A mechanistic and trait-based approach to investigating macroinvertebrates distribution and exposure to microplastics in riverine systems
- Authors: Owowenu, Enahoro Kennedy
- Date: 2024-10-11
- Subjects: Microplastics Environmental aspects , Water quality biological assessment , Hydrodynamics , Hydrogeomorphology , Biotope , Flow type
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466666 , vital:76765 , DOI https://doi.org/10.21504/10962/466666
- Description: Microplastics in rivers pose an ecological risk. Hydraulic biotopes form distinct flow patches that vary longitudinally along the river, potentially influencing the transport dynamics of microplastics. Macroinvertebrates exhibit adaptations to different hydraulic biotopes through their unique traits. These traits can mediate their exposure to microplastics, thereby imposing selective pressures on these organisms. Different taxa often demonstrate preferences for specific hydraulic biotopes characterized by distinct flow regimes. Understanding the transport dynamics of microplastics mediated by hydraulic biotopes and the potential exposure of macroinvertebrates at the hydraulic biotope scale is important for determining the fate of riverine microplastics and detecting species at risk. Both empirical and theoretical studies have highlighted the interconnectedness of hydrology, geomorphology, and microplastic transport in rivers, yet, there remains a gap in understanding how a hydro-geomorphological approach could enhance the understanding of the microplastic transport process. Little is known about the role of traits in driving macroinvertebrate exposure to microplastics at a scale relevant to ecological dynamics. This study addressed these gaps by applying a hydro-geomorphological approach to investigate the distribution of microplastics at the hydraulic biotope scale and assessed the potential exposure of macroinvertebrates using a trait-based approach. This study also explored the relationship between microplastic abundance and selected water physicochemical properties, as well as the influence of adjacent land use types. By integrating these aspects the research provided a comprehensive understanding of microplastics dynamics in river systems, shedding light on both environmental factors shaping their distribution and the potential impacts on aquatic organisms. The study was conducted over the wet and dry seasons (October 2021 – July 2022) at 10 sites located in the upper, middle, and lower reaches of the Swartkops and Buffalo River systems in the Eastern Cape Province of South Africa. The hydraulic biotopes (i.e., pools, runs, riffles) were grouped into two conceptualised forms, namely, sink and flush hydraulic zones and were characterized by hydraulic indices such as the Froude number and the Reynolds number. The flush hydraulic zone represents hydraulic biotopes where microplastics can potentially be remobilized quickly into suspension, and the sink represents biotopes where microplastics can potentially accumulate and remobilisation is far slower. Fast-to-moderate flowing hydraulic biotopes were conceptualised as microplastics flush zones while slow-flowing to still biotopes as microplastic sink zones. Samples were collected at different depths in each hydraulic zone to quantify suspended and settled forms of microplastics. Microplastics targeted in this study ranged in size from 0.063 mm to less than 5 mm. Classification was achieved through microscopic observation, and confirmation via Fourier Transform Infrared Spectroscopy (FTIR-ATR) was conducted for samples ranging from 0.5 mm to less than 5 mm. At the site level, settled microplastics showed statistically significant spatial and temporal variations between the sites, and between the seasons (P < 0.05). The suspended microplastic varied only spatially. Fibres and fragments were the dominant microplastic shape, while polyethylene and polypropylene were the dominant microplastic polymers. Suspended microplastics showed statistically significant variation between urban land cover and other land cover categories (industrial, agricultural, rural, and natural land cover). Microplastics abundance was associated with high levels of turbidity, total suspended solids, total inorganic nitrogen, higher temperatures and increasing electrical conductivity. At the hydraulic biotope scale, the mean occurrence of suspended microplastics (1.76 ± 1.44 items/L; mean + SD) in the flush hydraulic zone was higher than that in the sink zone (1.54 ± 1.46 items/L), while settled microplastics were more abundant in the sink hydraulic zone (1.82 ± 1.98 items/L) than the flush hydraulic zone (1.32 ± 1.49 items/L). This observation was in line with the prediction in this study. The mean suspended and settled microplastics concentrations were higher during the wet season across the flush and sink hydraulic zones than in the dry season. Global multivariate analysis of variance (MANOVA) and two-way analysis of variance (ANOVA) revealed significant spatial and temporal variations in settled microplastics abundances between the flush and sink hydraulic zones. The results indicated that geomorphologically defined units such as riffles and moderate to fast runs (flush) generally contained lower amounts of settled microplastics compared to pools and backwaters (sink). However, this distinction between the flush and sink microplastic zones was observed only for settled microplastics and not for suspended microplastics. Suspended and settled microplastics showed a statistically significant relationship with the Froude number index. The generalised additive model indicated that settled microplastics abundance distribution decreased significantly with increasing Froude number value in the flush zone. Suspended microplastics decreased at low Froude number values and showed an increasing trend at higher Froude number values of about 0.75. The results indicate the usefulness of the hydraulic biotope scale microplastic monitoring approach in detecting microplastic hotspots and explaining variations in microplastics abundances driven by instream hydraulics. Four traits and ecological preferences of macroinvertebrates including body size, gill type, feeding habit, and velocity preferences were selected and resolved into 17 trait attributes. The sink hydraulic zones such as pools were indicated to favour exposure to and ingestion of microplastics compared to the flush zones such as riffles and fast runs. Large body size macroinvertebrates were associated with the sink zone. Taxa with a very small body size had a higher likelihood for microplastics ingestion than taxa with other body sizes. Collectorgathering macroinvertebrates taxa that have operculate gills with small body sizes were more prone to exposure to microplastics in hydraulic biotopes with slow to very slow velocities. Fibres were the most abundant plastic ingested by macroinvertebrates preferring the flush zone while fibres and fragments were mostly ingested by those preferring the sink zones. The binomial logistic model revealed a highly significant result for the likelihood of operculate gill shape to clog in the sink hydraulic zone. The result of the binomial logistic regression indicates the usefulness of the trait-based approach for predicting exposure to microplastics. Overall, the study reveals the influences of hydro-geomorphological features on the transport dynamics of microplastics and the usefulness of the trait-based approach in the ecological study of microplastics in riverine systems. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Owowenu, Enahoro Kennedy
- Date: 2024-10-11
- Subjects: Microplastics Environmental aspects , Water quality biological assessment , Hydrodynamics , Hydrogeomorphology , Biotope , Flow type
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466666 , vital:76765 , DOI https://doi.org/10.21504/10962/466666
- Description: Microplastics in rivers pose an ecological risk. Hydraulic biotopes form distinct flow patches that vary longitudinally along the river, potentially influencing the transport dynamics of microplastics. Macroinvertebrates exhibit adaptations to different hydraulic biotopes through their unique traits. These traits can mediate their exposure to microplastics, thereby imposing selective pressures on these organisms. Different taxa often demonstrate preferences for specific hydraulic biotopes characterized by distinct flow regimes. Understanding the transport dynamics of microplastics mediated by hydraulic biotopes and the potential exposure of macroinvertebrates at the hydraulic biotope scale is important for determining the fate of riverine microplastics and detecting species at risk. Both empirical and theoretical studies have highlighted the interconnectedness of hydrology, geomorphology, and microplastic transport in rivers, yet, there remains a gap in understanding how a hydro-geomorphological approach could enhance the understanding of the microplastic transport process. Little is known about the role of traits in driving macroinvertebrate exposure to microplastics at a scale relevant to ecological dynamics. This study addressed these gaps by applying a hydro-geomorphological approach to investigate the distribution of microplastics at the hydraulic biotope scale and assessed the potential exposure of macroinvertebrates using a trait-based approach. This study also explored the relationship between microplastic abundance and selected water physicochemical properties, as well as the influence of adjacent land use types. By integrating these aspects the research provided a comprehensive understanding of microplastics dynamics in river systems, shedding light on both environmental factors shaping their distribution and the potential impacts on aquatic organisms. The study was conducted over the wet and dry seasons (October 2021 – July 2022) at 10 sites located in the upper, middle, and lower reaches of the Swartkops and Buffalo River systems in the Eastern Cape Province of South Africa. The hydraulic biotopes (i.e., pools, runs, riffles) were grouped into two conceptualised forms, namely, sink and flush hydraulic zones and were characterized by hydraulic indices such as the Froude number and the Reynolds number. The flush hydraulic zone represents hydraulic biotopes where microplastics can potentially be remobilized quickly into suspension, and the sink represents biotopes where microplastics can potentially accumulate and remobilisation is far slower. Fast-to-moderate flowing hydraulic biotopes were conceptualised as microplastics flush zones while slow-flowing to still biotopes as microplastic sink zones. Samples were collected at different depths in each hydraulic zone to quantify suspended and settled forms of microplastics. Microplastics targeted in this study ranged in size from 0.063 mm to less than 5 mm. Classification was achieved through microscopic observation, and confirmation via Fourier Transform Infrared Spectroscopy (FTIR-ATR) was conducted for samples ranging from 0.5 mm to less than 5 mm. At the site level, settled microplastics showed statistically significant spatial and temporal variations between the sites, and between the seasons (P < 0.05). The suspended microplastic varied only spatially. Fibres and fragments were the dominant microplastic shape, while polyethylene and polypropylene were the dominant microplastic polymers. Suspended microplastics showed statistically significant variation between urban land cover and other land cover categories (industrial, agricultural, rural, and natural land cover). Microplastics abundance was associated with high levels of turbidity, total suspended solids, total inorganic nitrogen, higher temperatures and increasing electrical conductivity. At the hydraulic biotope scale, the mean occurrence of suspended microplastics (1.76 ± 1.44 items/L; mean + SD) in the flush hydraulic zone was higher than that in the sink zone (1.54 ± 1.46 items/L), while settled microplastics were more abundant in the sink hydraulic zone (1.82 ± 1.98 items/L) than the flush hydraulic zone (1.32 ± 1.49 items/L). This observation was in line with the prediction in this study. The mean suspended and settled microplastics concentrations were higher during the wet season across the flush and sink hydraulic zones than in the dry season. Global multivariate analysis of variance (MANOVA) and two-way analysis of variance (ANOVA) revealed significant spatial and temporal variations in settled microplastics abundances between the flush and sink hydraulic zones. The results indicated that geomorphologically defined units such as riffles and moderate to fast runs (flush) generally contained lower amounts of settled microplastics compared to pools and backwaters (sink). However, this distinction between the flush and sink microplastic zones was observed only for settled microplastics and not for suspended microplastics. Suspended and settled microplastics showed a statistically significant relationship with the Froude number index. The generalised additive model indicated that settled microplastics abundance distribution decreased significantly with increasing Froude number value in the flush zone. Suspended microplastics decreased at low Froude number values and showed an increasing trend at higher Froude number values of about 0.75. The results indicate the usefulness of the hydraulic biotope scale microplastic monitoring approach in detecting microplastic hotspots and explaining variations in microplastics abundances driven by instream hydraulics. Four traits and ecological preferences of macroinvertebrates including body size, gill type, feeding habit, and velocity preferences were selected and resolved into 17 trait attributes. The sink hydraulic zones such as pools were indicated to favour exposure to and ingestion of microplastics compared to the flush zones such as riffles and fast runs. Large body size macroinvertebrates were associated with the sink zone. Taxa with a very small body size had a higher likelihood for microplastics ingestion than taxa with other body sizes. Collectorgathering macroinvertebrates taxa that have operculate gills with small body sizes were more prone to exposure to microplastics in hydraulic biotopes with slow to very slow velocities. Fibres were the most abundant plastic ingested by macroinvertebrates preferring the flush zone while fibres and fragments were mostly ingested by those preferring the sink zones. The binomial logistic model revealed a highly significant result for the likelihood of operculate gill shape to clog in the sink hydraulic zone. The result of the binomial logistic regression indicates the usefulness of the trait-based approach for predicting exposure to microplastics. Overall, the study reveals the influences of hydro-geomorphological features on the transport dynamics of microplastics and the usefulness of the trait-based approach in the ecological study of microplastics in riverine systems. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Analysing the equity dimensions and governance drivers of water security challenges in Hammanskraal, City of Tshwane, South Africa
- Mahlatsi, Malaika Lesego Samora
- Authors: Mahlatsi, Malaika Lesego Samora
- Date: 2024-10-11
- Subjects: Water security South Africa Hammanskraal , Water governance , Water-supply Law and legislation South Africa City of Tshwane Metropolitan Municipality , Water quality South Africa Hammanskraal , Water-supply Management , South Africa Social conditions
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465011 , vital:76565
- Description: South Africa is faced with a national water security challenge that is increasingly worsening due to a myriad of structural and governance factors. Over the past few years, several municipalities across the country have experience temporary loss of water access, while some have come dangerously close to Day Zero – a day when water levels of the major dams supplying water to residents would become critically low, resulting in households having no running water. But for the people of the township of Hammanskraal in the City of Tshwane metropolitan municipality, water insecurity has reached crisis point. Since 2005, the township has been battling with a chronic lack of access to safe drinking water. The water quality in Hammanskraal has been so dire that in 2019, the South African Human Rights Commission declared it unfit for human consumption and deemed it a violation of human rights. Despite this, the crisis has persisted. In 2023, Hammanskraal became the epicentre of a cholera outbreak that claimed a number of lives in several provinces across the country. Using a qualitative approach, this study analyses the equity dimensions and governance drivers of water security challenges in Hammanskraal. Through interviews with residents in Hammanskraal and government officials in the City of Tshwane metropolitan municipality and the Gauteng Provincial Government, the study explores the lived experiences of those affected by the water insecurity, as well as the governance drivers that inform the crisis. The study, using water justice theory and conflict theory/Marxism, contends that the water security challenges in Hammanskraal are driven by physical, economic and political factors. These factors have their roots in the geo-history of the township as well as contemporary responses to spatial development and water resource management by the post-apartheid government. The study finds that there are equity dimensions to the water security challenges in Hammanskraal. Contextually, the legacy of apartheid’s policy of separate and uneven development, coupled with contemporary failings of the implementation of the National Water Act, impact water access. In terms of water governance, while factors such as climate change and urbanisation are contributing determinants, the water security challenges in Hammanskraal are fundamentally the result of institutional failings that include lack of planning and investment as well as lack of infrastructure maintenance. The implications for South Africa in general is that failure to resolve water inequities and to strengthen water governance will result in the reproduction and persistence of structural inequalities. Key recommendations of the study include the expansion of the Temba Water Purification Plant, strengthening and coordination of institutions for water security, the setting of water allocation ceilings in Gauteng municipalities and investment in alternative water sources and tools for water conservation. The study also recommends further study into the extent to which water security challenges impact social unrest in South Africa. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Mahlatsi, Malaika Lesego Samora
- Date: 2024-10-11
- Subjects: Water security South Africa Hammanskraal , Water governance , Water-supply Law and legislation South Africa City of Tshwane Metropolitan Municipality , Water quality South Africa Hammanskraal , Water-supply Management , South Africa Social conditions
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465011 , vital:76565
