi T. terrestris, Suillus sibiricus, and the genera Russula, Pseudotomentella were identified. Molecularly the ECM fungi T. terrestris, Inocybe jacobi and the genera Sphaerosporella and several other ECM containing families were identified along with many saprotrophic/endophytic fungi belonging to genera such as, Penicillium, Ramasonia and Talaromyces. Inoculated seedlings showed a significant increase in growth in comparison to the un-inoculated control seedlings. ECM fungal colonisation levels of these seedlings were significantly increased and colonisation was promoted by the Suillus isolate, Salmon Suillus. Seedling growth in the presence of the pathogen F. circinatum was significantly increased and promoted by the Lactarius isolate Lactarius quieticolor. Inoculation of seedlings in the nursery would ensure the production of stronger healthy plants which may be more tolerant to fusarial infection increasing survival in the plantation. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2019
- Full Text:
- Date Issued: 2019
- Authors: FitzGerald, Véronique Chartier
- Date: 2019
- Subjects: Ectomycorrhizal fungi , Pinus patula Diseases and pests Biological control South Africa , Fusarium , Forest nurseries , Seedlings Growth , Seedlings Diseases and pests
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/67902 , vital:29167
- Description: The South Africa forestry industry, covering 1.3 million hectares, is dependent on exotic pine and eucalyptus species. Nursery seedlings are not inoculated with ectomycorrhizal (ECM) fungi or other beneficial microbes. Fusarium circinatum is an economically important pathogen affecting seedling survival. The purpose of this investigation was to assess levels of naturally occurring ECM colonisation in South African nurseries and to determine the effects of seedling inoculation with selected ECM and bacterial isolates on plant growth and resistance to the fungal pathogen F. circiantum. Pinus patula seedlings from 10 different South African nurseries were assessed for ECM colonisation using a grid line intersect method and molecularly identified using morphological and next-generation Illumina sequencing. Explants from ECM basidiocarps, collected from Pinus stands, were plated onto MMN medium to obtain isolates which were verified using molecular techniques. Mycorrhizal helper bacteria (MHB) were also isolated from these basiocarps, tested for MHB properties, siderophore production, phospahte solubilising and IAA production. ECM and associated bacterial isolates were used to inoculate seedlings and growth was assessed over a 5 month period. Colonisation of seedlings in production nurseries was low (2-21%). Morphologically the ECM fungi T. terrestris, Suillus sibiricus, and the genera Russula, Pseudotomentella were identified. Molecularly the ECM fungi T. terrestris, Inocybe jacobi and the genera Sphaerosporella and several other ECM containing families were identified along with many saprotrophic/endophytic fungi belonging to genera such as, Penicillium, Ramasonia and Talaromyces. Inoculated seedlings showed a significant increase in growth in comparison to the un-inoculated control seedlings. ECM fungal colonisation levels of these seedlings were significantly increased and colonisation was promoted by the Suillus isolate, Salmon Suillus. Seedling growth in the presence of the pathogen F. circinatum was significantly increased and promoted by the Lactarius isolate Lactarius quieticolor. Inoculation of seedlings in the nursery would ensure the production of stronger healthy plants which may be more tolerant to fusarial infection increasing survival in the plantation. , Thesis (PhD) -- Faculty of Science, Biochemistry and Microbiology, 2019
- Full Text:
- Date Issued: 2019
Evaluation of SNPs of G6PD, with regard to the 3D conformational, structural and stability alterations, in order to investigate the clinical implications and potential applications
- Authors: Sanabria, Natasha Mary-Anne
- Date: 2019
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/76500 , vital:30574
- Description: Expected release date-April 2020
- Full Text: false
- Date Issued: 2019
- Authors: Sanabria, Natasha Mary-Anne
- Date: 2019
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/76500 , vital:30574
