A spectroscopic study of the electronic effects on copper (II) and copper (I) complexes of ligands derived from various substituted benzyaldehyde- and cinnamaldehyde- based schiff bases
- Authors: Magwa, Nomampondo Penelope
- Date: 2010 , 2010-03-19
- Subjects: Copper -- Analysis , Schiff bases , Organometallic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4407 , http://hdl.handle.net/10962/d1006712 , Copper -- Analysis , Schiff bases , Organometallic compounds
- Description: Several Schiff base ligands, N, N‟-(aryl)benzyaldiimine ligands (R-BEN); N, N‟-(aryl)benzyaldiamine dihydrochloride ligands (R-BENH•2HCl); N, N‟-(aryl)benzyaldiamine ligands (R-BENH); N, N‟-bis(cinnamaldiimine) ligands (R-CA2EN) were synthesized for the investigation of the electronic effect of the substituents at para-position of the Schiff base ligands and their copper complexes. The synthesis of Schiff bases was carried out by reacting a series of para-substituted benzyaldehyde, and para-substituted cinnamaldehyde with ethylenediamine. The imine group of Schiff bases, N, N‟-(aryl)benzyaldiimine ligands and N, N‟-bis(cinnamaldiimine)ligands were reduced to corresponding amines with sodium borohydride in methanol These ligands, N, N‟-(aryl)benzyaldiamine ligands (H-BENH), N, N‟-bis(cinnamaldiimine)ligands (CA2EN) were reacted with copper(II) dihalide and copper(I) monohalide ions respectively to form complexes. The ligands and their complexes were analysed using elemental analyses, FT-IR spectroscopy (mid-IR), UV/vis in aprotic and protic solvents,while mass spectrometry, 1H-NMR and 13C-NMR were used to further analyse the ligands. By using substituent parameters, both the single and dual substituent parameters with the spectroscopic data obtained from the spectroscopic techiques mentioned above, it was hoped to monitor and determine whether the electronic effects (resonance or inductive effcets) was predominantly within the Schiff base ligands and copper complexes. The NMR studies with dual substituent parameters suggest that the effects of the substituents are transimitted through the ligands, via resonance effects and that the phenyl group is nonplanar with the azomethine in N, N‟-(aryl)benzyaldiimine ligands. The presence of an extra double bond in Schiff base {(N, N‟-bis(cinnamaldiimine) ligand)} altered the electron density. The UV/vis studies showed that the symmetry of the N, N‟-bis(4-R-benzyl)-1, 2-diaminoethanedihalidecopper(II) complexes were predominantly tetrahedral for both chloro and bromo complexes. The correlation studies from mid-infrared were beneficial in monitoring the effect experienced by N, N‟-(aryl)benzaldiimine ligands, the studies suggest that the inductive effect is more pronounced at the C=N.
- Full Text:
- Date Issued: 2010
- Authors: Magwa, Nomampondo Penelope
- Date: 2010 , 2010-03-19
- Subjects: Copper -- Analysis , Schiff bases , Organometallic compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4407 , http://hdl.handle.net/10962/d1006712 , Copper -- Analysis , Schiff bases , Organometallic compounds
- Description: Several Schiff base ligands, N, N‟-(aryl)benzyaldiimine ligands (R-BEN); N, N‟-(aryl)benzyaldiamine dihydrochloride ligands (R-BENH•2HCl); N, N‟-(aryl)benzyaldiamine ligands (R-BENH); N, N‟-bis(cinnamaldiimine) ligands (R-CA2EN) were synthesized for the investigation of the electronic effect of the substituents at para-position of the Schiff base ligands and their copper complexes. The synthesis of Schiff bases was carried out by reacting a series of para-substituted benzyaldehyde, and para-substituted cinnamaldehyde with ethylenediamine. The imine group of Schiff bases, N, N‟-(aryl)benzyaldiimine ligands and N, N‟-bis(cinnamaldiimine)ligands were reduced to corresponding amines with sodium borohydride in methanol These ligands, N, N‟-(aryl)benzyaldiamine ligands (H-BENH), N, N‟-bis(cinnamaldiimine)ligands (CA2EN) were reacted with copper(II) dihalide and copper(I) monohalide ions respectively to form complexes. The ligands and their complexes were analysed using elemental analyses, FT-IR spectroscopy (mid-IR), UV/vis in aprotic and protic solvents,while mass spectrometry, 1H-NMR and 13C-NMR were used to further analyse the ligands. By using substituent parameters, both the single and dual substituent parameters with the spectroscopic data obtained from the spectroscopic techiques mentioned above, it was hoped to monitor and determine whether the electronic effects (resonance or inductive effcets) was predominantly within the Schiff base ligands and copper complexes. The NMR studies with dual substituent parameters suggest that the effects of the substituents are transimitted through the ligands, via resonance effects and that the phenyl group is nonplanar with the azomethine in N, N‟-(aryl)benzyaldiimine ligands. The presence of an extra double bond in Schiff base {(N, N‟-bis(cinnamaldiimine) ligand)} altered the electron density. The UV/vis studies showed that the symmetry of the N, N‟-bis(4-R-benzyl)-1, 2-diaminoethanedihalidecopper(II) complexes were predominantly tetrahedral for both chloro and bromo complexes. The correlation studies from mid-infrared were beneficial in monitoring the effect experienced by N, N‟-(aryl)benzaldiimine ligands, the studies suggest that the inductive effect is more pronounced at the C=N.
- Full Text:
- Date Issued: 2010
An ion imprinted polymer for the selective extraction of mercury (II) ions in aqueous media
- Authors: Batlokwa, Bareki Shima
- Date: 2010 , 2013-07-18
- Subjects: Mercury , Metal ions , Imprinted polymers , Polymerization
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4294 , http://hdl.handle.net/10962/d1004541 , Mercury , Metal ions , Imprinted polymers , Polymerization
- Description: This thesis presents the application of an imprinted mercury(lI) polymer that we synthesized by copolymerizing the functional and cross-linking monomers, N'-[3-(Trimethoxysilyl)propyl] diethylenetriamine (TPET) and tetraethylorthosilicate (TEOS) in the presence of mercury (II) ions as template. A bulk polymerization method following a double-imprinting procedure and employing hexadecyltrimethylammonium bromide (CTAB), as a second template to improve the efficiency of the polymer was employed in the synthesis. The imprinted polymer particles were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and their average size determined by screen analysis using standard test sieves. The relative selective coefficients (k') of the imprinted polymer evaluated from selective binding studies between Hg ²⁺and Cu²⁺ or Hg²⁺ and Cd²⁺, were 10588 and 3147, respectively. These values indicated highly favored Hg²⁺ extractions over the two competing ions. Application of the polymer to various real water samples (tap, sea, river, pulverized coal solution, treated and untreated sewerage from the vicinity of Grahamstown in South Africa) showed high extraction efficiencies (EEs) of Hg²⁺ ions; (over 84% in all cases) as evaluated from the detected unextracted Hg²⁺ ions by inductively coupled plasma optical emission spectroscopy (ICP-OES). The limit of detection (LOD, 3ơ) of the method was evaluated to be 0.036 ng ml⁻¹ and generally the data (n=10) had percentage relative standard deviation (%RSD) of less than 4%. These findings indicate that the double-imprinted polymer has potential to be used as an efficient extraction material for the selective pre-concentration of mercury(lI) ions in aqueous environments. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2010
- Authors: Batlokwa, Bareki Shima
- Date: 2010 , 2013-07-18
- Subjects: Mercury , Metal ions , Imprinted polymers , Polymerization
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4294 , http://hdl.handle.net/10962/d1004541 , Mercury , Metal ions , Imprinted polymers , Polymerization
- Description: This thesis presents the application of an imprinted mercury(lI) polymer that we synthesized by copolymerizing the functional and cross-linking monomers, N'-[3-(Trimethoxysilyl)propyl] diethylenetriamine (TPET) and tetraethylorthosilicate (TEOS) in the presence of mercury (II) ions as template. A bulk polymerization method following a double-imprinting procedure and employing hexadecyltrimethylammonium bromide (CTAB), as a second template to improve the efficiency of the polymer was employed in the synthesis. The imprinted polymer particles were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and their average size determined by screen analysis using standard test sieves. The relative selective coefficients (k') of the imprinted polymer evaluated from selective binding studies between Hg ²⁺and Cu²⁺ or Hg²⁺ and Cd²⁺, were 10588 and 3147, respectively. These values indicated highly favored Hg²⁺ extractions over the two competing ions. Application of the polymer to various real water samples (tap, sea, river, pulverized coal solution, treated and untreated sewerage from the vicinity of Grahamstown in South Africa) showed high extraction efficiencies (EEs) of Hg²⁺ ions; (over 84% in all cases) as evaluated from the detected unextracted Hg²⁺ ions by inductively coupled plasma optical emission spectroscopy (ICP-OES). The limit of detection (LOD, 3ơ) of the method was evaluated to be 0.036 ng ml⁻¹ and generally the data (n=10) had percentage relative standard deviation (%RSD) of less than 4%. These findings indicate that the double-imprinted polymer has potential to be used as an efficient extraction material for the selective pre-concentration of mercury(lI) ions in aqueous environments. , KMBT_363 , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2010
Metallophthalocyanines as electrocatalysts and superoxide dismutase mimics
- Authors: Matemadombo, Fungisai
- Date: 2010
- Subjects: Mimicry (Chemistry) Electrocatalysis Superoxide dismutase Electrochemistry Phthalocyanines
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4325 , http://hdl.handle.net/10962/d1004985
- Description: Syntheses, spectral, electrochemical, and spectroelectrochemical studies of iron, cobalt, and manganese phthalocyanines are reported. The novel coordination of cobalt tetracarboxy metallophthalocyanine to an electrode premodified with aryl radicals and its use in the detection of thiocyanate are reported. This work describes the catalytic activity of cobalt phthalocyanine (CoPc) derivatives adsorbed onto glassy carbon electrodes for the electrocatalytical detection of nitrite, Lcysteine, and melatonin. The modified electrodes efficiently detected nitrite. The CoPc derivative modified electrodes proficiently detected L-cysteine whereas an un-modified electrode could not. This work presents the innovative electrochemical detection of melatonin using electrodes adsorbed with CoPc derivatives. These electrodes detected melatonin at more favorable electrochemical parameters relative to an un-modified gold electrode. The limits of melatonin detection of the modified electrodes lay in the 10⁻⁷ to 10⁻⁶ M region. The modified electrodes accurately detected capsule melatonin concentrations as specified by the supplier and could differentiate between a mixture of melatonin, tryptophan, and ascorbic acid. They reliably detected nitrite, L-cysteine, and melatonin in the 10⁻⁴ to 10⁻² M region. Metallophthalocyanine complexes substituted with thio groups were employed as self assembled monolayers (SAMs). Voltammetry, impedance, atomic force microscopy, and scanning electrochemical microscopy proved that the SAMs all act as selective and efficient barriers to ion permeability. All the SAMs in this work can be used as effective electrochemical sensors of nitrite and L-cysteine in the 10⁻⁴ to 10⁻² M region with competitive limits of detection whereas an un-modified electrode cannot detect Lcysteine. The manganese phthalocyanine SAM modified electrodes are arguably better nitrite and L-cysteine electrocatalysts relative to their iron and cobalt counterparts. Manganese phthalocyanines were used as superoxide dismutase (SOD) mimics. All manganese phthalocyanine complexes in this work acted as SOD mimics in an enzymatic system of superoxide production. From cellular studies, complexes 6d, 6e, 8d, 8e act as intracellular SOD mimics and are without significantly high cellular toxicity.