- Description: South Africa is faced with a national water security challenge that is increasingly worsening due to a myriad of structural and governance factors. Over the past few years, several municipalities across the country have experience temporary loss of water access, while some have come dangerously close to Day Zero – a day when water levels of the major dams supplying water to residents would become critically low, resulting in households having no running water. But for the people of the township of Hammanskraal in the City of Tshwane metropolitan municipality, water insecurity has reached crisis point. Since 2005, the township has been battling with a chronic lack of access to safe drinking water. The water quality in Hammanskraal has been so dire that in 2019, the South African Human Rights Commission declared it unfit for human consumption and deemed it a violation of human rights. Despite this, the crisis has persisted. In 2023, Hammanskraal became the epicentre of a cholera outbreak that claimed a number of lives in several provinces across the country. Using a qualitative approach, this study analyses the equity dimensions and governance drivers of water security challenges in Hammanskraal. Through interviews with residents in Hammanskraal and government officials in the City of Tshwane metropolitan municipality and the Gauteng Provincial Government, the study explores the lived experiences of those affected by the water insecurity, as well as the governance drivers that inform the crisis. The study, using water justice theory and conflict theory/Marxism, contends that the water security challenges in Hammanskraal are driven by physical, economic and political factors. These factors have their roots in the geo-history of the township as well as contemporary responses to spatial development and water resource management by the post-apartheid government. The study finds that there are equity dimensions to the water security challenges in Hammanskraal. Contextually, the legacy of apartheid’s policy of separate and uneven development, coupled with contemporary failings of the implementation of the National Water Act, impact water access. In terms of water governance, while factors such as climate change and urbanisation are contributing determinants, the water security challenges in Hammanskraal are fundamentally the result of institutional failings that include lack of planning and investment as well as lack of infrastructure maintenance. The implications for South Africa in general is that failure to resolve water inequities and to strengthen water governance will result in the reproduction and persistence of structural inequalities. Key recommendations of the study include the expansion of the Temba Water Purification Plant, strengthening and coordination of institutions for water security, the setting of water allocation ceilings in Gauteng municipalities and investment in alternative water sources and tools for water conservation. The study also recommends further study into the extent to which water security challenges impact social unrest in South Africa. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Application of SWAT+ model to assess the hydrology of irrigated agricultural catchments in Western Cape, South Africa
- Authors: Mabohlo, Sakikhaya
- Date: 2024-10-11
- Subjects: Soil and Water Assessment Tool , Agricultural hydrology , Hydrologic models , Irrigation , Reservoirs , Water-supply, Agricultural South Africa Western Cape
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464986 , vital:76563
- Description: Agricultural activities can modify hydrological processes in catchments. An in-depth investigation of the impact of agriculture on hydrological processes is thus crucial for sustainable water management and utilisation planning in agricultural catchments. Hydrological models are widely used as practical tools to estimate and understand hydrological processes at various scales in catchments. However, it is often challenging to represent hydrological processes accurately in agriculture-dominated areas due to their complexity and the structural inadequacy of models. Complexities driven by agricultural developments such as reservoirs, cultivation irrigation, and water transfers are often intricate and difficult to represent in detail. The current study applied the SWAT+ hydrological model to the agriculture-dominated Twee and Leeu catchments in the Western Cape Province of South Africa. The SWAT+ model was preferred because it is versatile in representing multiple reservoirs and irrigation from multiple sources. The model application aimed to enhance the understanding of hydrological processes and the impact of agricultural water use on catchment hydrology, explore the capabilities and performance of this relatively new version of the SWAT in a complex catchment and provide baseline hydrology input for systems models that were used to formulate a water management plan for the catchment. The SWAT+ model was able to represent the significant number of reservoirs in the catchment. In some cases, small farm dams had to be lumped together to deal with the model's structural inadequacy. The model performed well in terms of observed and simulated streamflow comparison. NSE and R2 values above the standard of 0.5 were obtained for both catchments. Moreover, an NSE of 0.7 at a daily time-step simulation was obtained for the Leeu Catchment validation period, indicating a generally impressive SWAT+ performance. The model indicated that hydrological processes in the area were largely dominated by evapotranspiration, which is expected of semi-arid regions. 55% of the total water input into the Twee quaternary catchment is lost through evapotranspiration, while 22% is converted into surface runoff. Interflow and groundwater flow account for 9% and 9% of the catchment water, respectively. The remaining 5% is distributed to soil moisture and groundwater storage. For the Leeu, the model simulated a loss of 67% of the precipitation through evapotranspiration. Interflow and surface runoff were estimated to be 25% and 24%, respectively. Groundwater contribution to the stream accounts for 7%. Therefore, evapotranspiration and surface runoff are the dominant processes from a water balance perspective, whereas groundwater flow is also significant. Agricultural activities impacted the hydrological system significantly, and this is mainly attributed to the construction of numerous reservoirs and the subsequent intensive irrigation in the dry summer periods. The model simulation revealed that the reservoir and irrigation reduced the annual average streamflow by 71% in the Twee Catchment. In the Leeu Catchment, reservoirs and irrigation resulted in an annual average streamflow reduction of 77%. Therefore, agriculture has significantly altered flow patterns in the catchment, particularly downstream areas, during drier years. In conclusion, understanding of hydrological processes, reservoir and irrigation impact on catchment flow dynamics are the key outcomes that support decision-making regarding sustainable water management and utilisation planning. The broader outcomes, including spatially distributed flows and irrigation demand for different crop types, were used as baseline inputs for systems models that explored various water management options. SWAT+ thus played a crucial role in developing a water management plan for the area. Although the model exhibited some structural deficiencies in representing some catchment complexities, it fairly represented and enhanced our understanding of the hydrological dynamics of the Twee and Leeu Catchments. Additionally, the model has proven to be a versatile tool that can be applied for practical catchment water management in the agriculture-dominated catchments of South Africa. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Mabohlo, Sakikhaya
- Date: 2024-10-11
- Subjects: Soil and Water Assessment Tool , Agricultural hydrology , Hydrologic models , Irrigation , Reservoirs , Water-supply, Agricultural South Africa Western Cape
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464986 , vital:76563
- Description: Agricultural activities can modify hydrological processes in catchments. An in-depth investigation of the impact of agriculture on hydrological processes is thus crucial for sustainable water management and utilisation planning in agricultural catchments. Hydrological models are widely used as practical tools to estimate and understand hydrological processes at various scales in catchments. However, it is often challenging to represent hydrological processes accurately in agriculture-dominated areas due to their complexity and the structural inadequacy of models. Complexities driven by agricultural developments such as reservoirs, cultivation irrigation, and water transfers are often intricate and difficult to represent in detail. The current study applied the SWAT+ hydrological model to the agriculture-dominated Twee and Leeu catchments in the Western Cape Province of South Africa. The SWAT+ model was preferred because it is versatile in representing multiple reservoirs and irrigation from multiple sources. The model application aimed to enhance the understanding of hydrological processes and the impact of agricultural water use on catchment hydrology, explore the capabilities and performance of this relatively new version of the SWAT in a complex catchment and provide baseline hydrology input for systems models that were used to formulate a water management plan for the catchment. The SWAT+ model was able to represent the significant number of reservoirs in the catchment. In some cases, small farm dams had to be lumped together to deal with the model's structural inadequacy. The model performed well in terms of observed and simulated streamflow comparison. NSE and R2 values above the standard of 0.5 were obtained for both catchments. Moreover, an NSE of 0.7 at a daily time-step simulation was obtained for the Leeu Catchment validation period, indicating a generally impressive SWAT+ performance. The model indicated that hydrological processes in the area were largely dominated by evapotranspiration, which is expected of semi-arid regions. 55% of the total water input into the Twee quaternary catchment is lost through evapotranspiration, while 22% is converted into surface runoff. Interflow and groundwater flow account for 9% and 9% of the catchment water, respectively. The remaining 5% is distributed to soil moisture and groundwater storage. For the Leeu, the model simulated a loss of 67% of the precipitation through evapotranspiration. Interflow and surface runoff were estimated to be 25% and 24%, respectively. Groundwater contribution to the stream accounts for 7%. Therefore, evapotranspiration and surface runoff are the dominant processes from a water balance perspective, whereas groundwater flow is also significant. Agricultural activities impacted the hydrological system significantly, and this is mainly attributed to the construction of numerous reservoirs and the subsequent intensive irrigation in the dry summer periods. The model simulation revealed that the reservoir and irrigation reduced the annual average streamflow by 71% in the Twee Catchment. In the Leeu Catchment, reservoirs and irrigation resulted in an annual average streamflow reduction of 77%. Therefore, agriculture has significantly altered flow patterns in the catchment, particularly downstream areas, during drier years. In conclusion, understanding of hydrological processes, reservoir and irrigation impact on catchment flow dynamics are the key outcomes that support decision-making regarding sustainable water management and utilisation planning. The broader outcomes, including spatially distributed flows and irrigation demand for different crop types, were used as baseline inputs for systems models that explored various water management options. SWAT+ thus played a crucial role in developing a water management plan for the area. Although the model exhibited some structural deficiencies in representing some catchment complexities, it fairly represented and enhanced our understanding of the hydrological dynamics of the Twee and Leeu Catchments. Additionally, the model has proven to be a versatile tool that can be applied for practical catchment water management in the agriculture-dominated catchments of South Africa. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Aspects of the water use of Cannabis sativa L. under dryland cultivation in the Eastern Cape
- Authors: Zenani, Kamva Trevor Songo
- Date: 2024-10-11
- Subjects: Cannabis , Water consumption , Large aperture scintillometer , Cannabis Water requirements , Dry farming South Africa Eastern Cape , Evapotranspiration
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465035 , vital:76567
- Description: Cannabis spp is one of the oldest cultivated plants, with its origin in Asia. It has two species, namely C. indica and C. sativa. This research focuses on C. sativa, which is widely cultivated locally and globally. C. sativa has a wide range of uses, including industrial, medicinal, religious, and recreational. This study will be focusing on the water use of medicinal and recreational C. sativa grown under dryland conditions. In recent years, there has been a growing interest in increasing its cultivation, but there are reports of it having high water usage. The global interest has led many governments to review the laws governing this plant as it is a controlled substance in many countries. Due to its legal status, there is a dearth of knowledge about its growth and water use. It is against this backdrop that the Water Research Commission (WRC) commissioned this study into the water use of this plant. This will provide evidence-based support for the issuing of water use licenses by the Department of Water and Sanitation. The Eastern Cape and KwaZulu Natal have many small-scale legacy farmers who have been growing C. sativa illegally for decades. The findings of this research will seek to fill some of these knowledge gaps and assist legacy farmers in the cultivation of this plant. This research had four approaches, which include 1) planting the crop in a dryland location that will mimic the conditions experienced by legacy growers, 2) the collection of plant biophysical variables in the study site in order to gain a better understanding of the plant’s health, growth, progress, and to use these variables to parameterize a mechanistic eco-physiological model, 3) the installing of a large aperture scintillometer (LAS) together with a micro-meteorological station to measure the evapotranspiration (ET) and meteorological parameters over a crop cycle, 4) to use MEDRUSH evapotranspiration model to predict the ET and compare these results against that of the LAS. The results show that water provision had a significant impact on plant biophysical variables and water use. The plants received 154 mm (2 mm day-1) of rain during the crop cycle. The large aperture scintillometer recorded a total ET of 126.8 mm (1.76 mm day-1) during the same period. The MEDRUSH model (2.5 mm day-1) overestimated the LAS ET (1.79 mm day-1), and the results from the daily ET revealed that C. sativa had higher daily ET when compared to the local grass Eragrostis plana. These results confirm that at this location in the Eastern Cape, C. sativa requires regular irrigation during the growing season to grow and secure a crop. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Zenani, Kamva Trevor Songo
- Date: 2024-10-11
- Subjects: Cannabis , Water consumption , Large aperture scintillometer , Cannabis Water requirements , Dry farming South Africa Eastern Cape , Evapotranspiration
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465035 , vital:76567
- Description: Cannabis spp is one of the oldest cultivated plants, with its origin in Asia. It has two species, namely C. indica and C. sativa. This research focuses on C. sativa, which is widely cultivated locally and globally. C. sativa has a wide range of uses, including industrial, medicinal, religious, and recreational. This study will be focusing on the water use of medicinal and recreational C. sativa grown under dryland conditions. In recent years, there has been a growing interest in increasing its cultivation, but there are reports of it having high water usage. The global interest has led many governments to review the laws governing this plant as it is a controlled substance in many countries. Due to its legal status, there is a dearth of knowledge about its growth and water use. It is against this backdrop that the Water Research Commission (WRC) commissioned this study into the water use of this plant. This will provide evidence-based support for the issuing of water use licenses by the Department of Water and Sanitation. The Eastern Cape and KwaZulu Natal have many small-scale legacy farmers who have been growing C. sativa illegally for decades. The findings of this research will seek to fill some of these knowledge gaps and assist legacy farmers in the cultivation of this plant. This research had four approaches, which include 1) planting the crop in a dryland location that will mimic the conditions experienced by legacy growers, 2) the collection of plant biophysical variables in the study site in order to gain a better understanding of the plant’s health, growth, progress, and to use these variables to parameterize a mechanistic eco-physiological model, 3) the installing of a large aperture scintillometer (LAS) together with a micro-meteorological station to measure the evapotranspiration (ET) and meteorological parameters over a crop cycle, 4) to use MEDRUSH evapotranspiration model to predict the ET and compare these results against that of the LAS. The results show that water provision had a significant impact on plant biophysical variables and water use. The plants received 154 mm (2 mm day-1) of rain during the crop cycle. The large aperture scintillometer recorded a total ET of 126.8 mm (1.76 mm day-1) during the same period. The MEDRUSH model (2.5 mm day-1) overestimated the LAS ET (1.79 mm day-1), and the results from the daily ET revealed that C. sativa had higher daily ET when compared to the local grass Eragrostis plana. These results confirm that at this location in the Eastern Cape, C. sativa requires regular irrigation during the growing season to grow and secure a crop. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Context-related drivers, occurrence and human exposure to antibiotic resistant Campylobacter in selected river systems in the Eastern Cape, South Africa
- Authors: Chibwe, Mary
- Date: 2024-10-11
- Subjects: Antibiotic resistance , Campylobacter , Health risk assessment , Drug resistance , Public health South Africa Eastern Cape , Polymerase chain reaction
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466644 , vital:76763 , DOI https://doi.org/10.21504/10962/466644