- Description: Expected release date-April 2020
- Full Text: false
- Date Issued: 2019
Investigating assay formats for screening malaria Hsp90-Hop interaction inhibitors
- Authors: Derry, Leigh-Anne Tracy Kim
- Date: 2019
- Subjects: Antimalarials , Heat shock proteins , Drug interactions , Drug resistance , Plasmodium falciparum , High throughput screening (Drug development) , Bioluminescence resonance energy transfer (BRET) , Fluorescence resonance energy transfer (FRET)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63345 , vital:28395
- Description: Although significant gains have been made in the combat against malaria in the last decade, the persistent threat of drug and insecticide resistance continues to motivate the search for new classes of antimalarial drug compounds and targets. Due to their predominance in cellular reactions, protein-protein interactions (P-PIs) are emerging as a promising general target class for therapeutic development. The P-PI which is the focus of this project is the interaction between the chaperone heat shock protein 90 (Hsp90) and its co-chaperone Hsp70/Hsp90 organising protein (Hop). Hop binds to Hsp70 and Hsp90 and facilitates the transfer of client proteins (proteins undergoing folding) from the former to the latter and also regulates nucleotide exchange on Hsp90. Due to its role in correcting protein misfolding during cell stress, Hsp90 is being pursued as a cancer drug target and compounds that inhibit its ATPase activity have entered clinical trials. However, it has been proposed that inhibiting the interaction between Hsp90 and Hop may be alternative approach for inhibiting Hsp90 function for cancer therapy. The malaria parasite Plasmodium falciparum experiences temperature fluctuations during vector-host transitions and febrile episodes and cell stress due to rapid growth and immune responses. Hence, it also depends on chaperones, including PfHsp90, to maintain protein functionality and pathogenesis, demonstrated inter alia by the sensitivity of parasites to Hsp90 inhibitors. In addition, PfHsp90 exists as a complex with the malarial Hop homologue, PfHop, in parasite lysates. Consequently, the purpose of this study was to explore P-PI assay formats that can confirm the interaction of PfHsp90 and PfHop and can be used to identify inhibitors of the interaction, preferably in a medium- to high-throughput screening mode. As a first approach, cell-based bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays were performed in HeLa cells. To facilitate this, expression plasmid constructs containing coding sequences of P. falciparum and mammalian Hsp90 and Hop and their interacting domains (Hsp90 C-domain and Hop TPR2A domain) fused to the BRET and FRET reporter proteins – yellow fluorescent protein (YFP), cyan fluorescent protein (CFP) and Renilla luciferase (Rluc) - were prepared and used for HeLa cell transient transfections. The FRET assay produced positive interaction signals for the full-length P. falciparum and mammalian Hsp90-Hop interactions. However, C-domain-TPR2A domain interactions were not detected, no interactions could be demonstrated with the BRET assay and western blotting experiments failed to detect expression of all the interaction partners in transiently transfected HeLa cells. Consequently, an alternative in vitro FRET assay format using recombinant proteins was investigated. Expression constructs for the P. falciparum and mammalian C-domains and TPR2A domains fused respectively to YFP and CFP were prepared and the corresponding fusion proteins expressed and purified from E. coli. No interaction was found with the mammalian interaction partners, but interaction of the P. falciparum C-domain and TPR2A domain was consistently detected with a robust Z’ factor value of 0.54. A peptide corresponding to the PfTPR2A domain sequence primarily responsible for Hsp90 binding (based on a human TPR2A peptide described by Horibe et al., 2011) was designed and showed dose-dependent inhibition of the interaction, with 53.7% inhibition at 100 μM. The components of the assay are limited to the purified recombinant proteins, requires minimal liquid steps and may thus be a useful primary screening format for identifying inhibitors of P. falciparum Hsp90-Hop interaction.