- Full Text:
- Date Issued: 2010
- Authors: Matemadombo, Fungisai
- Date: 2010
- Subjects: Mimicry (Chemistry) Electrocatalysis Superoxide dismutase Electrochemistry Phthalocyanines
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4325 , http://hdl.handle.net/10962/d1004985
- Description: Syntheses, spectral, electrochemical, and spectroelectrochemical studies of iron, cobalt, and manganese phthalocyanines are reported. The novel coordination of cobalt tetracarboxy metallophthalocyanine to an electrode premodified with aryl radicals and its use in the detection of thiocyanate are reported. This work describes the catalytic activity of cobalt phthalocyanine (CoPc) derivatives adsorbed onto glassy carbon electrodes for the electrocatalytical detection of nitrite, Lcysteine, and melatonin. The modified electrodes efficiently detected nitrite. The CoPc derivative modified electrodes proficiently detected L-cysteine whereas an un-modified electrode could not. This work presents the innovative electrochemical detection of melatonin using electrodes adsorbed with CoPc derivatives. These electrodes detected melatonin at more favorable electrochemical parameters relative to an un-modified gold electrode. The limits of melatonin detection of the modified electrodes lay in the 10⁻⁷ to 10⁻⁶ M region. The modified electrodes accurately detected capsule melatonin concentrations as specified by the supplier and could differentiate between a mixture of melatonin, tryptophan, and ascorbic acid. They reliably detected nitrite, L-cysteine, and melatonin in the 10⁻⁴ to 10⁻² M region. Metallophthalocyanine complexes substituted with thio groups were employed as self assembled monolayers (SAMs). Voltammetry, impedance, atomic force microscopy, and scanning electrochemical microscopy proved that the SAMs all act as selective and efficient barriers to ion permeability. All the SAMs in this work can be used as effective electrochemical sensors of nitrite and L-cysteine in the 10⁻⁴ to 10⁻² M region with competitive limits of detection whereas an un-modified electrode cannot detect Lcysteine. The manganese phthalocyanine SAM modified electrodes are arguably better nitrite and L-cysteine electrocatalysts relative to their iron and cobalt counterparts. Manganese phthalocyanines were used as superoxide dismutase (SOD) mimics. All manganese phthalocyanine complexes in this work acted as SOD mimics in an enzymatic system of superoxide production. From cellular studies, complexes 6d, 6e, 8d, 8e act as intracellular SOD mimics and are without significantly high cellular toxicity.
- Full Text:
- Date Issued: 2010
Photophysical and photoelectrochemical properties of water soluble metallophthalocyanines
- Authors: Masilela, Nkosiphile
- Date: 2010
- Subjects: Phthalocyanines , Electrochemistry , Photoelectrochemistry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4330 , http://hdl.handle.net/10962/d1004991 , Phthalocyanines , Electrochemistry , Photoelectrochemistry
- Description: This work presents the synthesis, characterization, photophysicochemical and photoelectrochemical properties of anionic octa-caboxylated (MOCPcs), tetra-sulfonated (MTSPcs) and quaternized cationic (Q(T-2-Py)MPcs) water soluble aluminium, gallium, silicon, titanium and zinc phthalocynines. The peripherally tetra-substituted cationic (Q(T-2-Py)MPcs) and anionic (MTSPcs) were found to be aggregated in aqueous media, yet the octa-carboxylated (MOCPcs) counterparts were monomeric in solution. Cremophor EL (CEL) was used as a disaggregating agent, all the aggregated complexes disaggregated partially or completely in the presence of CEL. The photophysicochemical properties of aggregated complexes were investigated both in the presence of CEL and in aqueous media of pH 11 alone. Low triplet, singlet oxygen and fluorescence quantum yield were obtained in aqueous media (especially for the aggregated complexes) but a high improvement was achieved upon addition of CEL. The gallium complexes ((OH)GaOCPc and (OH)GaTSPc) showed good photophysicochemical properties with higher triplet and singlet oxygen quantum yields. For photoelectrochemistry the (MPcs) dyes were adsorbed to nanoporous ZnO, electrodeposited in the presence of eosin Y as structure directing agent (SDA) on FTO substrates by refluxing or soaking the films in a solution containing the dye of interest such that a full surface coverage was achieved. Quaternized cationic (Q(T-2-Py)MPc) and tetrasulfonated (MTSPcs) phthalocyanines formed strong aggregates when deposited on the surface of FTO/ZnO substrate leading. High external (IPCE) and internal (APCE) quantum efficiencies of up to 50.6% and 96.7% were achieved for the OTiOCPc complex. There was a lower overall cell efficiency for quaternized and tetrasulfonated metallophthalocyanines because of the strong aggregates when they were on the surface of the electrodes. Among the studied materials, OTiOCPc gave the highest overall cell efficiency of phthalocyanine electrodeposited on ZnO of so far = 0.48%.
- Full Text:
- Date Issued: 2010
- Authors: Masilela, Nkosiphile
- Date: 2010
- Subjects: Phthalocyanines , Electrochemistry , Photoelectrochemistry
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4330 , http://hdl.handle.net/10962/d1004991 , Phthalocyanines , Electrochemistry , Photoelectrochemistry
- Description: This work presents the synthesis, characterization, photophysicochemical and photoelectrochemical properties of anionic octa-caboxylated (MOCPcs), tetra-sulfonated (MTSPcs) and quaternized cationic (Q(T-2-Py)MPcs) water soluble aluminium, gallium, silicon, titanium and zinc phthalocynines. The peripherally tetra-substituted cationic (Q(T-2-Py)MPcs) and anionic (MTSPcs) were found to be aggregated in aqueous media, yet the octa-carboxylated (MOCPcs) counterparts were monomeric in solution. Cremophor EL (CEL) was used as a disaggregating agent, all the aggregated complexes disaggregated partially or completely in the presence of CEL. The photophysicochemical properties of aggregated complexes were investigated both in the presence of CEL and in aqueous media of pH 11 alone. Low triplet, singlet oxygen and fluorescence quantum yield were obtained in aqueous media (especially for the aggregated complexes) but a high improvement was achieved upon addition of CEL. The gallium complexes ((OH)GaOCPc and (OH)GaTSPc) showed good photophysicochemical properties with higher triplet and singlet oxygen quantum yields. For photoelectrochemistry the (MPcs) dyes were adsorbed to nanoporous ZnO, electrodeposited in the presence of eosin Y as structure directing agent (SDA) on FTO substrates by refluxing or soaking the films in a solution containing the dye of interest such that a full surface coverage was achieved. Quaternized cationic (Q(T-2-Py)MPc) and tetrasulfonated (MTSPcs) phthalocyanines formed strong aggregates when deposited on the surface of FTO/ZnO substrate leading. High external (IPCE) and internal (APCE) quantum efficiencies of up to 50.6% and 96.7% were achieved for the OTiOCPc complex. There was a lower overall cell efficiency for quaternized and tetrasulfonated metallophthalocyanines because of the strong aggregates when they were on the surface of the electrodes. Among the studied materials, OTiOCPc gave the highest overall cell efficiency of phthalocyanine electrodeposited on ZnO of so far = 0.48%.
- Full Text:
- Date Issued: 2010
Photophysical studies of zinc and indium tetraaminophthalocyanines in the presence of CdTe quantum dots
- Authors: Britton, Jonathan
- Date: 2010
- Subjects: Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4332 , http://hdl.handle.net/10962/d1004993 , Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Description: CdTe QDs capped with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) were covalently linked to zinc and indium tetraaminophthalocyanines (TAPcs) using N-ethyl-N(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) as the coupling agents. The results presented give evidence in favour of formation of an amide bond between the MTAPc and CdTe QDs. Both the linked ZnTAPc–QD complexes and the mixture of QDs and ZnTAPc (without chemical linking) showed Förster resonance energy transfer (FRET), though the linked showed less FRET, whereas the QD interactions with InTAPc yielded no evidence of FRET. Both MTAPcs quenched the QDs emission, with quenching constants of the order of 103–104M−1, binding constants of the order of 108-1010M-1 and the number of binding sites for the MTAPc upon the QD being 2. High energy transfer efficiencies were obtained (in some cases as high as 93%), due to the low donor to acceptor distances. Lastly, both MTAPc were shown to be poor optical limiters because their imaginary third-order susceptibility (Im[χ(3)]) was of the order of 10-17-10-16 (optimal range is 10-9-10-11), the hyperpolarizability (γ) of the order of 10-37-10-36 (optimal range is 10-29-10-34) and the k values were above one but below ten.
- Full Text:
- Date Issued: 2010
- Authors: Britton, Jonathan
- Date: 2010
- Subjects: Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4332 , http://hdl.handle.net/10962/d1004993 , Indium , Zinc , Quantum dots , Phthalocyanines , Photochemotherapy , Nonlinear optics , Nanocrystals
- Description: CdTe QDs capped with mercaptopropionic acid (MPA) and thioglycolic acid (TGA) were covalently linked to zinc and indium tetraaminophthalocyanines (TAPcs) using N-ethyl-N(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) as the coupling agents. The results presented give evidence in favour of formation of an amide bond between the MTAPc and CdTe QDs. Both the linked ZnTAPc–QD complexes and the mixture of QDs and ZnTAPc (without chemical linking) showed Förster resonance energy transfer (FRET), though the linked showed less FRET, whereas the QD interactions with InTAPc yielded no evidence of FRET. Both MTAPcs quenched the QDs emission, with quenching constants of the order of 103–104M−1, binding constants of the order of 108-1010M-1 and the number of binding sites for the MTAPc upon the QD being 2. High energy transfer efficiencies were obtained (in some cases as high as 93%), due to the low donor to acceptor distances. Lastly, both MTAPc were shown to be poor optical limiters because their imaginary third-order susceptibility (Im[χ(3)]) was of the order of 10-17-10-16 (optimal range is 10-9-10-11), the hyperpolarizability (γ) of the order of 10-37-10-36 (optimal range is 10-29-10-34) and the k values were above one but below ten.
- Full Text:
- Date Issued: 2010
Photophysiochemical studies of d¹⁰ metallophthalocyanines and their interaction with nanoparticles
- Chidawanyika, Wadzanai Janet Upenyu
- Authors: Chidawanyika, Wadzanai Janet Upenyu
- Date: 2010
- Subjects: Nanoparticles Phthalocyanines Photochemistry Electrochemistry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4335 , http://hdl.handle.net/10962/d1004996
- Description: The syntheses, extensive spectroscopic characterization, photophysical and photochemical studies have been conducted for a variation of d10 metallophthaloycanines (MPcs). Comparisons have been made taking into consideration the nfluence of the central metal ion, solvent properties, substituent type and position. Coordination to heavy central metals i.e. Hg gives enhanced triplet state properties. Low symmetry metallophthalocyanine complexes were similarly haracterized and the influence of nteractions with nanoparticles on their photophysical and photochemical properties determined. The MPcs have been linked and adsorbed or mixed with nanoparticles i.e. hemically functionalized single-walled carbon nanotubes SWCNT) and mercaptocarboxylic acid capped CdTe quantum dots (QDs) and changes in the spectra accounted for with respect to the proposed conjugate structures. Distinct differences ccur for linked and adsorbed or mixed conjugates in the bsorption, infrared (IR) and Raman spectra and for thermal ravimetric decay profiles, suggesting successful formation f covalent bonds (linked) and point to structurally ifferent materials. SWCNT quench MPc fluorescence by a photoinduced electron transfer mediated process to give low fluorescence quantum yields. The QDs were used as energy transfer donors and facilitate energy transfer, through Förster resonance energy transfer (FRET) from the QDs to the MPcs. Improved FRET efficiencies were found for linked MPc-QD conjugates relative to the mixed species. Photophysicochemical properties of MPcs were, in general, improved as a result of interactions with nanoparticles.