- Description: The increasing prevalence of antibiotic-resistant Campylobacter species in river systems is a growing public health concern globally. This challenge presents the need to understand the drivers influencing the occurrence of these antibiotic-resistant strains to inform effective mitigation strategies. Identifying local anthropogenic pressures/activities will enable tailored intervention and ensure that management efforts are targeted and effective in mitigating actual risks faced by local water resources. In particular, the occurrence of antibiotic-resistant Campylobacter in river systems causes concerns regarding potential human exposure. Campylobacter species are regularly implicated in both animal and human diarrhoea, and have gained recognition as one of the main causes of waterborne diseases. This study investigated context-related drivers to the presence of antibiotic-resistant Campylobacter, its occurrence, and the risk of human exposure in the Bloukrans and Swartkops rivers in the Eastern Cape, South Africa. The study utilised a questionnaire survey and focus group discussions to identify context-related sources and drivers of antibiotic-resistant bacteria and genes in the Bloukrans and Swartkops rivers. Additionally, physico-chemical analysis of water samples was done, and polymerase chain reaction (PCR) was employed to investigate occurrences of Campylobacter in both rivers, as well as the presence of virulent and antibiotic-resistant genes. Two control sites, one for each river, and a total of nine other sampling sites were selected for this study, four along the Bloukrans River and five along the Swartkops River. Water samples were collected from all eleven sites over a period of one year, covering all the seasons (winter, spring, summer and autumn). Exposure assessment was investigated by conducting propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) to quantify the concentration of viable Campylobacter and its antibiotic-resistance genes (ARGs) in the river water. The calculated concentration of viable Campylobacter and ARGs was then used to estimate human exposure dose of antibiotic-resistant Campylobacter via unintentional ingestion during swimming in the Bloukrans or Swartkops rivers. The questionnaire surveys and focus group discussions identified the factors of socio-demographic characteristics of the study catchments, lack of knowledge regarding antibiotic resistance, inappropriate antibiotic and disposal practices as well as anthropogenic activities (improper solid waste management, discharge of poorly treated wastewater, poor animal husbandry practices, urban run-off and storm water, industrial effluent and agricultural run-off) as context-related sources and drivers contributing to the emergence and of continuing occurrence antibiotic-resistant bacteria and genes in the Bloukrans and Swartkops rivers. The results obtained in this study suggest that the physiochemical properties of the water in the Bloukrans and Swartkops rivers are conducive for Campylobacter survival. The prevalence of Campylobacter was high at sites that recorded high turbidity, low dissolved oxygen and high conductivity. This study also highlighted the widespread and continual presence of Campylobacter spp. in the Bloukrans and Swartkops rivers, which are potentially antibiotic-resistant. The prevalence of Campylobacter was 60% virulence genes were detected at 15% (cadF), 10% (htrB), 10% (clpP), 5% (ciaB) and 5% (ctdC) for water samples from the Bloukrans River. Campylobacter was detected in 58% of water samples from the Swartkops River, while cadF, htrB, ciaB, clpP and ctdB were detected at 24%, 0%, 9.5%, 14.8% and 4.8%, respectively. Of the Campylobacter-positive water samples, the virulence genes cmeA, cmeB and cmeC were detected in 20%, 65% and 10% of the water samples from Bloukrans River, respectively. Similarly, the genes cmeA, cmeB and cmeC were detected at 14.3%, 52% and 9.5%, respectively, for the Swartkops River. Tetracycline resistance genes (tetO) were detected in 70% and 76% of the water samples collected from the Bloukrans and Swartkops rivers, respectively. It was also observed that the sampling site had a significant effect on the detection of Campylobacter for both rivers (p < 0.05). The prevalence of Campylobacter was higher for sites impacted by anthropogenic activities. The results show that sampling season had no significant effect on the occurrence of Campylobacter for both rivers. The analysis through PMA-qPCR revealed that the mean concentrations of the Campylobacter 16S rRNA gene from viable cells ranged from 2.1 × 104 to 1.75 × 105 copies/ml for the Bloukrans River, and from 0 (no detection) to 1.11 × 104 copies/ml (viable concentration) for the Swartkops River. The concentration of tetO from viable cells ranged from 4.75 × 101 to 2.71 × 103 copies/ml and 115.96 to 325.12 copies/ml, for the Bloukrans and Swartkops Rivers, respectively. Similarly, the concentration of cmeB genes from viable cells ranged from 7.8 × 101 to 2.76 × 104 copies/ml for the Bloukrans River and from 1.71 × 101 to 7.39 × 103 copies/ml for the Swartkops River. We utilized the calculated concentrations of viable Campylobacter 16S rRNA genes and ARGs to estimate the human intake burden of viable Campylobacter 16S rRNA copies per one-hour of swimming to range from 9.9 × 101 – 3.7 × 106 copies/h across the two rivers. The human intake burden of Campylobacter ARGs ranged from 3.6 × 102 – 5.8 × 105 copies/h for cmeB, and 9.98 × 102 – 5.7 × 104 copies/h for tetO. This study highlighted the intricate interplay of socio-demographic characteristics in the study catchments, such as insufficient awareness of antibiotic resistance, inappropriate antibiotic disposal practices and anthropogenic activities, which all contribute to the prevalence of antibiotic-resistant Campylobacter in the Bloukrans and Swartkops rivers, emphasizing the need for targeted interventions to address these specific influences. There is a potential risk of Campylobacter infections associated with human exposure to the rivers. This work contributes towards the body of knowledge in closing the current research gap on possible human exposure to antibiotic-resistant Campylobacter, and in general, exposure to ARBs through freshwater sources. The findings have practical implications for designing targeted interventions to mitigate these risks, to enhance the overall environmental and public health management in the region. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Chibwe, Mary
- Date: 2024-10-11
- Subjects: Antibiotic resistance , Campylobacter , Health risk assessment , Drug resistance , Public health South Africa Eastern Cape , Polymerase chain reaction
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466644 , vital:76763 , DOI https://doi.org/10.21504/10962/466644
- Description: The increasing prevalence of antibiotic-resistant Campylobacter species in river systems is a growing public health concern globally. This challenge presents the need to understand the drivers influencing the occurrence of these antibiotic-resistant strains to inform effective mitigation strategies. Identifying local anthropogenic pressures/activities will enable tailored intervention and ensure that management efforts are targeted and effective in mitigating actual risks faced by local water resources. In particular, the occurrence of antibiotic-resistant Campylobacter in river systems causes concerns regarding potential human exposure. Campylobacter species are regularly implicated in both animal and human diarrhoea, and have gained recognition as one of the main causes of waterborne diseases. This study investigated context-related drivers to the presence of antibiotic-resistant Campylobacter, its occurrence, and the risk of human exposure in the Bloukrans and Swartkops rivers in the Eastern Cape, South Africa. The study utilised a questionnaire survey and focus group discussions to identify context-related sources and drivers of antibiotic-resistant bacteria and genes in the Bloukrans and Swartkops rivers. Additionally, physico-chemical analysis of water samples was done, and polymerase chain reaction (PCR) was employed to investigate occurrences of Campylobacter in both rivers, as well as the presence of virulent and antibiotic-resistant genes. Two control sites, one for each river, and a total of nine other sampling sites were selected for this study, four along the Bloukrans River and five along the Swartkops River. Water samples were collected from all eleven sites over a period of one year, covering all the seasons (winter, spring, summer and autumn). Exposure assessment was investigated by conducting propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) to quantify the concentration of viable Campylobacter and its antibiotic-resistance genes (ARGs) in the river water. The calculated concentration of viable Campylobacter and ARGs was then used to estimate human exposure dose of antibiotic-resistant Campylobacter via unintentional ingestion during swimming in the Bloukrans or Swartkops rivers. The questionnaire surveys and focus group discussions identified the factors of socio-demographic characteristics of the study catchments, lack of knowledge regarding antibiotic resistance, inappropriate antibiotic and disposal practices as well as anthropogenic activities (improper solid waste management, discharge of poorly treated wastewater, poor animal husbandry practices, urban run-off and storm water, industrial effluent and agricultural run-off) as context-related sources and drivers contributing to the emergence and of continuing occurrence antibiotic-resistant bacteria and genes in the Bloukrans and Swartkops rivers. The results obtained in this study suggest that the physiochemical properties of the water in the Bloukrans and Swartkops rivers are conducive for Campylobacter survival. The prevalence of Campylobacter was high at sites that recorded high turbidity, low dissolved oxygen and high conductivity. This study also highlighted the widespread and continual presence of Campylobacter spp. in the Bloukrans and Swartkops rivers, which are potentially antibiotic-resistant. The prevalence of Campylobacter was 60% virulence genes were detected at 15% (cadF), 10% (htrB), 10% (clpP), 5% (ciaB) and 5% (ctdC) for water samples from the Bloukrans River. Campylobacter was detected in 58% of water samples from the Swartkops River, while cadF, htrB, ciaB, clpP and ctdB were detected at 24%, 0%, 9.5%, 14.8% and 4.8%, respectively. Of the Campylobacter-positive water samples, the virulence genes cmeA, cmeB and cmeC were detected in 20%, 65% and 10% of the water samples from Bloukrans River, respectively. Similarly, the genes cmeA, cmeB and cmeC were detected at 14.3%, 52% and 9.5%, respectively, for the Swartkops River. Tetracycline resistance genes (tetO) were detected in 70% and 76% of the water samples collected from the Bloukrans and Swartkops rivers, respectively. It was also observed that the sampling site had a significant effect on the detection of Campylobacter for both rivers (p < 0.05). The prevalence of Campylobacter was higher for sites impacted by anthropogenic activities. The results show that sampling season had no significant effect on the occurrence of Campylobacter for both rivers. The analysis through PMA-qPCR revealed that the mean concentrations of the Campylobacter 16S rRNA gene from viable cells ranged from 2.1 × 104 to 1.75 × 105 copies/ml for the Bloukrans River, and from 0 (no detection) to 1.11 × 104 copies/ml (viable concentration) for the Swartkops River. The concentration of tetO from viable cells ranged from 4.75 × 101 to 2.71 × 103 copies/ml and 115.96 to 325.12 copies/ml, for the Bloukrans and Swartkops Rivers, respectively. Similarly, the concentration of cmeB genes from viable cells ranged from 7.8 × 101 to 2.76 × 104 copies/ml for the Bloukrans River and from 1.71 × 101 to 7.39 × 103 copies/ml for the Swartkops River. We utilized the calculated concentrations of viable Campylobacter 16S rRNA genes and ARGs to estimate the human intake burden of viable Campylobacter 16S rRNA copies per one-hour of swimming to range from 9.9 × 101 – 3.7 × 106 copies/h across the two rivers. The human intake burden of Campylobacter ARGs ranged from 3.6 × 102 – 5.8 × 105 copies/h for cmeB, and 9.98 × 102 – 5.7 × 104 copies/h for tetO. This study highlighted the intricate interplay of socio-demographic characteristics in the study catchments, such as insufficient awareness of antibiotic resistance, inappropriate antibiotic disposal practices and anthropogenic activities, which all contribute to the prevalence of antibiotic-resistant Campylobacter in the Bloukrans and Swartkops rivers, emphasizing the need for targeted interventions to address these specific influences. There is a potential risk of Campylobacter infections associated with human exposure to the rivers. This work contributes towards the body of knowledge in closing the current research gap on possible human exposure to antibiotic-resistant Campylobacter, and in general, exposure to ARBs through freshwater sources. The findings have practical implications for designing targeted interventions to mitigate these risks, to enhance the overall environmental and public health management in the region. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Microplastics as potential vectors for selected organic chemical pollutants in river ecosystems
- Authors: Tumwesigye, Edgar
- Date: 2024-10-11
- Subjects: Microplastics Environmental aspects , Vector , Adsorption (Biology) , Watersheds , Kinetics
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466677 , vital:76766 , DOI https://doi.org/10.21504/10962/466677
- Description: Microplastics (MPs) as pollutants in river ecosystems have received considerable research attention in recent years. However, in Africa, research on MPs is sparse, and more needs to be done. Empirical evidence suggests that MP can act as vectors of organic chemical pollutants due to their diverse functional groups and other physical-chemical properties, such as their small sizes, crystal structure and porosity. MPs acting as vectors of chemical pollutants, adds to the complexity of understanding the risk posed to both the ecosystem and human health. Regarding the so-called vector effect, the role of seasonality, land use type, adsorption kinetics, and MP properties has yet to receive the necessary research in the literature, especially concerning pharmaceutical active compounds and other organic pollutants in river systems. This is particularly true for Africa, including South Africa. This study, therefore, aimed to fill these existing research gaps. Overall, the study aimed to investigate the potential of selected microplastic polymers of a particular size range as vectors of organic pollutants in urban rivers within the Eastern Cape of South Africa. To achieve this aim, the study explored the influence of spatial-temporal variability, MPs particle sizes, and various physicochemical variables on the adsorption of antibiotics: Sulfamethoxazole, ciprofloxacin, and endocrine disruptors: 17β-Estradiol, 4-(2, 6-dimethyl-2-heptyl) phenol. The adsorption kinetics mechanism was also investigated and established. Polyethylene Terephthalate (PET) and polypropylene (PP) MPs were seasonally deployed once in the summer and autumn seasons, i.e. 20th January 2022 in Bloukrans River and 21st January 2022 in Swartkops River for the summer season and 7th April 2022 in Bloukrans River and 8th April 2022 in Swartkops River for the autumn season. Deployed MPs were of two size ranges, type 1 (2 mm<-≤5 mm) and type 2 (0.5mm<-≤2 mm). The sites where the MPs were deployed had different land use practices: informal settlements, discharge points of wastewater treatment works (WWTWs), agricultural farms, and control sites, considered as the least impacted sites. This was done to analyse land use types' role in the adsorption of chemical pollutants onto MPs. MPs were retrieved in periodic intervals of 7 days, 14 days and 35days calculated based on the day of deployment for both summer and autumn seasons and analysed for Sulfamethoxazole, Ciprofloxacin, 17β-Estradiol, 4-(2, 6-dimethyl-2-heptyl) phenol using high-resolution liquid chromatography–mass spectrometry LC-MS/MS equipped with a triple quadrupole (QqQ) analyser. Concurrent with MP retrieval water physicochemical variables: pH, dissolved oxygen (DO), temperature, turbidity, electrical conductivity (EC), total suspended solids (TSS), total dissolved solids, total alkalinity and total hardness. The adsorption kinetics mechanism was studied in the laboratory between PET and PP of two size ranges and Sulfamethoxazole, Ciprofloxacin, and 17β-Estradiol model chemical. The results indicate that land use practices significantly impacted the concentration of the adsorbed chemicals on MPs. Sites downstream of the WWTW had higher concentrations of Sulfamethoxazole: 11119.6001±12552.4120ngL-1 and ciprofloxacin: 30285.19± 28783.7821ngL-1 adsorbed onto MPs in the Bloukrans River compared to the concentration of same compounds from other land use types along the same River catchment. Agriculturally impacted sites had higher concentrations of 17β-Estradiol on MPs; 11624.5611 ± 15382.2923ngL-1 and 100.3635± 29.6321ngL-1 in Swartkops and Bloukrans Rivers respectively compared to other sites. These results suggest that land use is an essential factor influencing chemical inputs into rivers and their adsorption onto MPs. Adsorption was higher for the MP of smaller sizes compared to MPs with bigger sizes, indicating that size is an essential factor that influences the vector effects of MPs. Adsorption was significantly higher after 35 days than all other days during the two seasons (P< 0.05). The adoption kinetics data fitted well with the pseudo-second-order model (R2> 0.99), indicating that chemisorption mechanisms may be the rate-limiting step. Data did not fit the intraparticle diffusion model. Both film diffusion and intraparticle diffusion possibly influenced the rate-limiting adsorption step simultaneously. Regarding the relationship between adsorption and water physico-chemical variables, of special interest a positive correlation between total alkalinity, electrical conductivity, total hardness, and total suspended salts (TDS) and the concentration of the adsorbed chemicals was observed. While the relationship between adsorption and dissolved oxygen was negative. The physicochemical variables with a positive relationship with adsorption are indicative of pollution. Therefore, the result suggests that increasing pollution tends to favour higher adsorption. The results in this study highlight the insights on i) the influence of land use on adsorption, ii) the role of exposure duration on adsorption, iii) the influence of seasonality and MP sizes on adsorption iv) relationship between water physicochemical parameters and adsorption as well as v) establishing adsorption kinetic mechanism. These findings are critical to better understanding the so-called vector effects of MPs and the management associated with MPs in river systems and form essential data sets needed in developing effective pollution mitigation strategies that are region-specific. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Tumwesigye, Edgar
- Date: 2024-10-11
- Subjects: Microplastics Environmental aspects , Vector , Adsorption (Biology) , Watersheds , Kinetics
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466677 , vital:76766 , DOI https://doi.org/10.21504/10962/466677