- Full Text:
- Date Issued: 2019
- Authors: Derry, Leigh-Anne Tracy Kim
- Date: 2019
- Subjects: Antimalarials , Heat shock proteins , Drug interactions , Drug resistance , Plasmodium falciparum , High throughput screening (Drug development) , Bioluminescence resonance energy transfer (BRET) , Fluorescence resonance energy transfer (FRET)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63345 , vital:28395
- Description: Although significant gains have been made in the combat against malaria in the last decade, the persistent threat of drug and insecticide resistance continues to motivate the search for new classes of antimalarial drug compounds and targets. Due to their predominance in cellular reactions, protein-protein interactions (P-PIs) are emerging as a promising general target class for therapeutic development. The P-PI which is the focus of this project is the interaction between the chaperone heat shock protein 90 (Hsp90) and its co-chaperone Hsp70/Hsp90 organising protein (Hop). Hop binds to Hsp70 and Hsp90 and facilitates the transfer of client proteins (proteins undergoing folding) from the former to the latter and also regulates nucleotide exchange on Hsp90. Due to its role in correcting protein misfolding during cell stress, Hsp90 is being pursued as a cancer drug target and compounds that inhibit its ATPase activity have entered clinical trials. However, it has been proposed that inhibiting the interaction between Hsp90 and Hop may be alternative approach for inhibiting Hsp90 function for cancer therapy. The malaria parasite Plasmodium falciparum experiences temperature fluctuations during vector-host transitions and febrile episodes and cell stress due to rapid growth and immune responses. Hence, it also depends on chaperones, including PfHsp90, to maintain protein functionality and pathogenesis, demonstrated inter alia by the sensitivity of parasites to Hsp90 inhibitors. In addition, PfHsp90 exists as a complex with the malarial Hop homologue, PfHop, in parasite lysates. Consequently, the purpose of this study was to explore P-PI assay formats that can confirm the interaction of PfHsp90 and PfHop and can be used to identify inhibitors of the interaction, preferably in a medium- to high-throughput screening mode. As a first approach, cell-based bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays were performed in HeLa cells. To facilitate this, expression plasmid constructs containing coding sequences of P. falciparum and mammalian Hsp90 and Hop and their interacting domains (Hsp90 C-domain and Hop TPR2A domain) fused to the BRET and FRET reporter proteins – yellow fluorescent protein (YFP), cyan fluorescent protein (CFP) and Renilla luciferase (Rluc) - were prepared and used for HeLa cell transient transfections. The FRET assay produced positive interaction signals for the full-length P. falciparum and mammalian Hsp90-Hop interactions. However, C-domain-TPR2A domain interactions were not detected, no interactions could be demonstrated with the BRET assay and western blotting experiments failed to detect expression of all the interaction partners in transiently transfected HeLa cells. Consequently, an alternative in vitro FRET assay format using recombinant proteins was investigated. Expression constructs for the P. falciparum and mammalian C-domains and TPR2A domains fused respectively to YFP and CFP were prepared and the corresponding fusion proteins expressed and purified from E. coli. No interaction was found with the mammalian interaction partners, but interaction of the P. falciparum C-domain and TPR2A domain was consistently detected with a robust Z’ factor value of 0.54. A peptide corresponding to the PfTPR2A domain sequence primarily responsible for Hsp90 binding (based on a human TPR2A peptide described by Horibe et al., 2011) was designed and showed dose-dependent inhibition of the interaction, with 53.7% inhibition at 100 μM. The components of the assay are limited to the purified recombinant proteins, requires minimal liquid steps and may thus be a useful primary screening format for identifying inhibitors of P. falciparum Hsp90-Hop interaction.