- Full Text:
- Date Issued: 2010
- Authors: Chidawanyika, Wadzanai Janet Upenyu
- Date: 2010
- Subjects: Nanoparticles Phthalocyanines Photochemistry Electrochemistry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4335 , http://hdl.handle.net/10962/d1004996
- Description: The syntheses, extensive spectroscopic characterization, photophysical and photochemical studies have been conducted for a variation of d10 metallophthaloycanines (MPcs). Comparisons have been made taking into consideration the nfluence of the central metal ion, solvent properties, substituent type and position. Coordination to heavy central metals i.e. Hg gives enhanced triplet state properties. Low symmetry metallophthalocyanine complexes were similarly haracterized and the influence of nteractions with nanoparticles on their photophysical and photochemical properties determined. The MPcs have been linked and adsorbed or mixed with nanoparticles i.e. hemically functionalized single-walled carbon nanotubes SWCNT) and mercaptocarboxylic acid capped CdTe quantum dots (QDs) and changes in the spectra accounted for with respect to the proposed conjugate structures. Distinct differences ccur for linked and adsorbed or mixed conjugates in the bsorption, infrared (IR) and Raman spectra and for thermal ravimetric decay profiles, suggesting successful formation f covalent bonds (linked) and point to structurally ifferent materials. SWCNT quench MPc fluorescence by a photoinduced electron transfer mediated process to give low fluorescence quantum yields. The QDs were used as energy transfer donors and facilitate energy transfer, through Förster resonance energy transfer (FRET) from the QDs to the MPcs. Improved FRET efficiencies were found for linked MPc-QD conjugates relative to the mixed species. Photophysicochemical properties of MPcs were, in general, improved as a result of interactions with nanoparticles.
- Full Text:
- Date Issued: 2010
Sample preparation for pesticide analysis in water and sediments a case study of the Okavango Delta, Botswana
- Authors: Mmualefe, Lesego Cecilia
- Date: 2010
- Subjects: Water quality -- Botswana -- Okavango Delta Water -- Analysis Pesticides -- Environmental aspects -- Botswana -- Okavango Delta Water -- Pollution -- Botswana -- Okavango Delta DDT (Insecticide) -- Environmental aspects -- Botswana -- Okavango Delta
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4344 , http://hdl.handle.net/10962/d1005006
- Description: This thesis presents a first ever extensive analysis of pesticides in water and sediments from the Okavango Delta, Botswana, employing green sample preparation techniques that require small volumes of organic solvents hence generating negligible volumes of organic solvent waste. Pesticides were extracted and pre-concentrated from water by solid phase extraction (SPE) and headspace solid phase microextraction (HS-SPME) while supercritical fluid extraction (SFE) and pressurized fluid extraction (PFE) were employed for sediments. Subsequent analysis was carried out on a gas chromatograph with electron capture detection and analytes were unequivocally confirmed by high resolution mass spectrometric detection. Hexachlorobenzene (HCB), trans-chlordane, 4,4′-DDD and 4,4′-DDE were detected after optimized HS-SPME in several water samples from the lower Delta at concentrations ranging from 2.4 to 61.4 μg L-1 that are much higher than the 0.1 μg L-1 maximum limit of individual organochlorine pesticides in drinking water set by the European Community Directive. The same samples were cleaned with ISOLUTE C18 SPE sorbent with an optimal acetone/n-hexane (1:1 v/v) mixture for the elution of analytes. No pesticides were detected after SPE clean-up and pre-concentration. HCB, aldrin and 4, 4‟-DDT were identified in sediments after SFE at concentration ranges of 1.1 - 30.3, 0.5 – 15.2 and 1.4 – 55.4 μg/g, respectively. There was an increase of pesticides concentrations in the direction of water flow from the Panhandle (point of entry) to the lower delta. DDE, fatty acids and phthalates were detected after PFE with optimized extraction solvent and temperature. The presence of DDT metabolites in the water and sediments from the Okavango Delta confirm historical exposure to the pesticide. However their cumulative concentration increase in the water-flow direction calls for further investigation of point sources for the long-term preservation of the Delta. The green sample preparation techniques and low toxicity solvents employed in this thesis are thus recommended for routine environmental monitoring exercises.
- Full Text:
- Date Issued: 2010
- Authors: Mmualefe, Lesego Cecilia
- Date: 2010
- Subjects: Water quality -- Botswana -- Okavango Delta Water -- Analysis Pesticides -- Environmental aspects -- Botswana -- Okavango Delta Water -- Pollution -- Botswana -- Okavango Delta DDT (Insecticide) -- Environmental aspects -- Botswana -- Okavango Delta
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4344 , http://hdl.handle.net/10962/d1005006
- Description: This thesis presents a first ever extensive analysis of pesticides in water and sediments from the Okavango Delta, Botswana, employing green sample preparation techniques that require small volumes of organic solvents hence generating negligible volumes of organic solvent waste. Pesticides were extracted and pre-concentrated from water by solid phase extraction (SPE) and headspace solid phase microextraction (HS-SPME) while supercritical fluid extraction (SFE) and pressurized fluid extraction (PFE) were employed for sediments. Subsequent analysis was carried out on a gas chromatograph with electron capture detection and analytes were unequivocally confirmed by high resolution mass spectrometric detection. Hexachlorobenzene (HCB), trans-chlordane, 4,4′-DDD and 4,4′-DDE were detected after optimized HS-SPME in several water samples from the lower Delta at concentrations ranging from 2.4 to 61.4 μg L-1 that are much higher than the 0.1 μg L-1 maximum limit of individual organochlorine pesticides in drinking water set by the European Community Directive. The same samples were cleaned with ISOLUTE C18 SPE sorbent with an optimal acetone/n-hexane (1:1 v/v) mixture for the elution of analytes. No pesticides were detected after SPE clean-up and pre-concentration. HCB, aldrin and 4, 4‟-DDT were identified in sediments after SFE at concentration ranges of 1.1 - 30.3, 0.5 – 15.2 and 1.4 – 55.4 μg/g, respectively. There was an increase of pesticides concentrations in the direction of water flow from the Panhandle (point of entry) to the lower delta. DDE, fatty acids and phthalates were detected after PFE with optimized extraction solvent and temperature. The presence of DDT metabolites in the water and sediments from the Okavango Delta confirm historical exposure to the pesticide. However their cumulative concentration increase in the water-flow direction calls for further investigation of point sources for the long-term preservation of the Delta. The green sample preparation techniques and low toxicity solvents employed in this thesis are thus recommended for routine environmental monitoring exercises.
- Full Text:
- Date Issued: 2010
Studies towards the development of novel HIV-1 integrase inhibitors
- Authors: Lee, Yi-Chen
- Date: 2010
- Subjects: HIV infections -- Treatment , HIV (Viruses) , AIDS (Disease) -- Treatment , Nuclear magnetic resonance , Heterocyclic compounds -- Derivatives , Enzyme inhibitors , Chemical inhibitors , Quinoline
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4357 , http://hdl.handle.net/10962/d1005022 , HIV infections -- Treatment , HIV (Viruses) , AIDS (Disease) -- Treatment , Nuclear magnetic resonance , Heterocyclic compounds -- Derivatives , Enzyme inhibitors , Chemical inhibitors , Quinoline
- Description: The project has focused on the preparation of several series of compounds designed as potential HIV-1 integrase inhibitors. Various 2-nitrobenzaldehydes have been reacted with two activated alkenes, methyl vinyl ketone (MVK) and methyl acrylate, under Baylis-Hillman conditions to afford α-methylene-β-hydroxylalkyl derivatives in moderate to excellent yields. The reactions were conducted using the tertiary amine catalysts, 1,4-diazabicyclo[2.2.2]octane(DABCO) or 3-hydroxyquinuclidine (3-HQ) with chloroform as solvent, and yields were optimised by varying the catalyst, reagent concentrations and the reaction time. Reductive cyclization of the Baylis-Hillman adducts via catalytic hydrogenation, using 10% palladiumon-carbon catalyst in ethanol, afforded quinoline and quinoline N-oxide derivatives. In some cases “acyclic” reduction products were also isolated. Reaction of the Baylis-Hillman MVK adducts with HCl, has resulted in effective nucleophilic (SN’) displacement of the hydroxyl group to afford allylic chloride derivatives. Direct substitution of these chloro derivatives by secondary or primary amines, followed by catalytic hydrogenation gave quinoline derivatives containing a 3-aminomethyl substituent. The Baylis-Hillman ester adducts obtained from reaction with methyl acrylate were treated directly with various amines to give diastereomeric conjugate addition products. Reactions with piperazine gave N,N’-disubstituted piperazine products. The piperidine derivatives have been dehydrated to give cinnamate esters in moderate yields. The products, which have all been satisfactorily characterised by elemental (HRMS) and spectroscopic (1- and 2-D NMR) analysis, constitute a “library” of compounds for in silico and in vitro studies as potential HIV integrase inhibitors.
- Full Text:
- Date Issued: 2010
- Authors: Lee, Yi-Chen
- Date: 2010
- Subjects: HIV infections -- Treatment , HIV (Viruses) , AIDS (Disease) -- Treatment , Nuclear magnetic resonance , Heterocyclic compounds -- Derivatives , Enzyme inhibitors , Chemical inhibitors , Quinoline
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4357 , http://hdl.handle.net/10962/d1005022 , HIV infections -- Treatment , HIV (Viruses) , AIDS (Disease) -- Treatment , Nuclear magnetic resonance , Heterocyclic compounds -- Derivatives , Enzyme inhibitors , Chemical inhibitors , Quinoline
- Description: The project has focused on the preparation of several series of compounds designed as potential HIV-1 integrase inhibitors. Various 2-nitrobenzaldehydes have been reacted with two activated alkenes, methyl vinyl ketone (MVK) and methyl acrylate, under Baylis-Hillman conditions to afford α-methylene-β-hydroxylalkyl derivatives in moderate to excellent yields. The reactions were conducted using the tertiary amine catalysts, 1,4-diazabicyclo[2.2.2]octane(DABCO) or 3-hydroxyquinuclidine (3-HQ) with chloroform as solvent, and yields were optimised by varying the catalyst, reagent concentrations and the reaction time. Reductive cyclization of the Baylis-Hillman adducts via catalytic hydrogenation, using 10% palladiumon-carbon catalyst in ethanol, afforded quinoline and quinoline N-oxide derivatives. In some cases “acyclic” reduction products were also isolated. Reaction of the Baylis-Hillman MVK adducts with HCl, has resulted in effective nucleophilic (SN’) displacement of the hydroxyl group to afford allylic chloride derivatives. Direct substitution of these chloro derivatives by secondary or primary amines, followed by catalytic hydrogenation gave quinoline derivatives containing a 3-aminomethyl substituent. The Baylis-Hillman ester adducts obtained from reaction with methyl acrylate were treated directly with various amines to give diastereomeric conjugate addition products. Reactions with piperazine gave N,N’-disubstituted piperazine products. The piperidine derivatives have been dehydrated to give cinnamate esters in moderate yields. The products, which have all been satisfactorily characterised by elemental (HRMS) and spectroscopic (1- and 2-D NMR) analysis, constitute a “library” of compounds for in silico and in vitro studies as potential HIV integrase inhibitors.