- Description: Microplastics (MPs) as pollutants in river ecosystems have received considerable research attention in recent years. However, in Africa, research on MPs is sparse, and more needs to be done. Empirical evidence suggests that MP can act as vectors of organic chemical pollutants due to their diverse functional groups and other physical-chemical properties, such as their small sizes, crystal structure and porosity. MPs acting as vectors of chemical pollutants, adds to the complexity of understanding the risk posed to both the ecosystem and human health. Regarding the so-called vector effect, the role of seasonality, land use type, adsorption kinetics, and MP properties has yet to receive the necessary research in the literature, especially concerning pharmaceutical active compounds and other organic pollutants in river systems. This is particularly true for Africa, including South Africa. This study, therefore, aimed to fill these existing research gaps. Overall, the study aimed to investigate the potential of selected microplastic polymers of a particular size range as vectors of organic pollutants in urban rivers within the Eastern Cape of South Africa. To achieve this aim, the study explored the influence of spatial-temporal variability, MPs particle sizes, and various physicochemical variables on the adsorption of antibiotics: Sulfamethoxazole, ciprofloxacin, and endocrine disruptors: 17β-Estradiol, 4-(2, 6-dimethyl-2-heptyl) phenol. The adsorption kinetics mechanism was also investigated and established. Polyethylene Terephthalate (PET) and polypropylene (PP) MPs were seasonally deployed once in the summer and autumn seasons, i.e. 20th January 2022 in Bloukrans River and 21st January 2022 in Swartkops River for the summer season and 7th April 2022 in Bloukrans River and 8th April 2022 in Swartkops River for the autumn season. Deployed MPs were of two size ranges, type 1 (2 mm<-≤5 mm) and type 2 (0.5mm<-≤2 mm). The sites where the MPs were deployed had different land use practices: informal settlements, discharge points of wastewater treatment works (WWTWs), agricultural farms, and control sites, considered as the least impacted sites. This was done to analyse land use types' role in the adsorption of chemical pollutants onto MPs. MPs were retrieved in periodic intervals of 7 days, 14 days and 35days calculated based on the day of deployment for both summer and autumn seasons and analysed for Sulfamethoxazole, Ciprofloxacin, 17β-Estradiol, 4-(2, 6-dimethyl-2-heptyl) phenol using high-resolution liquid chromatography–mass spectrometry LC-MS/MS equipped with a triple quadrupole (QqQ) analyser. Concurrent with MP retrieval water physicochemical variables: pH, dissolved oxygen (DO), temperature, turbidity, electrical conductivity (EC), total suspended solids (TSS), total dissolved solids, total alkalinity and total hardness. The adsorption kinetics mechanism was studied in the laboratory between PET and PP of two size ranges and Sulfamethoxazole, Ciprofloxacin, and 17β-Estradiol model chemical. The results indicate that land use practices significantly impacted the concentration of the adsorbed chemicals on MPs. Sites downstream of the WWTW had higher concentrations of Sulfamethoxazole: 11119.6001±12552.4120ngL-1 and ciprofloxacin: 30285.19± 28783.7821ngL-1 adsorbed onto MPs in the Bloukrans River compared to the concentration of same compounds from other land use types along the same River catchment. Agriculturally impacted sites had higher concentrations of 17β-Estradiol on MPs; 11624.5611 ± 15382.2923ngL-1 and 100.3635± 29.6321ngL-1 in Swartkops and Bloukrans Rivers respectively compared to other sites. These results suggest that land use is an essential factor influencing chemical inputs into rivers and their adsorption onto MPs. Adsorption was higher for the MP of smaller sizes compared to MPs with bigger sizes, indicating that size is an essential factor that influences the vector effects of MPs. Adsorption was significantly higher after 35 days than all other days during the two seasons (P< 0.05). The adoption kinetics data fitted well with the pseudo-second-order model (R2> 0.99), indicating that chemisorption mechanisms may be the rate-limiting step. Data did not fit the intraparticle diffusion model. Both film diffusion and intraparticle diffusion possibly influenced the rate-limiting adsorption step simultaneously. Regarding the relationship between adsorption and water physico-chemical variables, of special interest a positive correlation between total alkalinity, electrical conductivity, total hardness, and total suspended salts (TDS) and the concentration of the adsorbed chemicals was observed. While the relationship between adsorption and dissolved oxygen was negative. The physicochemical variables with a positive relationship with adsorption are indicative of pollution. Therefore, the result suggests that increasing pollution tends to favour higher adsorption. The results in this study highlight the insights on i) the influence of land use on adsorption, ii) the role of exposure duration on adsorption, iii) the influence of seasonality and MP sizes on adsorption iv) relationship between water physicochemical parameters and adsorption as well as v) establishing adsorption kinetic mechanism. These findings are critical to better understanding the so-called vector effects of MPs and the management associated with MPs in river systems and form essential data sets needed in developing effective pollution mitigation strategies that are region-specific. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Modelling water quality dynamics by integrating PYWR, climate change, and land-cover scenarios: a case study in the Grootdraai Dam Catchment, Upper Vaal, South Africa
- Authors: Lazar, Sofia
- Date: 2024-10-11
- Subjects: Water-supply Mathematical models , Black box , Distributed model , Water quality South Africa Grootdraai Dam , Water allocation , Land use South Africa Grootdraai Dam
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465000 , vital:76564
- Description: Water resource management faces global challenges in allocation, quality, and sustainability. Despite extensive focus on quantity, water quality remains neglected, especially in developing nations, owing to data scarcity and funding issues. Water quantity modelling is more advanced, leaving water quality modelling lagging, as it requires finer spatiotemporal scales. Global water quality models, including those used in South Africa, encounter complexity and data requirements, and some proprietary models limit access. In South Africa, a water quality model is integrated with the less accessible Water Resources Yield Model (WRYM). However, WRYM's spatial lumping may not suffice for water quality assessment, emphasising the need for improvement. This study aims to address the gap in water quality modelling by transitioning from lumped, proprietary, and monthly time-step models applied in South Africa to more spatially distributed, user-friendly, transparent, fast models and daily time-step models, using the Grootdraai Dam Catchment in the Upper Vaal as a study region. The study examines providing water quality simulation for various variables under different tested scenarios, including (i) land-use scenarios (e.g., urbanisation, industrialisation, population growth and expansion in agricultural areas); (ii) mixed scenarios (e.g., climate change, mine closure, and demand increase). The study proposed a framework shifting from the WRYM to a Python water resources (Pywr) model, linked with the Water Quality Systems Assessment Model (WQSAM) in the Grootdraai Dam Catchment. This integration, the Python water resources-Water Quality (Pywr-WQ) model, was developed by the Water Research centre (WRc) in the United Kingdom. The study employed multiple regression models to develop land-use models, the outcomes of which were integrated into the Pywr-WQ model for medium and long term land-use scenario predictions. The study resulted in the following findings: (1) significant patterns emerge concerning the impacts of urbanisation, mining, and agricultural expansion on water quality; (2) urban areas exhibit elevated levels of nitrate plus nitrite and ammonium over the long term associated with human activities and infrastructure development; (3) increased cultivation leads to heightened phosphate levels, indicative of agricultural runoff and potential high fertiliser usage, while the expansion of mining activities results in elevated concentrations of sulphate and Total Dissolved Solids (TDS), attributed to the discharge of mine effluents; (4) noticeable declines in the concentrations of TDS and sulphate are evident in the medium to long term when compared to the baseline simulations. However, the worst-case scenario (i.e., a 70% abstraction increase) exhibits elevated peaks and concentrations compared to scenarios with more probable demand increases (e.g., a 5% increase). , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Lazar, Sofia
- Date: 2024-10-11
- Subjects: Water-supply Mathematical models , Black box , Distributed model , Water quality South Africa Grootdraai Dam , Water allocation , Land use South Africa Grootdraai Dam
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465000 , vital:76564
- Description: Water resource management faces global challenges in allocation, quality, and sustainability. Despite extensive focus on quantity, water quality remains neglected, especially in developing nations, owing to data scarcity and funding issues. Water quantity modelling is more advanced, leaving water quality modelling lagging, as it requires finer spatiotemporal scales. Global water quality models, including those used in South Africa, encounter complexity and data requirements, and some proprietary models limit access. In South Africa, a water quality model is integrated with the less accessible Water Resources Yield Model (WRYM). However, WRYM's spatial lumping may not suffice for water quality assessment, emphasising the need for improvement. This study aims to address the gap in water quality modelling by transitioning from lumped, proprietary, and monthly time-step models applied in South Africa to more spatially distributed, user-friendly, transparent, fast models and daily time-step models, using the Grootdraai Dam Catchment in the Upper Vaal as a study region. The study examines providing water quality simulation for various variables under different tested scenarios, including (i) land-use scenarios (e.g., urbanisation, industrialisation, population growth and expansion in agricultural areas); (ii) mixed scenarios (e.g., climate change, mine closure, and demand increase). The study proposed a framework shifting from the WRYM to a Python water resources (Pywr) model, linked with the Water Quality Systems Assessment Model (WQSAM) in the Grootdraai Dam Catchment. This integration, the Python water resources-Water Quality (Pywr-WQ) model, was developed by the Water Research centre (WRc) in the United Kingdom. The study employed multiple regression models to develop land-use models, the outcomes of which were integrated into the Pywr-WQ model for medium and long term land-use scenario predictions. The study resulted in the following findings: (1) significant patterns emerge concerning the impacts of urbanisation, mining, and agricultural expansion on water quality; (2) urban areas exhibit elevated levels of nitrate plus nitrite and ammonium over the long term associated with human activities and infrastructure development; (3) increased cultivation leads to heightened phosphate levels, indicative of agricultural runoff and potential high fertiliser usage, while the expansion of mining activities results in elevated concentrations of sulphate and Total Dissolved Solids (TDS), attributed to the discharge of mine effluents; (4) noticeable declines in the concentrations of TDS and sulphate are evident in the medium to long term when compared to the baseline simulations. However, the worst-case scenario (i.e., a 70% abstraction increase) exhibits elevated peaks and concentrations compared to scenarios with more probable demand increases (e.g., a 5% increase). , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Participatory mapping of key drivers of ecological change and analysing equity dimensions of ecosystem services flow in the Kat River Catchment
- Authors: Seriki, Esther Ahuoiza
- Date: 2024-10-11
- Subjects: Ecological change , Ecosystem services South Africa Kat River Valley , Participatory GIS , Freshwater ecosystem , Social equity
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465024 , vital:76566
- Description: Rivers are important ecosystems which supply ecosystem services critical to social-economic well-being. However, many rivers are degraded due to human activities. Degradation of river systems compromises the quality and quantity of ecosystem services they can supply. Managing important drivers of ecological change requires broad-based stakeholder participation to mobilise collective actions for an effective rehabilitation strategy. This study looked at two crucial research objectives in the Kat River catchment. The first was to undertake a multidimensional, participatory, engaged mapping of ecological changes, as well as current and changing ecosystem services in the Kat River catchment, and the second was to analyse the equity dimensions of ecosystem services flow in the Kat River catchment. Data were collected through semi-structured interviews and participatory GIS mapping exercises. A purposive sampling method was applied to recruit research participants for interviews and workshops. Between March 13th and May 31st, 2023, thirty-one (31) participants representing four social groups, non-farming individuals, catchment management forum members, commercial and subsistence farmers, participated in interviews. Additionally, twenty-two (22) stakeholders attended 2-day workshops held between 20−21 April 2022, and 30−31 May 2023. Data collected from interviews and workshops were analysed using thematic analysis. The results of stakeholder perceptions regarding the perceived ecological changes and their key drivers in the Kat River catchment revealed a concerning trend. Participants reported significant changes to the catchment area over time, including increased occurrences of flooding and water pollution and decreased aquatic biodiversity. Furthermore, degradation of ecosystem services, such as water quality, availability of medicinal plants, reeds, and fish populations, was noted. These environmental shifts have been accompanied by a rise in social-economic burdens, including the prevalence of water-borne diseases, cultural burdens (particularly the inability of certain groups to access ancestral grave sites) and declining fish populations. These findings emphasise the urgent need for intervention strategies to mitigate further degradation of the catchment area and safeguard the well-being of both the human population and the integrity of the ecosystems. Recommended intervention measures include improving wastewater management practices and creating targeted public awareness campaigns. By addressing these challenges, stakeholders can work towards preserving the integrity of the catchment area, protecting water resources and conserving biodiversity for future generations. The equity dimensions (distributive and procedural equity) analysis revealed notable disparities in access to the benefits of ecosystem services, as well as in participation of residents in the Kat River Water Users Association. Certain social groups, such as commercial farmers, were observed to receive more benefits from ecosystem services, while other groups, including the elderly and disabled individuals, seem to be negatively impacted by the activities of those who benefit most from ecosystem services in the Kat River catchment. This raises not only an equity issue but also the issue of how costs are externalised by certain groups. Of particular concern was the finding that seventy (70) per cent of the research participants were not aware of the presence of the Kat River Water Users Association, raising concerns about procedural equity in water resource management processes. Additionally, ninety (90) per cent of the participants had the perception that there was unfair water access and allocation across the various social groups, highlighting possible distributive inequities. The participants expressed a clear interest in learning more about the existence and operation of the Kat River Water Users Association, signalling a need for increased awareness and participation among social groups. Addressing these equity concerns is crucial to ensure that water resource management processes are designed to provide all stakeholders and water-dependent actors with equitable and fair access to decision making. Moving forward, efforts should be directed towards raising awareness of the Kat River Water Users Association and to promoting inclusive participation among all social groups. This awareness may involve targeted outreach campaigns, community engagement initiatives and policy reforms to foster more equitable water governance practices within the catchment. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Seriki, Esther Ahuoiza
- Date: 2024-10-11
- Subjects: Ecological change , Ecosystem services South Africa Kat River Valley , Participatory GIS , Freshwater ecosystem , Social equity
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465024 , vital:76566
- Description: Rivers are important ecosystems which supply ecosystem services critical to social-economic well-being. However, many rivers are degraded due to human activities. Degradation of river systems compromises the quality and quantity of ecosystem services they can supply. Managing important drivers of ecological change requires broad-based stakeholder participation to mobilise collective actions for an effective rehabilitation strategy. This study looked at two crucial research objectives in the Kat River catchment. The first was to undertake a multidimensional, participatory, engaged mapping of ecological changes, as well as current and changing ecosystem services in the Kat River catchment, and the second was to analyse the equity dimensions of ecosystem services flow in the Kat River catchment. Data were collected through semi-structured interviews and participatory GIS mapping exercises. A purposive sampling method was applied to recruit research participants for interviews and workshops. Between March 13th and May 31st, 2023, thirty-one (31) participants representing four social groups, non-farming individuals, catchment management forum members, commercial and subsistence farmers, participated in interviews. Additionally, twenty-two (22) stakeholders attended 2-day workshops held between 20−21 April 2022, and 30−31 May 2023. Data collected from interviews and workshops were analysed using thematic analysis. The results of stakeholder perceptions regarding the perceived ecological changes and their key drivers in the Kat River catchment revealed a concerning trend. Participants reported significant changes to the catchment area over time, including increased occurrences of flooding and water pollution and decreased aquatic biodiversity. Furthermore, degradation of ecosystem services, such as water quality, availability of medicinal plants, reeds, and fish populations, was noted. These environmental shifts have been accompanied by a rise in social-economic burdens, including the prevalence of water-borne diseases, cultural burdens (particularly the inability of certain groups to access ancestral grave sites) and declining fish populations. These findings emphasise the urgent need for intervention strategies to mitigate further degradation of the catchment area and safeguard the well-being of both the human population and the integrity of the ecosystems. Recommended intervention measures include improving wastewater management practices and creating targeted public awareness campaigns. By addressing these challenges, stakeholders can work towards preserving the integrity of the catchment area, protecting water resources and conserving biodiversity for future generations. The equity dimensions (distributive and procedural equity) analysis revealed notable disparities in access to the benefits of ecosystem services, as well as in participation of residents in the Kat River Water Users Association. Certain social groups, such as commercial farmers, were observed to receive more benefits from ecosystem services, while other groups, including the elderly and disabled individuals, seem to be negatively impacted by the activities of those who benefit most from ecosystem services in the Kat River catchment. This raises not only an equity issue but also the issue of how costs are externalised by certain groups. Of particular concern was the finding that seventy (70) per cent of the research participants were not aware of the presence of the Kat River Water Users Association, raising concerns about procedural equity in water resource management processes. Additionally, ninety (90) per cent of the participants had the perception that there was unfair water access and allocation across the various social groups, highlighting possible distributive inequities. The participants expressed a clear interest in learning more about the existence and operation of the Kat River Water Users Association, signalling a need for increased awareness and participation among social groups. Addressing these equity concerns is crucial to ensure that water resource management processes are designed to provide all stakeholders and water-dependent actors with equitable and fair access to decision making. Moving forward, efforts should be directed towards raising awareness of the Kat River Water Users Association and to promoting inclusive participation among all social groups. This awareness may involve targeted outreach campaigns, community engagement initiatives and policy reforms to foster more equitable water governance practices within the catchment. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Taxonomy- and trait-based responses of chironomid assemblage structure to pollution in selected urban rivers, Eastern Cape, South Africa