- Full Text:
- Date Issued: 2019
Recovery and molecular identification of Aichi virus 1, enteric human bocaviruses and enteric human adenoviruses in untreated sewage and mussel samples collected in the Eastern Cape Province of South Africa
- Authors: Onosi, Oikwathaile
- Date: 2019
- Subjects: Sewage -- Analysis -- South Africa -- Eastern Cape , Sewage -- Microbiology -- South Africa -- Eastern Cape , Viral pollution of water -- South Africa -- Eastern Cape , Sewage disposal in rivers, lakes, etc. -- South Africa -- Eastern Cape , Enteroviruses -- South Africa -- Eastern Cape , Picornaviruses -- South Africa -- Eastern Cape , Aichi virus 1 , Parvoviruses -- South Africa -- Eastern Cape , Adenoviruses -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/69456 , vital:29539
- Description: Gastroenteritis, commonly known as diarrhoeal disease, is one of the top killers responsible for substantial human morbidity and mortality especially in third world countries where most people do not have access to potable water and where hygiene levels are low. Many bacterial, viral and protozoal agents are known causes of gastroenteritis and viral gastroenteritis is responsible for over 70% of cases. Rotaviruses are the main causes of viral gastroenteritis and are responsible for most of the cases worldwide. Other viral agents associated with this disease include human noroviruses, Aichi virus 1, enteric human bocavirus, enteric human adenovirus and many other emerging viral agents such as klassivirus, Saffold virus, cosavirus and others. In 2009 the South African government introduced a rotavirus vaccine, RotaRixTM into the expanded programme on immunisation (EPI). More than a 50% decrease in diarrhoea related morbidity and mortality due to rotavirus infections was noted during surveillance studies on the efficacy of the vaccine. However, over 40% of cases of gastroenteritis are of unknown aetiology. The present study aimed to perform a preliminary study to investigate the presence of Aichi virus 1 and enteric human bocaviruses in the Eastern Cape Province by the use of molecular techniques. Furthermore, the study aimed to add to the limited molecular data about enteric adenoviruses in South Africa. Samples used in this study were swab samples collected from Belmont Valley Wastewater Treatment Plant in Grahamstown, South Africa, as well as mussel samples collected from the Swartkops River in Port Elizabeth, South Africa. Both raw sewage and shellfish give a broad idea of what microbes are circulating in the communities. In the present study, twenty swabs and twenty mussel samples were prepared by centrifugation, sonication and filtration. Samples were then subjected to transmission electron microscopy (TEM) analysis, for which the electron micrographs revealed presence of viral particles with diameters ranging from around 20 nm to just over 100 nm. Viral nucleic acids were extracted from 140 μL of the twenty swabs and twenty mussels samples using the QIAamp® Viral RNA Mini Kit, following manufacturer‟s instructions. For detection of Aichi virus 1 from the swab and mussel samples three reverse transcriptase- polymerase chain reaction (RT-PCR) assays using the Verso 1-Step RT-PCR Hot-Start Kit were developed. The first RT-PCR assay targeted amplification of the highly conserved 5′ UTR using published primers. However, despite many amplification attempts no positive results were obtained from both swab and mussel samples. It was only after the addition of DMSO (to a final concentration of 10%) that one swab sample was positive for this assay. In addition, a 2-step RT-PCR was developed using the Maxima H Minus First Strand cDNA Synthesis Kit. By using this 2-step RT-PCR assay, an additional swab sample was positive for the Aichi virus 1 5′ UTR. Using Basic Logarithm Alignment Search Tool (BLAST) analysis these two samples were 98% identical to an Aichi virus isolate from South Korea. The second one-step RT-PCR assay targeted amplification of the 266 bp partial 3CD coding region of Aichi virus 1 using published primers. By using this assay, positive results were obtained from both the swab and mussel samples, which when analysed by BLAST were all 99% identical to various Aichi virus 1 isolates in GenBank. A phylogenetic tree constructed based on this region showed that isolates from the present study clustered with Genotype B isolates in GenBank. The third assay was a semi-nested RT-PCR assay that targeted amplification of the hypervariable VP1 coding region of Aichi virus 1 using a combination of published primers and those designed in the present study. Amplicons which were 472 bp in size were produced from two swab samples. When analysed by BLAST, these two swab samples had percentage identities of 98% to an Aichi virus isolate from South Korea. A phylogenetic