- Full Text:
- Date Issued: 2010
Application of Baylis-Hillman methodology in the construction of complex heterocyclic targets
- Ganto, Mlungiseleli MacDonald
- Authors: Ganto, Mlungiseleli MacDonald
- Date: 2009
- Subjects: Heterocyclic compounds -- Derivatives Heterocyclic chemistry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4401 , http://hdl.handle.net/10962/d1006703
- Description: Baylis-Hillman reactions using various aromatic aldehydes, activated alkenes and catalysts have been used to: - access an extensive range of poly-heterocyclic products;explore chemoselectivity; and optimise reaction efficiency. Chromone-3-carbaldehydes and chromone-2-carbaldehydes, prepared via Vielsmeier-Haack and Kostanecki-Robinson methodology, respectively, have been used as Baylis-Hillman substrates with four different catalysts, viz., 1,4-diazabicyclo[2.2.2]octane (DABCO), 3-hydroxyquinuclidine (3-HQ), imidazole and N’,N’,N’,N’- tetramethylpropanediamine (TMPDA), and with methyl vinyl ketone (MVK), methyl acrylate, cyclic enones (2-cyclohexen-1-one, 2-cyclopenten-1-one and chromones) as activated alkenes. Reactions of the chromone- -carbaldehydes with MVK afforded dimeric Baylis-Hillman adducts when catalyzed by DABCO but when the same reactions were repeated using 3-HQ as catalyst, the dimeric products were accompanied by tricyclic Baylis-Hillman adducts. Use of excess MVK, however, led to mixtures of the normal Baylis-Hillman adducts and the tricyclic adducts – interestingly, with the apparent absence of the dimeric products. While reactions of chromone-3-carbaldehydes with methyl acrylate afforded the normal Baylis-Hillman adducts, the chromone-2- carbaldehydes produced, instead, rearrangement products, consistent with an earlier, single observation. Reactions of 2-nitrobenzaldehydes with cyclic enones using imidazole as catalyst afforded the normal Baylis-Hillman adducts, reductive cyclisation of the 2-cyclohexen-1- one and 2-cyclopenten-1-one adducts, using acetic acid and iron powder, afforded the corresponding quinoline erivatives. Treatment of cyclic enones with pyridine-2-carbaldehydes and quinoline-2-carbaldehydes using TMPDA as catalyst generally gave the expected Baylis-Hillman adducts. However, indolizine derivatives were isolated directly from Baylis-Hillman reactions involving pyridine-2-carbaldehydes and 2-cyclohexen-1-one. The remaining Baylis-Hillman adducts were cyclized to the corresponding indolizines by treatment with acetic anhydride both under reflux and under microwave-assisted conditions, the latter approach providing remarkably rapid and efficient access to the polycyclic products. Computer modelling studies have been conducted on selected polycyclic products at the Molecular Mechanics (MM), Quantum Mechanical (QM) and Density Functional (DFT) levels. The theoretical results have been used to calculate UV, IR and NMR absorption data, which have been compared, in turn, with the experimental spectroscopic data. Use has also been made of the estreNova NMR prediction programme and, generally, good agreement has been observed between the predicted and experimental spectroscopic data.
- Full Text:
- Date Issued: 2009
- Authors: Ganto, Mlungiseleli MacDonald
- Date: 2009
- Subjects: Heterocyclic compounds -- Derivatives Heterocyclic chemistry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4401 , http://hdl.handle.net/10962/d1006703
- Description: Baylis-Hillman reactions using various aromatic aldehydes, activated alkenes and catalysts have been used to: - access an extensive range of poly-heterocyclic products;explore chemoselectivity; and optimise reaction efficiency. Chromone-3-carbaldehydes and chromone-2-carbaldehydes, prepared via Vielsmeier-Haack and Kostanecki-Robinson methodology, respectively, have been used as Baylis-Hillman substrates with four different catalysts, viz., 1,4-diazabicyclo[2.2.2]octane (DABCO), 3-hydroxyquinuclidine (3-HQ), imidazole and N’,N’,N’,N’- tetramethylpropanediamine (TMPDA), and with methyl vinyl ketone (MVK), methyl acrylate, cyclic enones (2-cyclohexen-1-one, 2-cyclopenten-1-one and chromones) as activated alkenes. Reactions of the chromone- -carbaldehydes with MVK afforded dimeric Baylis-Hillman adducts when catalyzed by DABCO but when the same reactions were repeated using 3-HQ as catalyst, the dimeric products were accompanied by tricyclic Baylis-Hillman adducts. Use of excess MVK, however, led to mixtures of the normal Baylis-Hillman adducts and the tricyclic adducts – interestingly, with the apparent absence of the dimeric products. While reactions of chromone-3-carbaldehydes with methyl acrylate afforded the normal Baylis-Hillman adducts, the chromone-2- carbaldehydes produced, instead, rearrangement products, consistent with an earlier, single observation. Reactions of 2-nitrobenzaldehydes with cyclic enones using imidazole as catalyst afforded the normal Baylis-Hillman adducts, reductive cyclisation of the 2-cyclohexen-1- one and 2-cyclopenten-1-one adducts, using acetic acid and iron powder, afforded the corresponding quinoline erivatives. Treatment of cyclic enones with pyridine-2-carbaldehydes and quinoline-2-carbaldehydes using TMPDA as catalyst generally gave the expected Baylis-Hillman adducts. However, indolizine derivatives were isolated directly from Baylis-Hillman reactions involving pyridine-2-carbaldehydes and 2-cyclohexen-1-one. The remaining Baylis-Hillman adducts were cyclized to the corresponding indolizines by treatment with acetic anhydride both under reflux and under microwave-assisted conditions, the latter approach providing remarkably rapid and efficient access to the polycyclic products. Computer modelling studies have been conducted on selected polycyclic products at the Molecular Mechanics (MM), Quantum Mechanical (QM) and Density Functional (DFT) levels. The theoretical results have been used to calculate UV, IR and NMR absorption data, which have been compared, in turn, with the experimental spectroscopic data. Use has also been made of the estreNova NMR prediction programme and, generally, good agreement has been observed between the predicted and experimental spectroscopic data.
- Full Text:
- Date Issued: 2009
Electrochemical studies of titanium, manganese and cobalt phthalocyanines
- Authors: Nombona, Nolwazi
- Date: 2009
- Subjects: Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4312 , http://hdl.handle.net/10962/d1004970 , Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Description: Syntheses, spectral, electrochemical and spectroelectrochemical studies of phenylthio and amino derivatised metallophthalocyanines complexes are reported. The complexes are immobilized onto a gold macro disk, gold ultramicroelectrode and gold coated fiber electrodes via self assembly with phenylthio MPc derivatives or onto a glassy carbon electrode via electropolymerisation with amino MPc derivatives. For the first time MPc SAMs were formed on gold coated fiber. The electrocatalytic behavior of the modified electrodes was studied for the detection of nitrite and L-cysteine, all modified electrodes showed improved electrocatalytic oxidation compared to the unmodified electrode. The MPc complexes catalyzed nitrite oxidation via a two-electron mechanism producing nitrate. Cobalt tetraaminophthalocyanine showed the best catalytic activity for nitrite oxidation in terms of overpotential lowering compared to other complexes and thus was used for nitrite detection in a food sample, the nitrite concentration was determined to be 59.13 ppm, well within the limit for cured meat products. Electrocatalytic oxidation of L-cysteine on SAM modified gold coated fiber was reported for the first time. The gold coated fiber and ultamicro cylinder electrode were less stable towards the electro-oxidation of cysteine compared to its oxidation on the gold disk. The gold disk electrode gave better catalytic performance in terms of stability and reduction of overpotential. The phenylthio cobalt phthalocyanine derivative gave the best catalytic activity for L-cysteine oxidation in terms of overpotential lowering compared to other phenylthio derivatized MPc complexes. The amount of L-cysteine in human urine was 2.4 mM, well within the urinary L-cysteine excretion range for a healthy human being.
- Full Text:
- Date Issued: 2009
- Authors: Nombona, Nolwazi
- Date: 2009
- Subjects: Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4312 , http://hdl.handle.net/10962/d1004970 , Titanium , Manganese , Cobalt , Phthalocyanines , Electrochemistry , Electrodes , Self-assembly (Chemistry)
- Description: Syntheses, spectral, electrochemical and spectroelectrochemical studies of phenylthio and amino derivatised metallophthalocyanines complexes are reported. The complexes are immobilized onto a gold macro disk, gold ultramicroelectrode and gold coated fiber electrodes via self assembly with phenylthio MPc derivatives or onto a glassy carbon electrode via electropolymerisation with amino MPc derivatives. For the first time MPc SAMs were formed on gold coated fiber. The electrocatalytic behavior of the modified electrodes was studied for the detection of nitrite and L-cysteine, all modified electrodes showed improved electrocatalytic oxidation compared to the unmodified electrode. The MPc complexes catalyzed nitrite oxidation via a two-electron mechanism producing nitrate. Cobalt tetraaminophthalocyanine showed the best catalytic activity for nitrite oxidation in terms of overpotential lowering compared to other complexes and thus was used for nitrite detection in a food sample, the nitrite concentration was determined to be 59.13 ppm, well within the limit for cured meat products. Electrocatalytic oxidation of L-cysteine on SAM modified gold coated fiber was reported for the first time. The gold coated fiber and ultamicro cylinder electrode were less stable towards the electro-oxidation of cysteine compared to its oxidation on the gold disk. The gold disk electrode gave better catalytic performance in terms of stability and reduction of overpotential. The phenylthio cobalt phthalocyanine derivative gave the best catalytic activity for L-cysteine oxidation in terms of overpotential lowering compared to other phenylthio derivatized MPc complexes. The amount of L-cysteine in human urine was 2.4 mM, well within the urinary L-cysteine excretion range for a healthy human being.
- Full Text:
- Date Issued: 2009
Photophysical and photochemical behaviour of metallophthalocyanines effect of nanoparticles and molecules of biological importance
- Authors: Idowu, Mopelola Abidemi
- Date: 2009
- Subjects: Electrochemistry Phthalocyanines Nanoparticles
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4329 , http://hdl.handle.net/10962/d1004990
- Description: Syntheses, spectral, photophysical and photochemical studies of some neutral, anionic and cationic metallophthalocyanine derivatives are presented. The effects of central metal ions, solvents, aggregation, surfactant, nanoparticles and bovine serum albumin on the photophysical and photochemical behaviour are investigated. Mercaptocarboxylic acid stabilized CdTe quantum dots (QDs) were used as energy donors to anionic water-soluble MPcs through Förster resonance energy transfer (FRET). Energy transfer (ET) from the QDs to the MPcs occurred upon photoexcitation of the QDs. An enhancement in efficiency of ET with the nature of the cappings on the QDs was observed with few occurrences of a non-Förster type ET. QDs were found to improve the photophysicochemical behaviour of the MPcs, with the possibility of indirect production of singlet oxygen (Φ[subscript Δ]) via FRET mechanism. Interaction of the QDs with cationic water-souble MPcs produced ion-pair complexes resulting in aggregates due to strong electronic coupling. The stoichiometry of the reaction and association constants are evaluated by the continuous variation method. Improved photophysicochemical behaviour with no spectral alterations was observed in MPcs in the presence of magnetic fluid. Complexes showed high triplet quantum yields with corresponding long lifetimes and high photostability. Elucidation of the results of the interaction of bovine serum albumin (BSA) with MPcs or QDs is presented. Increased efficiency of Φ[subscript Δ] generation of MPcs in the presence of BSA coupled with large binding constants, suggesting strong interaction of the MPcs with BSA was observed. Enhanced emission intensity of QDs when linked to or in a mixture with BSA due to radiationless recombination at the surface vacancies was also observed. The study revealed positive deviation from Stern-Volmer relationship suggesting the occurrence of static and dynamic mechanisms of quenching together. Fluorescence quenching of the MPcs by benzoquinone, analysed by Stern-Volmer relationship is also presented; the results were employed in determining fluorescence lifetimes of the complexes. Photoelectrochemical characteristics of MPc-sensitized electrodeposited ZnO thin films were studied; ZnOCPc / ZnO films have been improved to an incident photon-to-currentconversion (IPCE) value of 31.1 % with an absorbed photon-to-current conversion (APCE) of 59.6 %. The best obtained so far with phthalocyanine-type sensitizers on nanocrystalline ZnO films. Fluorescent-magnetic nanocomposite with excellent photophysical properties which can be exploited for combined photodynamic and hyperthermia therapies is also presented.