- Authors: Osoh, Miracle Ogagaoghene
- Date: 2024-10-11
- Subjects: Environmental monitoring , Chironomidae , Water quality , Urbanization , Aquatic insects , Aquatic ecology , Urban pollution
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466655 , vital:76764 , DOI https://doi.org/10.21504/10962/466655
- Description: Urbanisation, occasioned by an increasing human population and the proliferation of industries, is a major threat to freshwater resources and has been implicated as a cause of stream water quality deterioration, habitat degradation, and the loss of aquatic biodiversity. Pollution of freshwater systems resulting from urban-related activities severely alters stream ecosystem structure and function. To effectively protect and sustainably manage freshwater resources, it is important to develop biomonitoring tools which are both sensitive to changes in water quality conditions and can provide an understanding of the mechanisms by which urban pollution impacts freshwater ecosystems. In South Africa, the macroinvertebrate-based South African Scoring System version 5 (SASS5) is routinely used for water quality assessment. This tool is developed at the family level of taxonomic resolution, with the exception of a few taxa. This raises the question as to whether a species-level taxonomic approach, complemented with a trait-based approach could add additional value. This question was addressed comparatively by developing and applying a taxonomy- and trait-based approach using the taxonomically and functionally diverse Chironomidae family. Fifteen sites across three urban river systems (Buffalo, Bloukrans and Swartkops River systems) in the Eastern Cape Province of South Africa were purposefully selected for this study. Based on the predominant land use within the catchment of the sites and water quality variables, the study sites were grouped into five site categories. The least-impacted sites (REF) had 78.53% mean forested area, 5.98% mean urban area and 13.49% mean agricultural land. Sites that received diffuse pollution but were upstream from the effluent discharge point of wastewater treatment works (DP) had 59.07% mean forested area, 32.53% mean urban area and 6.20% mean agricultural land. Sites that received point source pollution from wastewater treatment works (PP) had 63.66% mean forested area, 26.26% mean urban area and 7.39% mean agricultural land. Sites further downstream from the wastewater treatment works that received impacts from both point source and diffuse pollution (AG) had 65.95% mean forested area, 18.24% mean urban area and 12.5% mean agricultural land. Sites selected for exploring the potential system recovery of the study rivers (RECV) had 77.21% mean forested area, 9.12% mean urban area and 10.7% mean agricultural land. Macroinvertebrates and physicochemical variables were sampled at sites in the Bloukrans and Buffalo rivers over four sampling events (spring, summer, winter, and autumn) between November 2021 and June 2022 using the SASS5 protocol. Historical chironomid and physicochemical data from the Swartkops River collected between 2009 and 2012 were also used in this study. The SASS5 family-level biotic index classified the water quality condition at the least impacted site (REF) of the Swartkops River as minimally impaired 80% of the time, compared to the chironomid-based multimetric index (CUMMI), which indicated that the water quality condition at this site was near-natural 50% of the time. The chironomid-based multimetric index and the SASS5 were divergent in their classification of water quality conditions at the DP and AG sites but were 100% in agreement regarding water quality conditions at the PP site as critically/severely modified. The SASS5 scores classified the water quality condition at the AG site as critically/severely modified 100% of the time, whereas the CUMMI index classified the water quality condition at this site as critically/severely modified 90% of the time but moderately modified 10% of the time. The results indicate that species-level and family-level indices tend to be in agreement for heavily impacted sites, but the same was not true for least or moderately impacted sites. Traits such as the possession of tracheal gills, very large body size, burrowing, whole-body undulation, construction of rigid tubes, possession of three tracheae, completion of lifecycle in more than one year, production of more than 1000 eggs per egg mass, preferences for fine detritus, and bivoltinism were deemed tolerant of urban pollution. Traits such as cuticular respiration, medium body size, predator feeding mode, completion of lifecycle within one year, and a preference for stone biotope were deemed sensitive to urban pollution. An approach was developed to classify chironomids into those that are potentially vulnerable and those that are resilient to urban pollution. The abundances of vulnerable species correlated positively with increasing dissolved oxygen and negatively with increasing turbidity, electrical conductivity, nitrite-nitrogen, ammonium-nitrogen, and orthophosphate-phosphorus. The relative abundance of the highly vulnerable species and that of the highly tolerant species responded significantly to urban pollution and differentiated between the site categories. The relative abundance of the highly vulnerable species was significantly different between the DP and PP site categories. The richness of vulnerable and highly vulnerable species was significantly different between the REF sites and the impacted site categories (DP, PP, and AG). These results indicated that the developed approach successfully predicted chironomid responses to urban pollution. Overall, the study makes important contributions to the field of freshwater biomonitoring. First, the study highlighted that species-level identification is necessary to differentiate sites which may be considered moderately impacted. Both family and species-level tools were sensitive to water quality conditions for least impacted and highly impacted sites, but the differences between the family-level and species-level indices were pronounced for sites considered moderately impacted. Second, a trait-based approach provided a mechanism for developing predictive tools, and in the case of this study, the potential resilience or vulnerability of chironomids was reliably predicted. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Osoh, Miracle Ogagaoghene
- Date: 2024-10-11
- Subjects: Environmental monitoring , Chironomidae , Water quality , Urbanization , Aquatic insects , Aquatic ecology , Urban pollution
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466655 , vital:76764 , DOI https://doi.org/10.21504/10962/466655
- Description: Urbanisation, occasioned by an increasing human population and the proliferation of industries, is a major threat to freshwater resources and has been implicated as a cause of stream water quality deterioration, habitat degradation, and the loss of aquatic biodiversity. Pollution of freshwater systems resulting from urban-related activities severely alters stream ecosystem structure and function. To effectively protect and sustainably manage freshwater resources, it is important to develop biomonitoring tools which are both sensitive to changes in water quality conditions and can provide an understanding of the mechanisms by which urban pollution impacts freshwater ecosystems. In South Africa, the macroinvertebrate-based South African Scoring System version 5 (SASS5) is routinely used for water quality assessment. This tool is developed at the family level of taxonomic resolution, with the exception of a few taxa. This raises the question as to whether a species-level taxonomic approach, complemented with a trait-based approach could add additional value. This question was addressed comparatively by developing and applying a taxonomy- and trait-based approach using the taxonomically and functionally diverse Chironomidae family. Fifteen sites across three urban river systems (Buffalo, Bloukrans and Swartkops River systems) in the Eastern Cape Province of South Africa were purposefully selected for this study. Based on the predominant land use within the catchment of the sites and water quality variables, the study sites were grouped into five site categories. The least-impacted sites (REF) had 78.53% mean forested area, 5.98% mean urban area and 13.49% mean agricultural land. Sites that received diffuse pollution but were upstream from the effluent discharge point of wastewater treatment works (DP) had 59.07% mean forested area, 32.53% mean urban area and 6.20% mean agricultural land. Sites that received point source pollution from wastewater treatment works (PP) had 63.66% mean forested area, 26.26% mean urban area and 7.39% mean agricultural land. Sites further downstream from the wastewater treatment works that received impacts from both point source and diffuse pollution (AG) had 65.95% mean forested area, 18.24% mean urban area and 12.5% mean agricultural land. Sites selected for exploring the potential system recovery of the study rivers (RECV) had 77.21% mean forested area, 9.12% mean urban area and 10.7% mean agricultural land. Macroinvertebrates and physicochemical variables were sampled at sites in the Bloukrans and Buffalo rivers over four sampling events (spring, summer, winter, and autumn) between November 2021 and June 2022 using the SASS5 protocol. Historical chironomid and physicochemical data from the Swartkops River collected between 2009 and 2012 were also used in this study. The SASS5 family-level biotic index classified the water quality condition at the least impacted site (REF) of the Swartkops River as minimally impaired 80% of the time, compared to the chironomid-based multimetric index (CUMMI), which indicated that the water quality condition at this site was near-natural 50% of the time. The chironomid-based multimetric index and the SASS5 were divergent in their classification of water quality conditions at the DP and AG sites but were 100% in agreement regarding water quality conditions at the PP site as critically/severely modified. The SASS5 scores classified the water quality condition at the AG site as critically/severely modified 100% of the time, whereas the CUMMI index classified the water quality condition at this site as critically/severely modified 90% of the time but moderately modified 10% of the time. The results indicate that species-level and family-level indices tend to be in agreement for heavily impacted sites, but the same was not true for least or moderately impacted sites. Traits such as the possession of tracheal gills, very large body size, burrowing, whole-body undulation, construction of rigid tubes, possession of three tracheae, completion of lifecycle in more than one year, production of more than 1000 eggs per egg mass, preferences for fine detritus, and bivoltinism were deemed tolerant of urban pollution. Traits such as cuticular respiration, medium body size, predator feeding mode, completion of lifecycle within one year, and a preference for stone biotope were deemed sensitive to urban pollution. An approach was developed to classify chironomids into those that are potentially vulnerable and those that are resilient to urban pollution. The abundances of vulnerable species correlated positively with increasing dissolved oxygen and negatively with increasing turbidity, electrical conductivity, nitrite-nitrogen, ammonium-nitrogen, and orthophosphate-phosphorus. The relative abundance of the highly vulnerable species and that of the highly tolerant species responded significantly to urban pollution and differentiated between the site categories. The relative abundance of the highly vulnerable species was significantly different between the DP and PP site categories. The richness of vulnerable and highly vulnerable species was significantly different between the REF sites and the impacted site categories (DP, PP, and AG). These results indicated that the developed approach successfully predicted chironomid responses to urban pollution. Overall, the study makes important contributions to the field of freshwater biomonitoring. First, the study highlighted that species-level identification is necessary to differentiate sites which may be considered moderately impacted. Both family and species-level tools were sensitive to water quality conditions for least impacted and highly impacted sites, but the differences between the family-level and species-level indices were pronounced for sites considered moderately impacted. Second, a trait-based approach provided a mechanism for developing predictive tools, and in the case of this study, the potential resilience or vulnerability of chironomids was reliably predicted. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
Application of the modified pitman and swat models for groundwater recharge estimation in the upstream area of the Uitenhage artesian basin, South Africa
- Authors: Wasswa, Peter
- Date: 2024-04-04
- Subjects: Hydrologic models , Groundwater recharge , Runoff Mathematical models , Rain and rainfall Mathematical models , Water-supply Management , Artesian basins South Africa Eastern Cape
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435400 , vital:73154
- Description: The world's most plentiful source of freshwater is thought to be groundwater. During extended dry times, it serves as an essential storage component and guards against environmental catastrophes. Despite its critical functions in the aforementioned scenarios, it is often insufficiently understood and inadequately managed. As a result, it calls for the adoption of integrated methods to comprehend the dynamics of groundwater recharge. Thus, the current study evaluated the applicability and suitability of the Modified Pitman and SWAT models for groundwater recharge estimation in the upstream area of UAB for the period that spanned from 1993 to 2021. It was achieved by using a qualitative conceptual-perceptual model to inform the two hydrological models, Modified Pitman, and SWAT. The developed qualitative conceptual-perceptual model depicted the dominancy of irregularly folded and fractured TMG rock outcrops coupled with fault systems in the upstream area. In the downward section, TMG is overlaid by the aquiclude from the Uitenhage Group which is responsible for the artesian conditions. Groundwater potential zones were classified as Poor, Fair, Good, and Excellent, with 65.4% and 8.7% of the upstream area attributed to Good and Excellent zones respectively. Both Modified Pitman and SWAT predicted decreasing rates of groundwater recharge in the upstream area over time, though Mann-Kendal trend tests done at 5% signifance level depicted significant decreasing rates in SWAT predicted recharge compared to Modified Pitman predicted recharge. The two models did also predict recharge and other water balance components with differing peaks, lows and timings. Modified Pitman predicted mean annual recharge of 63.3-92.8 mm where as SWAT predicted mean annual recharge of 14.4-182.8 mm. In reference to earlier findings within TMG areas, estimated percentages of groundwater recharge were close to those simulated by both Pitman and SWAT models. Modified Pitman and SWAT models appear to both be reasonable tools to estimate recharge in TMG setting, producing relatively similar results to one another and to other regional estimates. Since the current study estimated low recharge rates (Modified Pitman; ~9.3-13.6% MAP), (SWAT; ~2.1-26.7% MAP) which are close to those predicted in other TMG areas, the study recommends exercising caution when developing a water supply strategy in the current study area. The recharge rates within the pertinent recharging areas should be considered when designing and sitting abstraction points such as boreholes and a sustainable abstraction rate in any one borehole for improved sustainable management of groundwater resources. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-04-04
- Authors: Wasswa, Peter
- Date: 2024-04-04
- Subjects: Hydrologic models , Groundwater recharge , Runoff Mathematical models , Rain and rainfall Mathematical models , Water-supply Management , Artesian basins South Africa Eastern Cape
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/435400 , vital:73154
- Description: The world's most plentiful source of freshwater is thought to be groundwater. During extended dry times, it serves as an essential storage component and guards against environmental catastrophes. Despite its critical functions in the aforementioned scenarios, it is often insufficiently understood and inadequately managed. As a result, it calls for the adoption of integrated methods to comprehend the dynamics of groundwater recharge. Thus, the current study evaluated the applicability and suitability of the Modified Pitman and SWAT models for groundwater recharge estimation in the upstream area of UAB for the period that spanned from 1993 to 2021. It was achieved by using a qualitative conceptual-perceptual model to inform the two hydrological models, Modified Pitman, and SWAT. The developed qualitative conceptual-perceptual model depicted the dominancy of irregularly folded and fractured TMG rock outcrops coupled with fault systems in the upstream area. In the downward section, TMG is overlaid by the aquiclude from the Uitenhage Group which is responsible for the artesian conditions. Groundwater potential zones were classified as Poor, Fair, Good, and Excellent, with 65.4% and 8.7% of the upstream area attributed to Good and Excellent zones respectively. Both Modified Pitman and SWAT predicted decreasing rates of groundwater recharge in the upstream area over time, though Mann-Kendal trend tests done at 5% signifance level depicted significant decreasing rates in SWAT predicted recharge compared to Modified Pitman predicted recharge. The two models did also predict recharge and other water balance components with differing peaks, lows and timings. Modified Pitman predicted mean annual recharge of 63.3-92.8 mm where as SWAT predicted mean annual recharge of 14.4-182.8 mm. In reference to earlier findings within TMG areas, estimated percentages of groundwater recharge were close to those simulated by both Pitman and SWAT models. Modified Pitman and SWAT models appear to both be reasonable tools to estimate recharge in TMG setting, producing relatively similar results to one another and to other regional estimates. Since the current study estimated low recharge rates (Modified Pitman; ~9.3-13.6% MAP), (SWAT; ~2.1-26.7% MAP) which are close to those predicted in other TMG areas, the study recommends exercising caution when developing a water supply strategy in the current study area. The recharge rates within the pertinent recharging areas should be considered when designing and sitting abstraction points such as boreholes and a sustainable abstraction rate in any one borehole for improved sustainable management of groundwater resources. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-04-04