tree constructed based on this region showed that isolates from the present study clustered with Genotype B isolates in GenBank. This was consistent with phylogenetic results discussed above which were based on the partial 3CD region. For detection of enteric human bocaviruses from the swab and mussel samples a nested polymerase chain reaction (PCR) assay, using the Ampliqon Taq PCR kit (Ampliqon Bio Reagents and Molecular Diagnostics, Denmark) was developed based on PCR amplification of the 382 bp partial VP1/VP2 coding region using published primers. A total of six swab samples and six mussel samples were analysed for which five swabs and six mussel samples gave positive results. When analysed by BLAST, the swab samples had percentage identities of between 98% and 99% to an enteric human bocavirus 3 strain from China while the mussel samples were all 99% identical to an enteric human bocavirus 2 isolate from Australia. A phylogenetic tree constructed based on this VP1/VP2 region showed that isolates from the present study clustered with human bocavirus 2 and human bocavirus 3 isolates in GenBank for those isolated from swab samples and mussel samples respectively. Lastly, for detection of enteric human adenoviruses from the swab and mussel samples a nested PCR assay, using the Ampliqon Taq PCR kit (Ampliqon Bio Reagents and Molecular Diagnostics, Denmark) was developed. This reaction was based on PCR amplification of the 168 bp partial hexon coding region using published primers for which ten swab samples gave positive results. When analysed by BLAST, the swab samples had percentage identities of between 96% and 99% to enteric human adenoviruses in GenBank. A phylogenetic tree constructed based on the hexon coding region showed that isolates from the present study clustered with subtypes C, D and F which are associated with gastroenteritis worldwide. Despite several amplification attempts no positive results were obtained from mussel samples. The results from the present study show that Aichi virus 1, enteric bocaviruses and enteric adenoviruses are present in the Eastern Cape Province of South Africa. These viruses could possibly be responsible for enteric infections in South Africa. Although only a few samples were analysed, this study is the first to confirm the presence of Aichi virus 1 and enteric bocaviruses in South Africa and provides a platform for further investigation into prevalence and epidemiology of these viruses in the country.
- Full Text:
- Date Issued: 2019
- Authors: Onosi, Oikwathaile
- Date: 2019
- Subjects: Sewage -- Analysis -- South Africa -- Eastern Cape , Sewage -- Microbiology -- South Africa -- Eastern Cape , Viral pollution of water -- South Africa -- Eastern Cape , Sewage disposal in rivers, lakes, etc. -- South Africa -- Eastern Cape , Enteroviruses -- South Africa -- Eastern Cape , Picornaviruses -- South Africa -- Eastern Cape , Aichi virus 1 , Parvoviruses -- South Africa -- Eastern Cape , Adenoviruses -- South Africa -- Eastern Cape
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/69456 , vital:29539
- Description: Gastroenteritis, commonly known as diarrhoeal disease, is one of the top killers responsible for substantial human morbidity and mortality especially in third world countries where most people do not have access to potable water and where hygiene levels are low. Many bacterial, viral and protozoal agents are known causes of gastroenteritis and viral gastroenteritis is responsible for over 70% of cases. Rotaviruses are the main causes of viral gastroenteritis and are responsible for most of the cases worldwide. Other viral agents associated with this disease include human noroviruses, Aichi virus 1, enteric human bocavirus, enteric human adenovirus and many other emerging viral agents such as klassivirus, Saffold virus, cosavirus and others. In 2009 the South African government introduced a rotavirus vaccine, RotaRixTM into the expanded programme on immunisation (EPI). More than a 50% decrease in diarrhoea related morbidity and mortality due to rotavirus infections was noted during surveillance studies on the efficacy of the vaccine. However, over 40% of cases of gastroenteritis are of unknown aetiology. The present study aimed to perform a preliminary study to investigate the presence of Aichi virus 1 and enteric human bocaviruses in the Eastern Cape Province by the use of molecular techniques. Furthermore, the study aimed to add to the limited molecular data about enteric adenoviruses in South Africa. Samples used in this study were swab samples collected from Belmont Valley Wastewater Treatment Plant in Grahamstown, South Africa, as well as mussel samples collected from the Swartkops River in Port Elizabeth, South Africa. Both raw sewage and shellfish give a broad idea of what microbes are