- Full Text:
- Date Issued: 2009
- Authors: Idowu, Mopelola Abidemi
- Date: 2009
- Subjects: Electrochemistry Phthalocyanines Nanoparticles
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4329 , http://hdl.handle.net/10962/d1004990
- Description: Syntheses, spectral, photophysical and photochemical studies of some neutral, anionic and cationic metallophthalocyanine derivatives are presented. The effects of central metal ions, solvents, aggregation, surfactant, nanoparticles and bovine serum albumin on the photophysical and photochemical behaviour are investigated. Mercaptocarboxylic acid stabilized CdTe quantum dots (QDs) were used as energy donors to anionic water-soluble MPcs through Förster resonance energy transfer (FRET). Energy transfer (ET) from the QDs to the MPcs occurred upon photoexcitation of the QDs. An enhancement in efficiency of ET with the nature of the cappings on the QDs was observed with few occurrences of a non-Förster type ET. QDs were found to improve the photophysicochemical behaviour of the MPcs, with the possibility of indirect production of singlet oxygen (Φ[subscript Δ]) via FRET mechanism. Interaction of the QDs with cationic water-souble MPcs produced ion-pair complexes resulting in aggregates due to strong electronic coupling. The stoichiometry of the reaction and association constants are evaluated by the continuous variation method. Improved photophysicochemical behaviour with no spectral alterations was observed in MPcs in the presence of magnetic fluid. Complexes showed high triplet quantum yields with corresponding long lifetimes and high photostability. Elucidation of the results of the interaction of bovine serum albumin (BSA) with MPcs or QDs is presented. Increased efficiency of Φ[subscript Δ] generation of MPcs in the presence of BSA coupled with large binding constants, suggesting strong interaction of the MPcs with BSA was observed. Enhanced emission intensity of QDs when linked to or in a mixture with BSA due to radiationless recombination at the surface vacancies was also observed. The study revealed positive deviation from Stern-Volmer relationship suggesting the occurrence of static and dynamic mechanisms of quenching together. Fluorescence quenching of the MPcs by benzoquinone, analysed by Stern-Volmer relationship is also presented; the results were employed in determining fluorescence lifetimes of the complexes. Photoelectrochemical characteristics of MPc-sensitized electrodeposited ZnO thin films were studied; ZnOCPc / ZnO films have been improved to an incident photon-to-currentconversion (IPCE) value of 31.1 % with an absorbed photon-to-current conversion (APCE) of 59.6 %. The best obtained so far with phthalocyanine-type sensitizers on nanocrystalline ZnO films. Fluorescent-magnetic nanocomposite with excellent photophysical properties which can be exploited for combined photodynamic and hyperthermia therapies is also presented.
- Full Text:
- Date Issued: 2009
Studies towards the synthesis of novel tridentate ligands for use in ruthenium metathesis catalysts
- Authors: Millward, Tanya
- Date: 2009
- Subjects: Ligands , Catalysis , Metathesis (Chemistry) , Ruthenium , Complex compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4360 , http://hdl.handle.net/10962/d1005025 , Ligands , Catalysis , Metathesis (Chemistry) , Ruthenium , Complex compounds
- Description: This work has focussed on the preparation of a variety of tridentate ligands, designed to form ruthenium complexes as potential metathesis catalysts. Various approaches to the tridentate, malonate-tethered imidazolidine system have been investigated, and a promising route to accessing ligands of this type is discussed. A tridentate malonate-tethered pyridine ligand has been successfully prepared and its dithallium salt has been accessed by hydrolysis with thallium carbonate; approaches to a longer-chain analogue have also been investigated. A thallium pyridine-2,6- dicarboxylate ligand has been has been successfully prepared, as have a range of pyridine diamine ligands, with various alkyl and aromatic substituents on the amine donor atoms. Preliminary investigations into the potential of these compounds as ligands for alkylidene ruthenium complexes are reported using molecular modelling techniques. The geometries and steric energies of the ligands and their corresponding complexes have been analysed, and results obtained from two different software packages are compared. Finally, some preliminary complexation studies have been undertaken.
- Full Text:
- Date Issued: 2009
- Authors: Millward, Tanya
- Date: 2009
- Subjects: Ligands , Catalysis , Metathesis (Chemistry) , Ruthenium , Complex compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4360 , http://hdl.handle.net/10962/d1005025 , Ligands , Catalysis , Metathesis (Chemistry) , Ruthenium , Complex compounds
- Description: This work has focussed on the preparation of a variety of tridentate ligands, designed to form ruthenium complexes as potential metathesis catalysts. Various approaches to the tridentate, malonate-tethered imidazolidine system have been investigated, and a promising route to accessing ligands of this type is discussed. A tridentate malonate-tethered pyridine ligand has been successfully prepared and its dithallium salt has been accessed by hydrolysis with thallium carbonate; approaches to a longer-chain analogue have also been investigated. A thallium pyridine-2,6- dicarboxylate ligand has been has been successfully prepared, as have a range of pyridine diamine ligands, with various alkyl and aromatic substituents on the amine donor atoms. Preliminary investigations into the potential of these compounds as ligands for alkylidene ruthenium complexes are reported using molecular modelling techniques. The geometries and steric energies of the ligands and their corresponding complexes have been analysed, and results obtained from two different software packages are compared. Finally, some preliminary complexation studies have been undertaken.
- Full Text:
- Date Issued: 2009
Synthesis and electrochemistry of octapentylthio phthalocyanine complexes of manganese, titanium and vanadium
- Authors: Mbambisa, Gcineka
- Date: 2009
- Subjects: Electrochemistry , Phthalocyanines -- Synthesis , Manganese , Titanium , Vanadium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4368 , http://hdl.handle.net/10962/d1005033 , Electrochemistry , Phthalocyanines -- Synthesis , Manganese , Titanium , Vanadium
- Description: Synthesis of new thio derivatised Pcs with manganese, titanium and vanadium as a central metal is reported. The complexes synthesised were characterised using spectroscopic and electrochemical means. The complexes displayed interesting spectroscopic properties with absorption of the Q band being observed in the near infrared region. These complexes have unusual colours for MPc complexes, with purple or red colour being observed in solution. Interesting electrochemical properties were observed, with rare observation of the MnIV/MnIII redox couple. There was observation of oxidation peaks for the pentylthio derivatised Pc with titanium as the central metal; this is unusual since for reported thio derivatives based on TiPc, no oxidation was observed. The vanadium based Pc showed an interesting spectrum for the first ring based reduction. The absorption spectrum obtained for the 1st reduction of the vanadium complex using spectroelectrochemistry would normally indicate a metal based process but comparing with literature it was concluded that it is a ring based reduction process. Generally all the MPc complexes formed a well ordered stable monolayer on the gold electrode. Electrocatalytic studies using L-cysteine revealed that the SAM based on manganese (III) octapentylthio phthalocyanine (AcOMnOPTPc) was the most effective since it catalyses L-cysteine at much lower oxidation potentials and it is also much more stable.
- Full Text:
- Date Issued: 2009
- Authors: Mbambisa, Gcineka
- Date: 2009
- Subjects: Electrochemistry , Phthalocyanines -- Synthesis , Manganese , Titanium , Vanadium
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4368 , http://hdl.handle.net/10962/d1005033 , Electrochemistry , Phthalocyanines -- Synthesis , Manganese , Titanium , Vanadium
- Description: Synthesis of new thio derivatised Pcs with manganese, titanium and vanadium as a central metal is reported. The complexes synthesised were characterised using spectroscopic and electrochemical means. The complexes displayed interesting spectroscopic properties with absorption of the Q band being observed in the near infrared region. These complexes have unusual colours for MPc complexes, with purple or red colour being observed in solution. Interesting electrochemical properties were observed, with rare observation of the MnIV/MnIII redox couple. There was observation of oxidation peaks for the pentylthio derivatised Pc with titanium as the central metal; this is unusual since for reported thio derivatives based on TiPc, no oxidation was observed. The vanadium based Pc showed an interesting spectrum for the first ring based reduction. The absorption spectrum obtained for the 1st reduction of the vanadium complex using spectroelectrochemistry would normally indicate a metal based process but comparing with literature it was concluded that it is a ring based reduction process. Generally all the MPc complexes formed a well ordered stable monolayer on the gold electrode. Electrocatalytic studies using L-cysteine revealed that the SAM based on manganese (III) octapentylthio phthalocyanine (AcOMnOPTPc) was the most effective since it catalyses L-cysteine at much lower oxidation potentials and it is also much more stable.
- Full Text:
- Date Issued: 2009
Synthesis and photophysical properties of antimony and lead phthalocyanines
- Modibane, Kwena Desmond, Guest
- Authors: Modibane, Kwena Desmond , Guest
- Date: 2009 , 2009-02-27
- Subjects: Phthalocyanines , Photochemistry , Antimony compounds , Lead compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4370 , http://hdl.handle.net/10962/d1005035 , Phthalocyanines , Photochemistry , Antimony compounds , Lead compounds
- Description: This work hereby presents the synthesis, spectroscopic and photophysical properties of newly synthesized lead (PbPc) and antimony (SbPc) phthalocyanines. The complexes are either unsubstituted or substituted at the peripheral and non-peripheral positions with phenoxy, 4-t-butylphenoxy and 4-benzyloxyphenoxy groups. The photophysical properties of these complexes were studied in dimethylsulfoxide, dimethylformamide, toluene, tetrahydrofuran and chloroform as solvents. The fluorescence spectra for PbPc complexes were different to that of the excitation spectra due to demetallation upon excitation. On the other hand, the excitation spectra of oxidized antimony (Sb(V)Pc) derivatives were found to be similar to absorption spectra. High triplet quantum yields for PbPc and SbPc complexes ranging from 0.70 to 0.86, low triplet lifetimes (20–60 μs in DMSO, while they were <10 μs in the rest of the solvents) and low fluorescence quantum yields were observed and is attributed to the presence of heavy atoms (Pb and Sb ions). The nonlinear optical properties of PbPc complexes were studied in dimethylsulfoxide. The optical limiting threshold intensity (Ilim) for the PbPc derivatives were calculated and ranged from 2.1 to 6.8 W/cm2. The photodegradation studies of the PbPc and SbPc complexes synthesized showed that then are stable.
- Full Text:
- Date Issued: 2009
- Authors: Modibane, Kwena Desmond , Guest
- Date: 2009 , 2009-02-27
- Subjects: Phthalocyanines , Photochemistry , Antimony compounds , Lead compounds
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4370 , http://hdl.handle.net/10962/d1005035 , Phthalocyanines , Photochemistry , Antimony compounds , Lead compounds
- Description: This work hereby presents the synthesis, spectroscopic and photophysical properties of newly synthesized lead (PbPc) and antimony (SbPc) phthalocyanines. The complexes are either unsubstituted or substituted at the peripheral and non-peripheral positions with phenoxy, 4-t-butylphenoxy and 4-benzyloxyphenoxy groups. The photophysical properties of these complexes were studied in dimethylsulfoxide, dimethylformamide, toluene, tetrahydrofuran and chloroform as solvents. The fluorescence spectra for PbPc complexes were different to that of the excitation spectra due to demetallation upon excitation. On the other hand, the excitation spectra of oxidized antimony (Sb(V)Pc) derivatives were found to be similar to absorption spectra. High triplet quantum yields for PbPc and SbPc complexes ranging from 0.70 to 0.86, low triplet lifetimes (20–60 μs in DMSO, while they were <10 μs in the rest of the solvents) and low fluorescence quantum yields were observed and is attributed to the presence of heavy atoms (Pb and Sb ions). The nonlinear optical properties of PbPc complexes were studied in dimethylsulfoxide. The optical limiting threshold intensity (Ilim) for the PbPc derivatives were calculated and ranged from 2.1 to 6.8 W/cm2. The photodegradation studies of the PbPc and SbPc complexes synthesized showed that then are stable.