Analysing equity and ethical dimensions of water governance challenges in the lower section of the upper Vaal River catchment, Gauteng, South Africa
- Authors: Tavengwa, Noleen Shamiso
- Date: 2023-10-13
- Subjects: Water governance , Water-supply South Africa Vaal River Watershed , Water-supply Management Moral and ethical aspects , Water-supply Law and legislation , Water Pollution South Africa Vaal River Watershed
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424199 , vital:72132
- Description: Poor water governance practices have been identified as one of the root causes of water problems confronting the South African water sector. This is evident in the lower section of the Upper Vaal River Catchment, where ineffective implementation of the regulatory measures has resulted in multiple incidents of illegal discharge of effluent from municipal wastewater treatment works, industrial and mining activities. Pollution and deterioration of water quality is a major challenge in the catchment; the Vaal River is severely polluted beyond acceptable standards and impacts negatively on other water users who have legitimate rights to the water resources. Pollution not only affects human activities and use, but also has negative impacts on ecological health and functionality. Poor water governance practices raise ethical implications for the rights to water for both social and ecological components. Although many water governance challenges in South Africa have implications that border on values and ethics, the relationship between these concepts has hardly been explored. In order to contribute towards filling this gap, this study explores water governance challenges and their ethical implications, and then analyse the equity dimensions of key water challenges among institutional actors in the lower section of the Upper Vaal WMA, Gauteng. The study uses a qualitative research approach which involves several methods of data collection: document analysis, workshops, focus group discussions, key informant interviews and participant observation. The data collected were analysed using thematic analysis, and then applied an ethical framework to distil ethical implications of the identified water governance challenges. There are five water governance challenges that were identified, which are i) failure in the implementation of water legislation and regulations, ii) ineffective leadership and management, iii) cooperative governance and poor accountability, iv) decentralisation and ineffective participation, and v) finance, infrastructure, and technical capacity. The deterioration of water quality and pollution due to ineffective implementation of the regulatory system has ethical implications towards protection of the ecological system and sustainable management of the water resources for the present and future generation. Ineffective implementation of the regulatory measure also raises the issue of distributive equity between different water users and between current and future users. These implications are critical particularly when viewed from the perspective of systemic-relational ethical approach which posit that in social-ecological systems, all components ought to be treated with equal regards, and their inherent worth respected in order to maintain the unity of the SES. The idea of equal regards to the inherent worth of the component implies due respect, in ways that do not undermine the integrity of the entire system. The challenges identified in the system suggest that i) the right of the ecological system to water is undermined due to anthropogenic activities, which may in the long term undermine the functionality of the entire SES; ii) the right of the margined to access to water of the right quality is also undermined, and pollution costs is externalised. These are matters of ethics that thus deserved attention in policy and management considerations. The study analysed equity dimensions (distributive and procedural), targeting the key institutional water users (i.e., mines, industries, agriculture, municipalities, and the wastewater treatment works) in the lower section of the Upper Vaal River Catchment as equity candidates due to their activities that significantly impact the environment and the water resources. The cost of pollution caused by mining activities, industrial activities and the wastewater treatment works is externalised to other users who are not responsible for the pollution. In this regard study identified key drivers that raise concerns linked to distributive equity, which are ) pollution and water quality deterioration, ii) the legacies of mining activities, and iii) poor infrastructure maintenance, vandalism, and theft. Identifying these key drivers of distributive equity concerns is critical in ensuring that the water governance processes are designed in a way that stakeholders and actors reliant on water resources within the catchment have equitable and fair access without the effects of externalised costs from other actors. The identified water governance challenges in the catchment all borders on ethics, thus an ethical framework is crucial in tackling water related problems. The principles of ethics can be used as guidelines to decision-making process for the management and governance of water resources in South Africa. Therefore, implementing and incorporating principles of the systemic-relational ethics into policy making and water resources management will yield sustainable, efficient, and equitable use and management of water resources. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Tavengwa, Noleen Shamiso
- Date: 2023-10-13
- Subjects: Water governance , Water-supply South Africa Vaal River Watershed , Water-supply Management Moral and ethical aspects , Water-supply Law and legislation , Water Pollution South Africa Vaal River Watershed
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424199 , vital:72132
- Description: Poor water governance practices have been identified as one of the root causes of water problems confronting the South African water sector. This is evident in the lower section of the Upper Vaal River Catchment, where ineffective implementation of the regulatory measures has resulted in multiple incidents of illegal discharge of effluent from municipal wastewater treatment works, industrial and mining activities. Pollution and deterioration of water quality is a major challenge in the catchment; the Vaal River is severely polluted beyond acceptable standards and impacts negatively on other water users who have legitimate rights to the water resources. Pollution not only affects human activities and use, but also has negative impacts on ecological health and functionality. Poor water governance practices raise ethical implications for the rights to water for both social and ecological components. Although many water governance challenges in South Africa have implications that border on values and ethics, the relationship between these concepts has hardly been explored. In order to contribute towards filling this gap, this study explores water governance challenges and their ethical implications, and then analyse the equity dimensions of key water challenges among institutional actors in the lower section of the Upper Vaal WMA, Gauteng. The study uses a qualitative research approach which involves several methods of data collection: document analysis, workshops, focus group discussions, key informant interviews and participant observation. The data collected were analysed using thematic analysis, and then applied an ethical framework to distil ethical implications of the identified water governance challenges. There are five water governance challenges that were identified, which are i) failure in the implementation of water legislation and regulations, ii) ineffective leadership and management, iii) cooperative governance and poor accountability, iv) decentralisation and ineffective participation, and v) finance, infrastructure, and technical capacity. The deterioration of water quality and pollution due to ineffective implementation of the regulatory system has ethical implications towards protection of the ecological system and sustainable management of the water resources for the present and future generation. Ineffective implementation of the regulatory measure also raises the issue of distributive equity between different water users and between current and future users. These implications are critical particularly when viewed from the perspective of systemic-relational ethical approach which posit that in social-ecological systems, all components ought to be treated with equal regards, and their inherent worth respected in order to maintain the unity of the SES. The idea of equal regards to the inherent worth of the component implies due respect, in ways that do not undermine the integrity of the entire system. The challenges identified in the system suggest that i) the right of the ecological system to water is undermined due to anthropogenic activities, which may in the long term undermine the functionality of the entire SES; ii) the right of the margined to access to water of the right quality is also undermined, and pollution costs is externalised. These are matters of ethics that thus deserved attention in policy and management considerations. The study analysed equity dimensions (distributive and procedural), targeting the key institutional water users (i.e., mines, industries, agriculture, municipalities, and the wastewater treatment works) in the lower section of the Upper Vaal River Catchment as equity candidates due to their activities that significantly impact the environment and the water resources. The cost of pollution caused by mining activities, industrial activities and the wastewater treatment works is externalised to other users who are not responsible for the pollution. In this regard study identified key drivers that raise concerns linked to distributive equity, which are ) pollution and water quality deterioration, ii) the legacies of mining activities, and iii) poor infrastructure maintenance, vandalism, and theft. Identifying these key drivers of distributive equity concerns is critical in ensuring that the water governance processes are designed in a way that stakeholders and actors reliant on water resources within the catchment have equitable and fair access without the effects of externalised costs from other actors. The identified water governance challenges in the catchment all borders on ethics, thus an ethical framework is crucial in tackling water related problems. The principles of ethics can be used as guidelines to decision-making process for the management and governance of water resources in South Africa. Therefore, implementing and incorporating principles of the systemic-relational ethics into policy making and water resources management will yield sustainable, efficient, and equitable use and management of water resources. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Assessment of Pitman Model Capabilities in Modelling Surface Water-Groundwater Interactions in the Lake Sibaya Catchment, South Africa
- Authors: Ramatsabana, Phatsimo Pearl
- Date: 2023-10-13
- Subjects: Hydrologic models South Africa Sibayi, Lake , Groundwater Management , Surface water management , Groundwater flow , Watershed management South Africa
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424188 , vital:72131
- Description: Difficulties arising from data scarcity, input data error or uncertainty, heterogeneous environments, lack of process understanding, and model structural uncertainty frequently constrain hydrological assessments of South African catchments. This research aimed to assess the usefulness of a “simpler” conceptual model for the conjunctive management of surface water and groundwater. The idea is that, to leverage the limited available data and information, a compromise between model complexity and data availability is required, which improves the use of models to produce reliable hydrological systems assessments. The research methodology focused on catchment-scale lake-groundwater dynamics to explore the limits of the groundwater components of the modified Pitman model (Hughes, 2004) in this type of environment, thus, determining the potential for using this model for integrated water assessments in South Africa. The Pitman model (Pitman, 1973; Hughes, 2013) is one of the most widely accepted models regarding surface water hydrology in South Africa; however, the newly incorporated groundwater components (Hughes, 2004) have not been applied as extensively as the surface water components. There remains uncertainty regarding their capability to adequately simulate groundwater processes and accurately represent surface and groundwater interactions in some environments. The model was assessed based on how well simulated water balance variables accurately reflected available evidence and expected catchment response (objective 1). Secondly, the research identified and addressed uncertainties as regards the structure and application of the model’s groundwater interaction components (objective 2). The model was set up for the Lake Sibaya catchment, which is a predominantly groundwater-driven system and, thus, provides an important opportunity to interrogate different aspects of uncertainty in both the conceptualizing and quantifying interaction processes. The study’s overall conclusion is that the model performed satisfactorily as it was able to simulate the lake’s water balance correctly enough such that the influences of dominating components were sensibly reflected in variations in streamflow and lake volumes. The following key findings were noted; (i) the lake volume shows a continuous decline, (ii) the lake volume decreased with increasing development (forestry and abstractions) in the lake catchment, (iii) there is significant rainfall uncertainty in the study area and the model showed high sensitivity to rainfall differences, (iv) robust conceptual knowledge of local catchment conditions was valuable for reducing some of the data related uncertainty in the study area and for producing realistic model simulations, (v) the Pitman model (Hughes, 2013) updated GW components can provide a valuable tool for modelling integrated hydrological processes; nevertheless, when applying the model to specific environments, implicit approaches may be necessary to account for processes that are not fully represented in the model. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Ramatsabana, Phatsimo Pearl
- Date: 2023-10-13
- Subjects: Hydrologic models South Africa Sibayi, Lake , Groundwater Management , Surface water management , Groundwater flow , Watershed management South Africa
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424188 , vital:72131
- Description: Difficulties arising from data scarcity, input data error or uncertainty, heterogeneous environments, lack of process understanding, and model structural uncertainty frequently constrain hydrological assessments of South African catchments. This research aimed to assess the usefulness of a “simpler” conceptual model for the conjunctive management of surface water and groundwater. The idea is that, to leverage the limited available data and information, a compromise between model complexity and data availability is required, which improves the use of models to produce reliable hydrological systems assessments. The research methodology focused on catchment-scale lake-groundwater dynamics to explore the limits of the groundwater components of the modified Pitman model (Hughes, 2004) in this type of environment, thus, determining the potential for using this model for integrated water assessments in South Africa. The Pitman model (Pitman, 1973; Hughes, 2013) is one of the most widely accepted models regarding surface water hydrology in South Africa; however, the newly incorporated groundwater components (Hughes, 2004) have not been applied as extensively as the surface water components. There remains uncertainty regarding their capability to adequately simulate groundwater processes and accurately represent surface and groundwater interactions in some environments. The model was assessed based on how well simulated water balance variables accurately reflected available evidence and expected catchment response (objective 1). Secondly, the research identified and addressed uncertainties as regards the structure and application of the model’s groundwater interaction components (objective 2). The model was set up for the Lake Sibaya catchment, which is a predominantly groundwater-driven system and, thus, provides an important opportunity to interrogate different aspects of uncertainty in both the conceptualizing and quantifying interaction processes. The study’s overall conclusion is that the model performed satisfactorily as it was able to simulate the lake’s water balance correctly enough such that the influences of dominating components were sensibly reflected in variations in streamflow and lake volumes. The following key findings were noted; (i) the lake volume shows a continuous decline, (ii) the lake volume decreased with increasing development (forestry and abstractions) in the lake catchment, (iii) there is significant rainfall uncertainty in the study area and the model showed high sensitivity to rainfall differences, (iv) robust conceptual knowledge of local catchment conditions was valuable for reducing some of the data related uncertainty in the study area and for producing realistic model simulations, (v) the Pitman model (Hughes, 2013) updated GW components can provide a valuable tool for modelling integrated hydrological processes; nevertheless, when applying the model to specific environments, implicit approaches may be necessary to account for processes that are not fully represented in the model. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Evaluating the potential effects of microplastics at environmentally realistic concentrations in South African freshwater systems
- Authors: Mtintsilana, Zintle
- Date: 2023-10-13
- Subjects: Microplastics , Water Pollution , Aquatic organisms Effect of water pollution on
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424160 , vital:72129