circulating in the communities. In the present study, twenty swabs and twenty mussel samples were prepared by centrifugation, sonication and filtration. Samples were then subjected to transmission electron microscopy (TEM) analysis, for which the electron micrographs revealed presence of viral particles with diameters ranging from around 20 nm to just over 100 nm. Viral nucleic acids were extracted from 140 μL of the twenty swabs and twenty mussels samples using the QIAamp® Viral RNA Mini Kit, following manufacturer‟s instructions. For detection of Aichi virus 1 from the swab and mussel samples three reverse transcriptase- polymerase chain reaction (RT-PCR) assays using the Verso 1-Step RT-PCR Hot-Start Kit were developed. The first RT-PCR assay targeted amplification of the highly conserved 5′ UTR using published primers. However, despite many amplification attempts no positive results were obtained from both swab and mussel samples. It was only after the addition of DMSO (to a final concentration of 10%) that one swab sample was positive for this assay. In addition, a 2-step RT-PCR was developed using the Maxima H Minus First Strand cDNA Synthesis Kit. By using this 2-step RT-PCR assay, an additional swab sample was positive for the Aichi virus 1 5′ UTR. Using Basic Logarithm Alignment Search Tool (BLAST) analysis these two samples were 98% identical to an Aichi virus isolate from South Korea. The second one-step RT-PCR assay targeted amplification of the 266 bp partial 3CD coding region of Aichi virus 1 using published primers. By using this assay, positive results were obtained from both the swab and mussel samples, which when analysed by BLAST were all 99% identical to various Aichi virus 1 isolates in GenBank. A phylogenetic tree constructed based on this region showed that isolates from the present study clustered with Genotype B isolates in GenBank. The third assay was a semi-nested RT-PCR assay that targeted amplification of the hypervariable VP1 coding region of Aichi virus 1 using a combination of published primers and those designed in the present study. Amplicons which were 472 bp in size were produced from two swab samples. When analysed by BLAST, these two swab samples had percentage identities of 98% to an Aichi virus isolate from South Korea. A phylogenetic tree constructed based on this region showed that isolates from the present study clustered with Genotype B isolates in GenBank. This was consistent with phylogenetic results discussed above which were based on the partial 3CD region. For detection of enteric human bocaviruses from the swab and mussel samples a nested polymerase chain reaction (PCR) assay, using the Ampliqon Taq PCR kit (Ampliqon Bio Reagents and Molecular Diagnostics, Denmark) was developed based on PCR amplification of the 382 bp partial VP1/VP2 coding region using published primers. A total of six swab samples and six mussel samples were analysed for which five swabs and six mussel samples gave positive results. When analysed by BLAST, the swab samples had percentage identities of between 98% and 99% to an enteric human bocavirus 3 strain from China while the mussel samples were all 99% identical to an enteric human bocavirus 2 isolate from Australia. A phylogenetic tree constructed based on this VP1/VP2 region showed that isolates from the present study clustered with human bocavirus 2 and human bocavirus 3 isolates in GenBank for those isolated from swab samples and mussel samples respectively. Lastly, for detection of enteric human adenoviruses from the swab and mussel samples a nested PCR assay, using the Ampliqon Taq PCR kit (Ampliqon Bio Reagents and Molecular Diagnostics, Denmark) was developed. This reaction was based on PCR amplification of the 168 bp partial hexon coding region using published primers for which ten swab samples gave positive results. When analysed by BLAST, the swab samples had percentage identities of between 96% and 99% to enteric human adenoviruses in GenBank. A phylogenetic tree constructed based on the hexon coding region showed that isolates from the present study clustered with subtypes C, D and F which are associated with gastroenteritis worldwide. Despite several amplification attempts no positive results were obtained from mussel samples. The results from the present study show that Aichi virus 1, enteric bocaviruses and enteric adenoviruses are present in the Eastern Cape Province of South Africa. These viruses could possibly be responsible for enteric infections in South Africa. Although only a few samples were analysed, this study is the first to confirm the presence of Aichi virus 1 and enteric bocaviruses in South Africa and provides a platform for further investigation into prevalence and epidemiology of these viruses in the country.
- Full Text:
- Date Issued: 2019