- Full Text:
- Date Issued: 2009
The design and synthesis of novel HIV-1 protease inhibitors
- Authors: Tukulula, Matshawandile
- Date: 2009
- Subjects: Protease Inhibitors HIV infections -- Treatment AIDS (Disease) -- Treatment HIV (Viruses) Indolizine -- Derivatives Heterocyclic compounds -- Derivatives Nuclear magnetic resonance Quinoline
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4305 , http://hdl.handle.net/10962/d1004963
- Description: This study has focused on the synthesis of truncated analogues of the hydroxyethylene dipeptide isosteres, such as Ritonavir®, currently in clinical use as HIV-1 protease inhibitors. The reactions of pyridine-2- and quinoline-2-carbaldehydes with methyl acrylate, in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) or 3- hydroxyquinuclidine (3-HQ) as nucleophilic catalysts, have afforded a series of Baylis- Hillman adducts, acetylation and cyclisation of which have provided access to a series of indolizine-2-carboxylate esters. The carboxylic acids, obtained by base-catalyzed hydrolysis of these esters, have been coupled with various protected (and unprotected) amino compounds using the peptide coupling agent, 1,1’-carbonyldiimidazole (CDI), to afford a series of indolizine-2-carboxamides as indolizine-based truncated Ritonavir® analogues in quantitative yield. Aza-Michael reactions of pyridine-3-carbaldehydederived Baylis-Hillman adducts with various amino compounds have provided access to a range of pyridine-based products as mixtures of diastereomeric aza-Michael products. The assignment of the relative stereochemistry of the aza-Michael products has been established using 1-D and 2-NOESY experiments and computer modelling techniques. Computer modelling studies have also been conducted on selected aza-Michael products using ACCELRYS Cerius2 software, followed by interactive docking into the HIV-1 protease receptor site, using AUTODOCK 4.0. The docking studies have revealed hydrogen-bonding interactions between the enzyme and the synthetic ligands. Saturation Transfer Difference (STD) NMR experiments have also indicated binding of some of the aza-Michael products to the HIV-1 protease subtype C enzyme, thus indicating their binding and possible inhibitory potential.
- Full Text:
- Date Issued: 2009
- Authors: Tukulula, Matshawandile
- Date: 2009
- Subjects: Protease Inhibitors HIV infections -- Treatment AIDS (Disease) -- Treatment HIV (Viruses) Indolizine -- Derivatives Heterocyclic compounds -- Derivatives Nuclear magnetic resonance Quinoline
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4305 , http://hdl.handle.net/10962/d1004963
- Description: This study has focused on the synthesis of truncated analogues of the hydroxyethylene dipeptide isosteres, such as Ritonavir®, currently in clinical use as HIV-1 protease inhibitors. The reactions of pyridine-2- and quinoline-2-carbaldehydes with methyl acrylate, in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) or 3- hydroxyquinuclidine (3-HQ) as nucleophilic catalysts, have afforded a series of Baylis- Hillman adducts, acetylation and cyclisation of which have provided access to a series of indolizine-2-carboxylate esters. The carboxylic acids, obtained by base-catalyzed hydrolysis of these esters, have been coupled with various protected (and unprotected) amino compounds using the peptide coupling agent, 1,1’-carbonyldiimidazole (CDI), to afford a series of indolizine-2-carboxamides as indolizine-based truncated Ritonavir® analogues in quantitative yield. Aza-Michael reactions of pyridine-3-carbaldehydederived Baylis-Hillman adducts with various amino compounds have provided access to a range of pyridine-based products as mixtures of diastereomeric aza-Michael products. The assignment of the relative stereochemistry of the aza-Michael products has been established using 1-D and 2-NOESY experiments and computer modelling techniques. Computer modelling studies have also been conducted on selected aza-Michael products using ACCELRYS Cerius2 software, followed by interactive docking into the HIV-1 protease receptor site, using AUTODOCK 4.0. The docking studies have revealed hydrogen-bonding interactions between the enzyme and the synthetic ligands. Saturation Transfer Difference (STD) NMR experiments have also indicated binding of some of the aza-Michael products to the HIV-1 protease subtype C enzyme, thus indicating their binding and possible inhibitory potential.
- Full Text:
- Date Issued: 2009
A bioinorganic study of some cobalt(II) Schiff base complexes of variously substituted hydroxybenzaldimines
- Authors: Shaibu, Rafiu Olarewaju
- Date: 2008
- Subjects: Cobalt Schiff bases Artemia Spectrum analysis Ligands -- Analysis Bioinorganic chemistry Antineoplastic agents Cancer -- Chemotherapy Ligands -- Toxicity
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4394 , http://hdl.handle.net/10962/d1006009
- Description: Syntheses of Schiff bases were carried out by reacting salicylaldyhde, ortho-vanillin, para-vanillin or vanillin with aniline, 1-aminonaphthalene, 4- and 3-aminopyridine, and also with 2- and 3-aminomethylpyridine. The various Schiff bases obtained from the condensation reaction were reacted with CoCl₂.6H₂0, triethylamine stripped CoCl₂.6H₂0 or Co(CH₃COO)₂ to form cobalt(Il) complexes of ratio 2:1. The complexes obtained from cobalt chloride designated as the "A series" are of the general formulae ML₂X₂.nH₂0 , (L = Schiff base, X = chlorine) while those obtained from cobalt acetate or triethylamine stripped cobalt chloride denoted as "B" and C" are of the general formulae ML₂. nH₂0. The few complexes that do not follow the general formulae highlighted above are: IA [M(HL)₃.Cl₂], (L = N-phenylsalicylaldimine), 4A = (MLCl₂), (L = N-phenylvanaldiminato), 7 A and 21 A (ML₂), (L = N-naphthyl-o-vanaldiminato, and N-methy-2-pyridylsalicylaldiminato respectively), 8A = MLCI, (L = N-naphthylvanaldiminato), 12A = M₂L₃Cl₂, (L = N-4-pyridylvanaldiminato), 15A (MLCI), (L = N-3-pyridyl-o-vanaldiminato). The ligands and their complexes were characterized using elemental analyses and cobalt analysis using ICP, FT-IR spectroscopy (mid and far-IR), NIR-UV/vis (diffuse reflectance), UV/vis in an aprotic and a protic solvents, while mass spectrometry, ¹HNMR and ¹³CNMR, was used to further characterized the ligands. The tautomeric nature of the Schiff bases were determined by examining the behaviour of Schiff bases and their complexes in a protic (e.g. MeOH) and non-protic (e.g. DMF) polar solvents. The effects of solvents on the electronic behaviour of the compounds were also examined. Using CDCl₃, the NMR technique was further used to confirm the structures of the Schiff bases. The tentative geometry of the complexes was determined using the spectra information obtained from the far infrared and the diffuse reflectance spectroscopy. With few exceptions, most of the "A" series are tetrahedral or distorted tetrahedral, while the "B + C" are octahedral or pseudooctahedral. A small number of complexes are assigned square-planar geometry owing to the characteristic spectral behaviour shown. In order to determine their biological activity, two biological assay methods (antimicrobial testing and brine shrimp lethality assay) were used. Using disc method, the bacteriostatic and fungicidal activities of the various Schiff bases and their respective complexes to Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa as well as Aspergillus niger, were measured and the average inhibition zones are tabulated and analysed. Both the Schiff bases and their complexes showed varying bacteriostatic and fungicidal activity against the bacteria and fungus tested. The inhibition activity is concentration dependent and potential antibiotic and fungicides are identified. To determine the toxicity of the ligands and their corresponding cobalt(II) complexes, brine shrimp lethality assay was used. The LD₅₀ of the tested compounds were calculated and the results obtained were tabulated for comparison.
- Full Text:
- Date Issued: 2008
- Authors: Shaibu, Rafiu Olarewaju
- Date: 2008
- Subjects: Cobalt Schiff bases Artemia Spectrum analysis Ligands -- Analysis Bioinorganic chemistry Antineoplastic agents Cancer -- Chemotherapy Ligands -- Toxicity
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4394 , http://hdl.handle.net/10962/d1006009
- Description: Syntheses of Schiff bases were carried out by reacting salicylaldyhde, ortho-vanillin, para-vanillin or vanillin with aniline, 1-aminonaphthalene, 4- and 3-aminopyridine, and also with 2- and 3-aminomethylpyridine. The various Schiff bases obtained from the condensation reaction were reacted with CoCl₂.6H₂0, triethylamine stripped CoCl₂.6H₂0 or Co(CH₃COO)₂ to form cobalt(Il) complexes of ratio 2:1. The complexes obtained from cobalt chloride designated as the "A series" are of the general formulae ML₂X₂.nH₂0 , (L = Schiff base, X = chlorine) while those obtained from cobalt acetate or triethylamine stripped cobalt chloride denoted as "B" and C" are of the general formulae ML₂. nH₂0. The few complexes that do not follow the general formulae highlighted above are: IA [M(HL)₃.Cl₂], (L = N-phenylsalicylaldimine), 4A = (MLCl₂), (L = N-phenylvanaldiminato), 7 A and 21 A (ML₂), (L = N-naphthyl-o-vanaldiminato, and N-methy-2-pyridylsalicylaldiminato respectively), 8A = MLCI, (L = N-naphthylvanaldiminato), 12A = M₂L₃Cl₂, (L = N-4-pyridylvanaldiminato), 15A (MLCI), (L = N-3-pyridyl-o-vanaldiminato). The ligands and their complexes were characterized using elemental analyses and cobalt analysis using ICP, FT-IR spectroscopy (mid and far-IR), NIR-UV/vis (diffuse reflectance), UV/vis in an aprotic and a protic solvents, while mass spectrometry, ¹HNMR and ¹³CNMR, was used to further characterized the ligands. The tautomeric nature of the Schiff bases were determined by examining the behaviour of Schiff bases and their complexes in a protic (e.g. MeOH) and non-protic (e.g. DMF) polar solvents. The effects of solvents on the electronic behaviour of the compounds were also examined. Using CDCl₃, the NMR technique was further used to confirm the structures of the Schiff bases. The tentative geometry of the complexes was determined using the spectra information obtained from the far infrared and the diffuse reflectance spectroscopy. With few exceptions, most of the "A" series are tetrahedral or distorted tetrahedral, while the "B + C" are octahedral or pseudooctahedral. A small number of complexes are assigned square-planar geometry owing to the characteristic spectral behaviour shown. In order to determine their biological activity, two biological assay methods (antimicrobial testing and brine shrimp lethality assay) were used. Using disc method, the bacteriostatic and fungicidal activities of the various Schiff bases and their respective complexes to Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa as well as Aspergillus niger, were measured and the average inhibition zones are tabulated and analysed. Both the Schiff bases and their complexes showed varying bacteriostatic and fungicidal activity against the bacteria and fungus tested. The inhibition activity is concentration dependent and potential antibiotic and fungicides are identified. To determine the toxicity of the ligands and their corresponding cobalt(II) complexes, brine shrimp lethality assay was used. The LD₅₀ of the tested compounds were calculated and the results obtained were tabulated for comparison.