- Description: Microplastic pollution is spatially broad, microplastics can be found in various habitats including freshwater systems. Microplastic exposure to aquatic organisms has been associated with several physical impacts on aquatic organisms from multiple trophic levels such as; increased immune response, a decrease in food intake, excessive loss of weight, reduced growth rate, reduced energy and adverse effects on successive generations. However, these significant effects of microplastics exposure have been observed mostly in studies that use concentrations of microplastics that exceed environmental concentrations. Therefore, there is an overall lack of research on the effects of microplastics on freshwater organisms using environmentally realistic concentrations, especially in the Southern Hemisphere. A series of toxicity tests were used to expose a range of taxa including Tilapia sparrmanii, Caridina nilotica, and Melanoides tuberculata to different environmentally realistic concentrations of microplastics of different polymers. The study results show that the environmentally realistic concentrations had no statistically significant effects on most of the chosen test organisms and selected study endpoints, except for T. sparrmanii microplastic particle egestion and growth in polyethylene exposures which produced significant results. Although this study showed that at environmentally realistic concentrations and 21 days of exposure, minute effects on the test taxa were detected, various studies have proven that with longer exposure to microplastics, significant effects on freshwater organisms can be detected. Additionally, studies using concentrations higher than the current environmental concentrations have recorded significant effects on organisms and therefore, with increasing concentrations in the environment, more significant effects may be observed. Therefore, plastic pollution in the environment should be reduced as microplastics are in continuous production and circulation, and microplastic concentrations in freshwater environments are predicted to increase. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Mtintsilana, Zintle
- Date: 2023-10-13
- Subjects: Microplastics , Water Pollution , Aquatic organisms Effect of water pollution on
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424160 , vital:72129
- Description: Microplastic pollution is spatially broad, microplastics can be found in various habitats including freshwater systems. Microplastic exposure to aquatic organisms has been associated with several physical impacts on aquatic organisms from multiple trophic levels such as; increased immune response, a decrease in food intake, excessive loss of weight, reduced growth rate, reduced energy and adverse effects on successive generations. However, these significant effects of microplastics exposure have been observed mostly in studies that use concentrations of microplastics that exceed environmental concentrations. Therefore, there is an overall lack of research on the effects of microplastics on freshwater organisms using environmentally realistic concentrations, especially in the Southern Hemisphere. A series of toxicity tests were used to expose a range of taxa including Tilapia sparrmanii, Caridina nilotica, and Melanoides tuberculata to different environmentally realistic concentrations of microplastics of different polymers. The study results show that the environmentally realistic concentrations had no statistically significant effects on most of the chosen test organisms and selected study endpoints, except for T. sparrmanii microplastic particle egestion and growth in polyethylene exposures which produced significant results. Although this study showed that at environmentally realistic concentrations and 21 days of exposure, minute effects on the test taxa were detected, various studies have proven that with longer exposure to microplastics, significant effects on freshwater organisms can be detected. Additionally, studies using concentrations higher than the current environmental concentrations have recorded significant effects on organisms and therefore, with increasing concentrations in the environment, more significant effects may be observed. Therefore, plastic pollution in the environment should be reduced as microplastics are in continuous production and circulation, and microplastic concentrations in freshwater environments are predicted to increase. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Investigation into methods of recovering campylobacter spp. from river water samples
- Authors: Ngoni, Nandipha
- Date: 2023-10-13
- Subjects: Campylobacter jejuni , Stream chemistry , Organic water pollutants South Africa Eastern Cape , Water quality Measurement , Turbidity , Physicochemical process
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424177 , vital:72130
- Description: Campylobacter species are slender, gram-negative, rod-shaped, spiral- or curved-shaped with single or pairs of flagella. They are the leading cause of diarrheal disease globally, consumption of and contact with water contaminated by faeces is a major risk factor for transmission of these organisms to humans. Rivers used for recreation and domestic and agricultural activities represent all the risk factors for Campylobacter spp. pollution and human exposure. Campylobacter spp. However, effective methods to recover Campylobacter spp. from river water samples are lacking, indicating the need for the development of more efficient methods of detection and isolation of these organisms from environmental water samples. Campylobacter detection in a water sample is critical to ascertain potential risks to humans. The aim of this study was to determine a suitable method for the detection of Campylobacter spp. from river water samples and the objectives were to (i) to evaluate the performance of different methods used for the recovery of Campylobacter spp. from environmental water samples based on Campylobacter colony count and PCR identification results, (ii) isolate and enumerate Campylobacter cells from river water samples, and (iii) identify Campylobacter spp. in river water samples. The Bloukrans River was chosen for this study because it is suspected to be contaminated by faecal inputs from nearby informal settlements without adequate sanitation, as well as untreated/insufficiently treated effluents from nearby wastewater treatment plants. First, the physicochemical quality of the river water and the presence of faecal contamination were assessed to confirm suitability for Campylobacter spp. survival and presence. Then different approaches to sample, concentrate and recover Campylobacter spp. from river water samples were assessed. The different methods assessed were (i) direct enrichment of water samples without prior concentration, (ii) prior concentration of water samples by centrifugation followed by membrane filtration of supernatant, and after that, pooling the residue and pellet together for enrichment, (iii) sampling by the Moore Swab technique. For all three methods, enrichment in Bolton broth supplemented with Bolton antibiotics was conducted. This was followed by plating on modified cefoperazone charcoal deoxycholate agar (mCCDA) and incubation under a microaerophilic atmosphere at 42°C for 48 h. Colony morphology, Gram staining and polymerase chain reaction (PCR) were used to identify and characterize the microorganisms. The growth of blue colonies on the mFc agar surface confirmed presence and faecal pollution of the Bloukrans River. The physicochemical properties, based on the range of pH measured at different sites of the river (between acidic 3.45 to 6.42 and alkaline 7.2 to 8.74) indicate that Campylobacter spp. can thrive in the river. Based on the results from enumeration and sequencing of colonies recovered by each method, it was discovered that the most suitable method to recover Campylobacter spp. from river water samples is by prior centrifugation (14,000 × g for 30 minutes) followed by membrane filtration of the supernatant, and subsequent pooling of the residue and pellet. The pooled residue and pellet might have increased Campylobacter spp. concentrations aiding more growth during the enrichment of Campylobacter spp. from the river water samples. Results from enumerating Campylobacter spp. cells from river water samples indicate that Campylobacter spp. are present in Bloukrans River. The sequence obtained from the PCR product indicates that the species found were Campylobacter jejuni (96% homology as evaluated by BLAST). This study provided a procedure effective for obtaining a satisfactory quantitative recovery of Campylobacter spp. from environmental waters, a critical need for quantitative microbial risk assessment studies. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Ngoni, Nandipha
- Date: 2023-10-13
- Subjects: Campylobacter jejuni , Stream chemistry , Organic water pollutants South Africa Eastern Cape , Water quality Measurement , Turbidity , Physicochemical process
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424177 , vital:72130
- Description: Campylobacter species are slender, gram-negative, rod-shaped, spiral- or curved-shaped with single or pairs of flagella. They are the leading cause of diarrheal disease globally, consumption of and contact with water contaminated by faeces is a major risk factor for transmission of these organisms to humans. Rivers used for recreation and domestic and agricultural activities represent all the risk factors for Campylobacter spp. pollution and human exposure. Campylobacter spp. However, effective methods to recover Campylobacter spp. from river water samples are lacking, indicating the need for the development of more efficient methods of detection and isolation of these organisms from environmental water samples. Campylobacter detection in a water sample is critical to ascertain potential risks to humans. The aim of this study was to determine a suitable method for the detection of Campylobacter spp. from river water samples and the objectives were to (i) to evaluate the performance of different methods used for the recovery of Campylobacter spp. from environmental water samples based on Campylobacter colony count and PCR identification results, (ii) isolate and enumerate Campylobacter cells from river water samples, and (iii) identify Campylobacter spp. in river water samples. The Bloukrans River was chosen for this study because it is suspected to be contaminated by faecal inputs from nearby informal settlements without adequate sanitation, as well as untreated/insufficiently treated effluents from nearby wastewater treatment plants. First, the physicochemical quality of the river water and the presence of faecal contamination were assessed to confirm suitability for Campylobacter spp. survival and presence. Then different approaches to sample, concentrate and recover Campylobacter spp. from river water samples were assessed. The different methods assessed were (i) direct enrichment of water samples without prior concentration, (ii) prior concentration of water samples by centrifugation followed by membrane filtration of supernatant, and after that, pooling the residue and pellet together for enrichment, (iii) sampling by the Moore Swab technique. For all three methods, enrichment in Bolton broth supplemented with Bolton antibiotics was conducted. This was followed by plating on modified cefoperazone charcoal deoxycholate agar (mCCDA) and incubation under a microaerophilic atmosphere at 42°C for 48 h. Colony morphology, Gram staining and polymerase chain reaction (PCR) were used to identify and characterize the microorganisms. The growth of blue colonies on the mFc agar surface confirmed presence and faecal pollution of the Bloukrans River. The physicochemical properties, based on the range of pH measured at different sites of the river (between acidic 3.45 to 6.42 and alkaline 7.2 to 8.74) indicate that Campylobacter spp. can thrive in the river. Based on the results from enumeration and sequencing of colonies recovered by each method, it was discovered that the most suitable method to recover Campylobacter spp. from river water samples is by prior centrifugation (14,000 × g for 30 minutes) followed by membrane filtration of the supernatant, and subsequent pooling of the residue and pellet. The pooled residue and pellet might have increased Campylobacter spp. concentrations aiding more growth during the enrichment of Campylobacter spp. from the river water samples. Results from enumerating Campylobacter spp. cells from river water samples indicate that Campylobacter spp. are present in Bloukrans River. The sequence obtained from the PCR product indicates that the species found were Campylobacter jejuni (96% homology as evaluated by BLAST). This study provided a procedure effective for obtaining a satisfactory quantitative recovery of Campylobacter spp. from environmental waters, a critical need for quantitative microbial risk assessment studies. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Leverage points for meaningful participatory governance: lessons from the Tsitsa River catchment, South Africa
- Authors: Fry, Anthony St Leger
- Date: 2023-10-13
- Subjects: Watershed management South Africa Eastern Cape Citizen participation , Political participation South Africa , Twelve leverage points , Transdisciplinarity , Socio-ecological system
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/431714 , vital:72798 , DOI 10.21504/10962/431714
- Description: South Africa underwent the renowned transition into a representative multiracial democracy in 1994. While there has been notable progress in many developmental aspects of South African society, many inherited dilemmas persist, and myriad novel ones are emerging. In land and water governance, the nascent institutions do not reflect the visions laid out in the pioneering and substantive legislation, policies, and guidelines generated in the post-1994 period. Unaddressed dilemmas include widespread failures in local water governance, persistent inequality of access to land and water, poor or non-existent service delivery in rural areas, underdeveloped institutions for integrated and inclusive water resource management, and pernicious divisions between institutions. Overcoming these challenges, which are embedded in complex social-ecological systems across South Africa, will require the collaborative effort of diverse actors from different levels and sectors of society. So how do we foster meaningful participation in ways that are not tyrannical, tokenistic, or manipulative? How do we build local institutions that make sense in the broader political system and in the lives of rural residents? How do we support institutions that meaningfully include diverse voices and enable tangible development outcomes? This thesis explores these questions as part of the Tsitsa Project, a transdisciplinary landscape management project working in the Tsitsa River Catchment (TsRC) in the rural parts of the Eastern Cape province of South Africa. Based on the valuable water resources, severe ecosystem degradation, overlapping traditional and democratic governance systems, and impoverished population, the TsRC is a worthwhile candidate for in-depth study paired with innovative efforts towards systemic development. The single place-based case study approach drew on systems thinking within an evolving transdisciplinary methodology. Qualitative data were collected through extended fieldwork and analysed through an adaptive and iterative approach. Governance mapping elucidated the multiple levels of governance, and a systemic analysis explored meaningful participation at the local level through causal diagramming and observation-based narratives. From the findings, a synthetic analysis identified high leverage points to enable participatory governance interventions to have more sustained impacts. Governance manifestations in the TsRC generally align with existing descriptions of the fractures and associated dilemmas across South Africa, with the added complexities of being a rural landscape in which democratic and traditional governance systems overlap and interact. Local participatory institutions need to endure the broader instability and dysfunction. Interventions must, therefore, be oriented towards trust building and shared understanding while using more practical interventions that provide tangible outcomes, enable in-practice capacity development, and support platforms for all actors to experience and practice meaningful participation together. This thesis aims to unearth the lessons that one small rural catchment might hold for the governance of complex, contested land and for water governance contexts more broadly. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Fry, Anthony St Leger
- Date: 2023-10-13
- Subjects: Watershed management South Africa Eastern Cape Citizen participation , Political participation South Africa , Twelve leverage points , Transdisciplinarity , Socio-ecological system
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/431714 , vital:72798 , DOI 10.21504/10962/431714
- Description: South Africa underwent the renowned transition into a representative multiracial democracy in 1994. While there has been notable progress in many developmental aspects of South African society, many inherited dilemmas persist, and myriad novel ones are emerging. In land and water governance, the nascent institutions do not reflect the visions laid out in the pioneering and substantive legislation, policies, and guidelines generated in the post-1994 period. Unaddressed dilemmas include widespread failures in local water governance, persistent inequality of access to land and water, poor or non-existent service delivery in rural areas, underdeveloped institutions for integrated and inclusive water resource management, and pernicious divisions between institutions. Overcoming these challenges, which are embedded in complex social-ecological systems across South Africa, will require the collaborative effort of diverse actors from different levels and sectors of society. So how do we foster meaningful participation in ways that are not tyrannical, tokenistic, or manipulative? How do we build local institutions that make sense in the broader political system and in the lives of rural residents? How do we support institutions that meaningfully include diverse voices and enable tangible development outcomes? This thesis explores these questions as part of the Tsitsa Project, a transdisciplinary landscape management project working in the Tsitsa River Catchment (TsRC) in the rural parts of the Eastern Cape province of South Africa. Based on the valuable water resources, severe ecosystem degradation, overlapping traditional and democratic governance systems, and impoverished population, the TsRC is a worthwhile candidate for in-depth study paired with innovative efforts towards systemic development. The single place-based case study approach drew on systems thinking within an evolving transdisciplinary methodology. Qualitative data were collected through extended fieldwork and analysed through an adaptive and iterative approach. Governance mapping elucidated the multiple levels of governance, and a systemic analysis explored meaningful participation at the local level through causal diagramming and observation-based narratives. From the findings, a synthetic analysis identified high leverage points to enable participatory governance interventions to have more sustained impacts. Governance manifestations in the TsRC generally align with existing descriptions of the fractures and associated dilemmas across South Africa, with the added complexities of being a rural landscape in which democratic and traditional governance systems overlap and interact. Local participatory institutions need to endure the broader instability and dysfunction. Interventions must, therefore, be oriented towards trust building and shared understanding while using more practical interventions that provide tangible outcomes, enable in-practice capacity development, and support platforms for all actors to experience and practice meaningful participation together. This thesis aims to unearth the lessons that one small rural catchment might hold for the governance of complex, contested land and for water governance contexts more broadly. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Macroplastics in the environment: are they suitable habitats for macroinvertebrates in riverine systems?