- Full Text:
- Date Issued: 2008
Application of the Baylis-Hillman methodology in the construction of novel heterocyclic derivatives
- Authors: Nyoni, Dubekile
- Date: 2008
- Subjects: Heterocyclic compounds -- Derivatives
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4402 , http://hdl.handle.net/10962/d1006704
- Description: Baylis-Hillman reactions of 2,2’-dithiodibenzaldehyde with the acyclic alkenes, methyl vinyl ketone (MVK) and methyl acrylate have afforded the thiochromene derivatives in moderate yields, and this approach has been extended to the use of the cyclic alkenes, 2-cyclohexenone and 2-cyclopentenone to afford the tricyclic analogues. In all cases, reduction of the disulphide link and intramolecular cyclisation occurred in situ, and a preliminary kinetic study of this reaction using the acyclic substrates MVK and methyl acrylate was undertaken with the aim of elucidating the mechanism involved. The results obtained showed that the consumption of both 2,2’-dithiodibenzaldehyde and MVK and/or methyl acrylate followed 1st-order kinetics during the initial stages of the reaction, but then deviated from 1st-order linearity. The reaction with methyl acrylate was much slower than with MVK, and the kinetic data indicates the mechanism to be more complex than anticipated. Conjugate addition reactions of methyl acrylate-derived 2-nitrobenzaldehyde Baylis-Hillman adducts with the amines, piperidine and benzylamine, afforded a range of conjugate addition products as diastereomeric mixtures in excellent yield (80-100%). Catalytic hydrogenation of the conjugate addition products using a Pd-C catalyst in ethanol, has afforded the corresponding, novel 3-amino-2-quinolone derivatives in lower yield (22-37%).The application of [superscript 13]C NMR prediction programmes to selected compounds synthesized in this study has revealed reasonable correlations between the experimental and predicted values.
- Full Text:
- Date Issued: 2008
- Authors: Nyoni, Dubekile
- Date: 2008
- Subjects: Heterocyclic compounds -- Derivatives
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4402 , http://hdl.handle.net/10962/d1006704
- Description: Baylis-Hillman reactions of 2,2’-dithiodibenzaldehyde with the acyclic alkenes, methyl vinyl ketone (MVK) and methyl acrylate have afforded the thiochromene derivatives in moderate yields, and this approach has been extended to the use of the cyclic alkenes, 2-cyclohexenone and 2-cyclopentenone to afford the tricyclic analogues. In all cases, reduction of the disulphide link and intramolecular cyclisation occurred in situ, and a preliminary kinetic study of this reaction using the acyclic substrates MVK and methyl acrylate was undertaken with the aim of elucidating the mechanism involved. The results obtained showed that the consumption of both 2,2’-dithiodibenzaldehyde and MVK and/or methyl acrylate followed 1st-order kinetics during the initial stages of the reaction, but then deviated from 1st-order linearity. The reaction with methyl acrylate was much slower than with MVK, and the kinetic data indicates the mechanism to be more complex than anticipated. Conjugate addition reactions of methyl acrylate-derived 2-nitrobenzaldehyde Baylis-Hillman adducts with the amines, piperidine and benzylamine, afforded a range of conjugate addition products as diastereomeric mixtures in excellent yield (80-100%). Catalytic hydrogenation of the conjugate addition products using a Pd-C catalyst in ethanol, has afforded the corresponding, novel 3-amino-2-quinolone derivatives in lower yield (22-37%).The application of [superscript 13]C NMR prediction programmes to selected compounds synthesized in this study has revealed reasonable correlations between the experimental and predicted values.
- Full Text:
- Date Issued: 2008
ATP mimics as glutamine synthetase inhibitors : an exploratory synthetic study
- Authors: Salisu, Sheriff Tomilola
- Date: 2008
- Subjects: Glutamine synthetase Tuberculosis -- Treatment Tuberculosis -- Chemotherapy Adenosine triphosphate Adenosine triphosphate -- Synthesis Drug development
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4408 , http://hdl.handle.net/10962/d1006715
- Description: Using a mechanism-based approach to drug discovery, efforts have been directed towards developing novel ATP mimics that can act as GS inhibitors. The purine-based systems, adenosine, adenine and allopurinol, were identified as possible scaffolds for potential ATP mimics, while various meta-disubstituted benzenoid compounds, 3-aminobenzonitrile, 3-aminophenol, resorcinol, 3-aminobenzyl alcohol, 3-hydroxybenzoic acid and 3-aminobenzoic acid have been explored as adenine analogues. These compounds were treated with different alkylating and acylating agents. Allylation of all the substrates was achieved using allyl bromide and N-9 alkylation of protected allopurinol was effected using a number of specially prepared Baylis-Hillman adducts. Acylation of the benzenoid precursors with chloroacetyl chloride, acetoxyacetyl chloride, acryloyl chloride and specially prepared 2,3,4,5,6-pentaacetylgluconoyl chloride afforded the corresponding mono- and /or diacylated products in varying yields (4-96%). Elaboration of the alkylated and acylated products has involved the reaction of hydroxy systems with diethyl chloro phosphate and chloro derivatives with triethyl phosphite in Arbuzov-type reactions to afford phosphorylated products. In all cases, products were fully characterized using 1- and 2-D NMR analysis and, where appropriate, high-resolution mass spectrometry. The application of Modgraph and ChemWindow NMR prediction programmes has been explored and the resulting data have been compared with experimental chemical shift assignments to confirm chemical structures and, in some cases, to establish the position of allylation or acylation. Experimental assignments were found to be generally comparable with the Modgraph data, but not always with the ChemWindow values. The docking of selected products in the 'active-site' of GS and their structural homology with ATP, both in their free and bound conformations have been studied using the ACCELERYS Cerius² platform. All the selected ATP mimics exhibit some form of interaction with the 'active-site' residues, and a number of them appear to be promising GS ligands.
- Full Text:
- Date Issued: 2008
- Authors: Salisu, Sheriff Tomilola
- Date: 2008
- Subjects: Glutamine synthetase Tuberculosis -- Treatment Tuberculosis -- Chemotherapy Adenosine triphosphate Adenosine triphosphate -- Synthesis Drug development
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4408 , http://hdl.handle.net/10962/d1006715
- Description: Using a mechanism-based approach to drug discovery, efforts have been directed towards developing novel ATP mimics that can act as GS inhibitors. The purine-based systems, adenosine, adenine and allopurinol, were identified as possible scaffolds for potential ATP mimics, while various meta-disubstituted benzenoid compounds, 3-aminobenzonitrile, 3-aminophenol, resorcinol, 3-aminobenzyl alcohol, 3-hydroxybenzoic acid and 3-aminobenzoic acid have been explored as adenine analogues. These compounds were treated with different alkylating and acylating agents. Allylation of all the substrates was achieved using allyl bromide and N-9 alkylation of protected allopurinol was effected using a number of specially prepared Baylis-Hillman adducts. Acylation of the benzenoid precursors with chloroacetyl chloride, acetoxyacetyl chloride, acryloyl chloride and specially prepared 2,3,4,5,6-pentaacetylgluconoyl chloride afforded the corresponding mono- and /or diacylated products in varying yields (4-96%). Elaboration of the alkylated and acylated products has involved the reaction of hydroxy systems with diethyl chloro phosphate and chloro derivatives with triethyl phosphite in Arbuzov-type reactions to afford phosphorylated products. In all cases, products were fully characterized using 1- and 2-D NMR analysis and, where appropriate, high-resolution mass spectrometry. The application of Modgraph and ChemWindow NMR prediction programmes has been explored and the resulting data have been compared with experimental chemical shift assignments to confirm chemical structures and, in some cases, to establish the position of allylation or acylation. Experimental assignments were found to be generally comparable with the Modgraph data, but not always with the ChemWindow values. The docking of selected products in the 'active-site' of GS and their structural homology with ATP, both in their free and bound conformations have been studied using the ACCELERYS Cerius² platform. All the selected ATP mimics exhibit some form of interaction with the 'active-site' residues, and a number of them appear to be promising GS ligands.
- Full Text:
- Date Issued: 2008
Camphor derivatives in asymmetric synthesis: a synthetic, mechanistic and theoretical study
- Authors: Lobb, Kevin Alan
- Date: 2008
- Subjects: Chemistry, Organic -- Research Esters Organic compounds -- Synthesis Alkylation Chemical reactions -- Computer simulation Chemical kinetics Camphor Cinnamomum
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4414 , http://hdl.handle.net/10962/d1006770
- Description: A series of 3,3-ethylenedioxy-exo- and endo- bornyl esters have been prepared and subjected to α-benzylation using lithium diisopropylamide and benzyl bromide. In the exo-series of esters the diastereofacial selectivity of benzylation was found to improve (up to 34% d.e.) as the steric bulk of the O-alkyl group increased, whereas in the endo-series, a surprising decrease in stereoselectivity was observed as the steric bulk increased – an observation attributed to flexibility of the metal-coordinated endo-enolate system, compared to the relative rigidity of the exo analogues. The conformational options for each series was explored at the density functional theory level. Reductive cyclization of a range of specially prepared N-carbobenzyloxy-amino acid esters has been shown to afford the corresponding derivatives, contrary to previous reports that the cyclization is limited to the glycine derivative. The cyclization sequence has been explored in detail, and the yield has been shown to be critically dependent on the stereochemistry of the α-amino acid moiety. Moreover, it seems that reductive cyclization occurs more readily with the endo- rather than the exo-bornyl N-CBZ-amino acid esters. Molecular modelling of relevant transition states at the DFT levels indicates that L-amino acid-derived systems should cyclize preferably in the exo-series and D-amino acid-derived systems should cyclize preferably in the endo series. Studies of alkylation of an iminolactone system have reported an interesting anomaly - exo-methylation is observed while endo-alkylation predominates for larger alkyl groups. This has been studied in detail at the DFT level, and the anomaly is attributed to thermodynamic control in the methyl case, whereas kinetic control is the norm in this system. Preliminary computer modelling of the intramolecular rearrangement of a 3,3-xylylbornyl system at the HF/STO-3G level raised doubts concerning the structure assigned by Evans to one of the rearrangement products, prompting an X-ray crystallographic analysis and leading to the revision of its structure from a pinene to a camphene derivative. The previously elusive spiro[bornane-3,2’-indan]-2-exo-tosylate has been successfully isolated, and the kinetics of its ready decomposition to the two camphene products has been followed by 1H NMR spectroscopy. The endo-tosylate analogue, on the other hand, was found to be remarkably stable. Kinetic data obtained for rearrangement of this exo-bornyl tosylate have indicated the operation of tandem autocatalytic and pseudo-first-order transformations leading sequentially to the two isomeric camphene products. An extensive coset analysis of all possible rearrangement processes of the initially-formed cation formed from decomposition of the exo-tosylate has afforded a graph containing 336 classical cations (modelled at the AM1 and B3LYP levels) and 526 transition-state complexes (modelled at the AM1 level). This analysis afforded a viable 4-step classical mechanism connecting the first camphene product with the second. A more realistic study, involving non-classical carbocations, has afforded a graph of all possible (classical and non-classical) cations that could be formed by rearrangment of the initiallyformed cation. The resulting graph confirms that the only energetically feasible path corresponds to the classical mechanism, but simply involves two steps, including a novel, concerted Wagner-Meerwein – 6,2-hydride shift – Wagner-Meerwein rearrangement.
- Full Text:
- Date Issued: 2008
- Authors: Lobb, Kevin Alan
- Date: 2008
- Subjects: Chemistry, Organic -- Research Esters Organic compounds -- Synthesis Alkylation Chemical reactions -- Computer simulation Chemical kinetics Camphor Cinnamomum
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4414 , http://hdl.handle.net/10962/d1006770
- Description: A series of 3,3-ethylenedioxy-exo- and endo- bornyl esters have been prepared and subjected to α-benzylation using lithium diisopropylamide and benzyl bromide. In the exo-series of esters the diastereofacial selectivity of benzylation was found to improve (up to 34% d.e.) as the steric bulk of the O-alkyl group increased, whereas in the endo-series, a surprising decrease in stereoselectivity was observed as the steric bulk increased – an observation attributed to flexibility of the metal-coordinated endo-enolate system, compared to the relative rigidity of the exo analogues. The conformational options for each series was explored at the density functional theory level. Reductive cyclization of a range of specially prepared N-carbobenzyloxy-amino acid esters has been shown to afford the corresponding derivatives, contrary to previous reports that the cyclization is limited to the glycine derivative. The cyclization sequence has been explored in detail, and the yield has been shown to be critically dependent on the stereochemistry of the α-amino acid moiety. Moreover, it seems that reductive cyclization occurs more readily with the endo- rather than the exo-bornyl N-CBZ-amino acid esters. Molecular modelling of relevant transition states at the DFT levels indicates that L-amino acid-derived systems should cyclize preferably in the exo-series and D-amino acid-derived systems should cyclize preferably in the endo series. Studies of alkylation of an iminolactone system have reported an interesting anomaly - exo-methylation is observed while endo-alkylation predominates for larger alkyl groups. This has been studied in detail at the DFT level, and the anomaly is attributed to thermodynamic control in the methyl case, whereas kinetic control is the norm in this system. Preliminary computer modelling of the intramolecular rearrangement of a 3,3-xylylbornyl system at the HF/STO-3G level raised doubts concerning the structure assigned by Evans to one of the rearrangement products, prompting an X-ray crystallographic analysis and leading to the revision of its structure from a pinene to a camphene derivative. The previously elusive spiro[bornane-3,2’-indan]-2-exo-tosylate has been successfully isolated, and the kinetics of its ready decomposition to the two camphene products has been followed by 1H NMR spectroscopy. The endo-tosylate analogue, on the other hand, was found to be remarkably stable. Kinetic data obtained for rearrangement of this exo-bornyl tosylate have indicated the operation of tandem autocatalytic and pseudo-first-order transformations leading sequentially to the two isomeric camphene products. An extensive coset analysis of all possible rearrangement processes of the initially-formed cation formed from decomposition of the exo-tosylate has afforded a graph containing 336 classical cations (modelled at the AM1 and B3LYP levels) and 526 transition-state complexes (modelled at the AM1 level). This analysis afforded a viable 4-step classical mechanism connecting the first camphene product with the second. A more realistic study, involving non-classical carbocations, has afforded a graph of all possible (classical and non-classical) cations that could be formed by rearrangment of the initiallyformed cation. The resulting graph confirms that the only energetically feasible path corresponds to the classical mechanism, but simply involves two steps, including a novel, concerted Wagner-Meerwein – 6,2-hydride shift – Wagner-Meerwein rearrangement.
- Full Text:
- Date Issued: 2008
Purification, characterisation and application of inulinase and transferase enzymes in the production of fructose and oligosaccharides
- Authors: Mutanda, Taurai
- Date: 2008
- Subjects: Fructose Transferases Oligosaccharides
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4448 , http://hdl.handle.net/10962/d1007734
- Description: Inulin hydrolysis can occur as a result of the action of exoinulinases and endoinulinases acting alone or synergistically. Exoinulinases cleave the non-reducing β-(2, I) end of inulin releasing fructose while endoinulinases act on the internal linkages randomly to release inulotrioses (F₃), inulotetraoses (F₄) and inulopentaoses (F₅) as major products. Fructosyltransferases act by cleaving a sucrose molecule and then transferring the liberated fructose molecule to an acceptor molecule such as sucrose or another oligosaccharide to elongate the short chain fructooligosaccharide. The production of high yields of oligosaccharides of specific chain length from simple raw materials such as inulin and sucrose is a challenge. Oligosaccharides of chain length up to degree of polymerisation (DP) 5 and fructose were produced using preparations of three commercial microbial enzymes. Production of these novel oligosaccharides was achieved by employing response surface methodology (RSM) with central composite experimental design (CCD) for optimising product yield. Using a crude Novozyme 960 endoinulinase preparation isolated from Aspergillus niger, the following conditions gave a high inulooligosaccharide (lOS) yield, temperature (60 ºC), 150 g/L inulin concentration, 48 h incubation; pH 6.0 and enzyme dosage of 60 U/ml. Under these conditions, inulotrioses (70.3 mM), inulotetraoses (38.8 mM), and inulopentaoses, (3.5 mM) were produced. Response surface regression predicted similar product levels under similar conditions. The crude endoinulinase was purified through a three step purification procedure with a yield of 1.11 % and 3.5 fold purification. The molecular weight of this endoinulinase was estimated to be 68 .1 kDa by SDS-PAGE and its endoinulinase nature was confirmed by native PAGE. The purified endoinulinase was more efficient in production of lOS than the crude endoinulinase preparation. The purified endoinulinase demonstrated a high affinity for the inulin substrate (Km[subscript] 3.53 mM, Vmax[subscript] 666.67 μmol/min/ml). Pectinex Ultra SP-L, a commercial crude enzyme preparation isolated from Aspergillus aculeatus is a cocktail of several enzymes including a fructosyltransferase. The crude enzyme showed both transfructosylation and hydrolytic activity in 200 to 600 g/L sucrose. The main fructooligosaccharides produced from sucrose were l-kestose (GF₂), nystose (GF₃) and fructofuranosyl nystose (GF₄). After the first RSM, with the coded independent variables of temperature, incubation time, pH and sucrose concentration, the highest levels of GF₂, was 68.61 mM, under sucrose concentration 600 g/L, temperature 60°C, enzyme dosage 20 U/ml , pH 5.6, after 4 h incubation. A sucrose concentration of 400 g/L favoured the synthesis of high levels of GF₃ and GF₄. In the second RSM the maximal yields of GF₂, GF₃ and GF₄ were 152.07 mM, 131.38 mM and 43.99 mM respectively. A purified fructosyltransferase did not synthesise GF₄. Ammonium ions were demonstrated to enhance the yield of FOS. A mixture of glucose and fructose was used as substrate for FOS synthesis and no FOS were formed. Glucose was shown to be an end product inhibitor of the fructosyltransferase and therefore hinders the formation of high FOS yield. Fructozyme, isolated from Aspergillus ficuum is a mixture of exo and endoinulinases with the former being predominant was used for fructose production from inulin hydrolysis. The exoinulinase was purified to electrophoretic homogeneity by a three step purification procedure. The molecular weight of the enzyme was estimated to be 53 kDa with a 2 I % yield and 4.2-fold. Response surface regression was used to predict the maximum fructose levels achievable under the combinations of temperature, enzyme dosage and incubation time. A reaction time (48 h), enzyme dosage (100 U/ml) and inulin concentration (150 g/l) at pH 5.0 at 50°C gave higher fructose levels (106.6 mg/ml) using crude exoinulinase as compared to 98.43 mg/ml using the purified exoinulinase. These findings indicate that higher levels of fructose require longer incubation periods and higher inulin substrate concentrations with higher enzyme dosage. The crude exoinulinase preparation gave fairly higher levels of fructose than the purified exoinulinase and this is due to the presence of other hydrolytic enzymes in the crude preparation. The conditions established by RSM and CCO were adequate in producing high yield of oligosaccharides and fructose and can therefore be applied for their industrial production since they are in high demand due to their health benefits as prebiotics.
- Full Text:
- Date Issued: 2008
- Authors: Mutanda, Taurai
- Date: 2008
- Subjects: Fructose Transferases Oligosaccharides
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4448 , http://hdl.handle.net/10962/d1007734
- Description: Inulin hydrolysis can occur as a result of the action of exoinulinases and endoinulinases acting alone or synergistically. Exoinulinases cleave the non-reducing β-(2, I) end of inulin releasing fructose while endoinulinases act on the internal linkages randomly to release inulotrioses (F₃), inulotetraoses (F₄) and inulopentaoses (F₅) as major products. Fructosyltransferases act by cleaving a sucrose molecule and then transferring the liberated fructose molecule to an acceptor molecule such as sucrose or another oligosaccharide to elongate the short chain fructooligosaccharide. The production of high yields of oligosaccharides of specific chain length from simple raw materials such as inulin and sucrose is a challenge. Oligosaccharides of chain length up to degree of polymerisation (DP) 5 and fructose were produced using preparations of three commercial microbial enzymes. Production of these novel oligosaccharides was achieved by employing response surface methodology (RSM) with central composite experimental design (CCD) for optimising product yield. Using a crude Novozyme 960 endoinulinase preparation isolated from Aspergillus niger, the following conditions gave a high inulooligosaccharide (lOS) yield, temperature (60 ºC), 150 g/L inulin concentration, 48 h incubation; pH 6.0 and enzyme dosage of 60 U/ml. Under these conditions, inulotrioses (70.3 mM), inulotetraoses (38.8 mM), and inulopentaoses, (3.5 mM) were produced. Response surface regression predicted similar product levels under similar conditions. The crude endoinulinase was purified through a three step purification procedure with a yield of 1.11 % and 3.5 fold purification. The molecular weight of this endoinulinase was estimated to be 68 .1 kDa by SDS-PAGE and its endoinulinase nature was confirmed by native PAGE. The purified endoinulinase was more efficient in production of lOS than the crude endoinulinase preparation. The purified endoinulinase demonstrated a high affinity for the inulin substrate (Km[subscript] 3.53 mM, Vmax[subscript] 666.67 μmol/min/ml). Pectinex Ultra SP-L, a commercial crude enzyme preparation isolated from Aspergillus aculeatus is a cocktail of several enzymes including a fructosyltransferase. The crude enzyme showed both transfructosylation and hydrolytic activity in 200 to 600 g/L sucrose. The main fructooligosaccharides produced from sucrose were l-kestose (GF₂), nystose (GF₃) and fructofuranosyl nystose (GF₄). After the first RSM, with the coded independent variables of temperature, incubation time, pH and sucrose concentration, the highest levels of GF₂, was 68.61 mM, under sucrose concentration 600 g/L, temperature 60°C, enzyme dosage 20 U/ml , pH 5.6, after 4 h incubation. A sucrose concentration of 400 g/L favoured the synthesis of high levels of GF₃ and GF₄. In the second RSM the maximal yields of GF₂, GF₃ and GF₄ were 152.07 mM, 131.38 mM and 43.99 mM respectively. A purified fructosyltransferase did not synthesise GF₄. Ammonium ions were demonstrated to enhance the yield of FOS. A mixture of glucose and fructose was used as substrate for FOS synthesis and no FOS were formed. Glucose was shown to be an end product inhibitor of the fructosyltransferase and therefore hinders the formation of high FOS yield. Fructozyme, isolated from Aspergillus ficuum is a mixture of exo and endoinulinases with the former being predominant was used for fructose production from inulin hydrolysis. The exoinulinase was purified to electrophoretic homogeneity by a three step purification procedure. The molecular weight of the enzyme was estimated to be 53 kDa with a 2 I % yield and 4.2-fold. Response surface regression was used to predict the maximum fructose levels achievable under the combinations of temperature, enzyme dosage and incubation time. A reaction time (48 h), enzyme dosage (100 U/ml) and inulin concentration (150 g/l) at pH 5.0 at 50°C gave higher fructose levels (106.6 mg/ml) using crude exoinulinase as compared to 98.43 mg/ml using the purified exoinulinase. These findings indicate that higher levels of fructose require longer incubation periods and higher inulin substrate concentrations with higher enzyme dosage. The crude exoinulinase preparation gave fairly higher levels of fructose than the purified exoinulinase and this is due to the presence of other hydrolytic enzymes in the crude preparation. The conditions established by RSM and CCO were adequate in producing high yield of oligosaccharides and fructose and can therefore be applied for their industrial production since they are in high demand due to their health benefits as prebiotics.
- Full Text:
- Date Issued: 2008