- Authors: Ali, Andrew Abagai
- Date: 2023-10-13
- Subjects: Macroplastics , Aquatic invertebrates South Africa Eastern Cape , Experimental ecology , Plastic scrap , Environmental degradation , Functional ecology , Biotic communities
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424153 , vital:72128
- Description: Emerging pollutants, such as plastics are threat to freshwater ecosystems, and may negatively impact riverine systems. They can modify riverine habitats and affect aquatic organism distribution and composition. Knowledge of how macroplastics alter riverine habitat heterogeneity, and their effects on macroinvertebrate assemblage structure is sparse, especially in Africa. This study examines the effect of hydraulic biotopes on the colonisation, establishment and succession patterns of macroinvertebrates on macroplastic and natural substrates based on the taxonomic and trait-based approach. Four experimental sites from minimally impacted upper reaches of the Buffalo, Kat, Kowie, and Swartkops Rivers in the Eastern Cape of South Africa were selected for the deployment of plastic substrates. Plastics materials, including polyethylene terephthalate (PET) bottles and natural substrate composed of stone and vegetation, were used to formulate three substrate groups: Group 1: 100% natural substrates (NS), Group 2: 50% natural substrates and 50% plastic material (NP), and Group 3: 100% plastic materials (PD). These substrates were placed in litter bags of equal dimension (25 cm by 35 cm, with 2.5 cm mesh) and deployed randomly in three hydraulic biotopes (pools, riffles, runs) over a period of 180 days (October 2021 to April 2022). A total of 216 substrate bags, 54 bags per substrate were deployed per site in the four experimental sites. Twelve bags from each substrate group were retrieved at an interval of 30 days beginning on day 30 after deployment, and analysed for the establishment of macroinvertebrate communities. Based on composite hydraulic biotope data, Simpson index was significantly higher (P < 0.05) for macroinvertebrate assemblage structure on the 50% and 100% macroplastic substrate groups compared to natural substrates. With the exception of Tabanidae, Glossosomatidae, and Psephenidae, all macroinvertebrate taxa recorded showed non-significant positive correlations with all three substrate groups. However, Tabanidae, Glossosomatidae, and Psephenidae showed significant positive correlation with the 100% natural substrates, 50% plastic substrates and 100% plastic substrates, respectively. The parsimony analysis reveal that, within 30 days, all substrate groups underwent similar succession, with high abundance of pioneer taxa which increased on days 60 and 90, and then decreased from days 120 to 180. For the the pool biotope, Shannon and Simpson indices were significantly higher (P < 0.05) for the macroinvertabrates collected over the natural substates compared with those collected on the macroplastic substrate groups. However, in the riffle and run biotopes, all diversity indices were similar for all substrate groups and no statistically significant difference was observed. Statistically significant higher values for taxonomic richness, diversity, and evenness were found on day 30 to 90 for the riffle biotopes, and day 30 to 60 for the run biotopes. The run biotope presented temporal statistical significant variability in taxonomic composition with different macroinvertebrate communities recorded on days 30 and 60 compared with days 90 to 180. However, in pools and riffles, no temporal variation was observed in the taxonomic composition of macroinvertebrates on all three substrate groups. The trait-based fuzzy correspondence analysis revealed differential spatial-temporal distribution of macroinvertebrate traits on all three substrate group. The early colonisers i.e. day 30 – 60, were dominated by group of taxa characterised by medium (>10 – 20 mm) and large (20 > 40) body size, flat body, collector-gatherers, free-living, and predators. The late colonisers, collected mainly on day 150 and 180 were dominated by taxa with a preference for high flow velocity (0.3 - 0.6 m/s), permanent attachment, and filter-feeding mode. Traits such as oval and flat body shape, medium body size (>10 - 20 mm), skating and clinging/climbing mobility, temporal attachment, shredders, predators, prey, and plastron and spiracle respiration showed positive correlation with the 100% macroplastic substrates. Filter feeding, crawling, permanent attachment, a preference for fast velocity (0.3-0.6 m/s), and coarse particle organic matter were positively correlated with the 50% macroplastic substrates. Overall, the results provided critical insights on the impact of macroplastics on the assemblage structure of biological communities by acting as suitable habitats in stream ecosystems. The study elucidated the role of traits of aquatic organisms in mediating the colonisation of plastics substrates, providing insights into the impact of plastics proliferation on riverine ecosystem functioning. Furthermore, the finding provides a baseline insight into the influence of hydraulic biotopes on the colonisation and establishment of macroinvertebrates on macroplastic acting as artificial riverine habitat. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Ali, Andrew Abagai
- Date: 2023-10-13
- Subjects: Macroplastics , Aquatic invertebrates South Africa Eastern Cape , Experimental ecology , Plastic scrap , Environmental degradation , Functional ecology , Biotic communities
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424153 , vital:72128
- Description: Emerging pollutants, such as plastics are threat to freshwater ecosystems, and may negatively impact riverine systems. They can modify riverine habitats and affect aquatic organism distribution and composition. Knowledge of how macroplastics alter riverine habitat heterogeneity, and their effects on macroinvertebrate assemblage structure is sparse, especially in Africa. This study examines the effect of hydraulic biotopes on the colonisation, establishment and succession patterns of macroinvertebrates on macroplastic and natural substrates based on the taxonomic and trait-based approach. Four experimental sites from minimally impacted upper reaches of the Buffalo, Kat, Kowie, and Swartkops Rivers in the Eastern Cape of South Africa were selected for the deployment of plastic substrates. Plastics materials, including polyethylene terephthalate (PET) bottles and natural substrate composed of stone and vegetation, were used to formulate three substrate groups: Group 1: 100% natural substrates (NS), Group 2: 50% natural substrates and 50% plastic material (NP), and Group 3: 100% plastic materials (PD). These substrates were placed in litter bags of equal dimension (25 cm by 35 cm, with 2.5 cm mesh) and deployed randomly in three hydraulic biotopes (pools, riffles, runs) over a period of 180 days (October 2021 to April 2022). A total of 216 substrate bags, 54 bags per substrate were deployed per site in the four experimental sites. Twelve bags from each substrate group were retrieved at an interval of 30 days beginning on day 30 after deployment, and analysed for the establishment of macroinvertebrate communities. Based on composite hydraulic biotope data, Simpson index was significantly higher (P < 0.05) for macroinvertebrate assemblage structure on the 50% and 100% macroplastic substrate groups compared to natural substrates. With the exception of Tabanidae, Glossosomatidae, and Psephenidae, all macroinvertebrate taxa recorded showed non-significant positive correlations with all three substrate groups. However, Tabanidae, Glossosomatidae, and Psephenidae showed significant positive correlation with the 100% natural substrates, 50% plastic substrates and 100% plastic substrates, respectively. The parsimony analysis reveal that, within 30 days, all substrate groups underwent similar succession, with high abundance of pioneer taxa which increased on days 60 and 90, and then decreased from days 120 to 180. For the the pool biotope, Shannon and Simpson indices were significantly higher (P < 0.05) for the macroinvertabrates collected over the natural substates compared with those collected on the macroplastic substrate groups. However, in the riffle and run biotopes, all diversity indices were similar for all substrate groups and no statistically significant difference was observed. Statistically significant higher values for taxonomic richness, diversity, and evenness were found on day 30 to 90 for the riffle biotopes, and day 30 to 60 for the run biotopes. The run biotope presented temporal statistical significant variability in taxonomic composition with different macroinvertebrate communities recorded on days 30 and 60 compared with days 90 to 180. However, in pools and riffles, no temporal variation was observed in the taxonomic composition of macroinvertebrates on all three substrate groups. The trait-based fuzzy correspondence analysis revealed differential spatial-temporal distribution of macroinvertebrate traits on all three substrate group. The early colonisers i.e. day 30 – 60, were dominated by group of taxa characterised by medium (>10 – 20 mm) and large (20 > 40) body size, flat body, collector-gatherers, free-living, and predators. The late colonisers, collected mainly on day 150 and 180 were dominated by taxa with a preference for high flow velocity (0.3 - 0.6 m/s), permanent attachment, and filter-feeding mode. Traits such as oval and flat body shape, medium body size (>10 - 20 mm), skating and clinging/climbing mobility, temporal attachment, shredders, predators, prey, and plastron and spiracle respiration showed positive correlation with the 100% macroplastic substrates. Filter feeding, crawling, permanent attachment, a preference for fast velocity (0.3-0.6 m/s), and coarse particle organic matter were positively correlated with the 50% macroplastic substrates. Overall, the results provided critical insights on the impact of macroplastics on the assemblage structure of biological communities by acting as suitable habitats in stream ecosystems. The study elucidated the role of traits of aquatic organisms in mediating the colonisation of plastics substrates, providing insights into the impact of plastics proliferation on riverine ecosystem functioning. Furthermore, the finding provides a baseline insight into the influence of hydraulic biotopes on the colonisation and establishment of macroinvertebrates on macroplastic acting as artificial riverine habitat. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2023
- Full Text:
- Date Issued: 2023-10-13
Developing taxonomic and trait-based approaches for assessing and predicting macroinvertebrate responses to elevated fine sediments in the Tsitsa River and its tributaries, South Africa
- Authors: Ntloko, Pindiwe
- Date: 2022-04-08
- Subjects: Water quality South Africa Mzimvubu River Watershed , Sedimentation and deposition South Africa Mzimvubu River Watershed , Aquatic invertebrates Effect of sediments on South Africa Mzimvubu River Watershed , Aquatic invertebrates Classification , Environmental monitoring South Africa Mzimvubu River Watershed , Analysis of variance , Multivariate analysis
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/294692 , vital:57245 , DOI 10.21504/10962/294692
- Description: Sedimentation of freshwater systems is one of the leading causes of water quality deterioration. The Mzimvubu River catchment, which includes the Tsitsa River and its tributaries, in the Eastern Cape is prone to elevated sediment impact due to dispersive soils that are easily erodible. In this study, taxonomy and trait-based approaches were used to assess the responses of macroinvertebrates to fine sediments in the Tsitsa River and its tributaries. Macroinvertebrates and environmental variables were sampled seasonally in winter, spring, summer and autumn of 2016 to 2018 in six selected sites, using the South African Scoring System version 5 as a collecting protocol. The sites were selected to represent a decreasing gradient of sediment influence from the highly impacted Sites 1 (Tsitsa upstream) 2 (Tsitsa downstream), and 3 (Qurana River) to moderately impacted Sites 4 (Millstream upstream) and 5 (Millstream downstream) and the least impacted Sites 6 (Pot River upstream), 7 (Little Pot River) and 8 (Pot River downstream), which were collectively referred to as the control sites. Analysis of basic physico-chemical variables, dissolved oxygen, pH, electrical conductivity, turbidity, total suspended solids, temperature and nutrients were undertaken seasonally over the study period. Sediments grain sizes were also analysed. All collected data were subjected to appropriate statistical tests – univariate and multivariate techniques. A fine-sediment-specific multimetric index was developed to monitor the impact of fine sediments on macroinvertebrate assemblages of the Tsitsa River and its tributaries. A total of 12 traits, resolved into 48 trait attributes, were selected to explore their distribution in relation to a fine-sediment stress gradient, and identify the trait-based signature of fine-sediment impact. A trait-based approach was then developed to classify South African macroinvertebrates into two groups: taxa that are potentially vulnerable to fine-sediment impact and those potentially resilient, based on the combination of traits possessed. Two-way analysis of variance (ANOVA) indicated that electrical conductivity, turbidity, embeddedness and total suspended solids were statistically significantly different between the sites. Apart from Dissolved oxygen, the remaining variables were statistically significantly lower at the control sites (P < 0.05). The two-way multivariate analysis of variance (MANOVA) indicated global significant differences between sites and seasons. The two-way MANOVA also revealed that the interaction between the sites and seasons were statistically significant. The MANOVA indicated global combined interactive effects across the sites for suspended fine-sediment grain sizes, two-way ANOVA, followed by a Tukey’s post-hoc test, was carried out to indicate where the significant differences lay. The one-way ANOVA results indicated that very fine sand, very coarse silt, medium silt, and fine silt were significantly higher at Tsitsa upstream, Tsitsa downstream, Qurana tributary that is at Millstream upstream, Millstream downstream and Control sites. The rest of the grain sizes did not differ statistically between the sites. In terms of the settled sediment grain sizes, the volumetric analysis did not show considerable differences across the sites. Settled fine-sediment grain sizes were evenly distributed across the sites. Statistically, MANOVA results indicated no significant differences across sites or across seasons. The developed Sediment Multimetric Index indicated that the sites in the Tsitsa River and those in the Qurana River were highly sedimented during the wet season, but became moderately sedimented during the dry season, indicating that the index responded to seasonality. The sediment multimetric index indicated that the control sites were less sedimented during both the wet season and dry seasons, suggesting minimal seasonal effects at the control sites. Traits such as an exposed and soft body, collector-filterers, shredding, feeding on coarse particulate organic matter and a high sensitivity to dissolved oxygen were identified as fine- sediment-sensitive indicator traits. Identified fine-sediment-tolerant traits and ecological preferences included complete sclerotisation, a cased/tubed body, a preference for fine particulate organic matter, a high tolerance to dissolved oxygen depletion, and climbing and skating behaviours. Regarding the trait-based approach followed for classifying macroinvertebrates into vulnerable taxa and resilient taxa, the results revealed that the relative abundance and richness of the vulnerable taxa decreased predictably along the increasing gradient of sediment impact. However, the relative abundance and richness of resilient taxa showed no marked response to the impact of an increasing gradient of fine sediments. Overall, the present study makes a contribution to the complementary application of trait-and taxonomy-based approaches to freshwater biomonitoring. The trait-based approach enables predictions to be made and tested based on the mechanistic understanding of the mediating roles of traits in organism- environment interaction. A fundamental challenge, which showcases the limitation of the current study, is the sparse trait data on Afrotropical macroinvertebrates at the species or generic levels. In this regard, the iv trait-based approaches developed here were the family level instead of species or genus. This is the first study in South Africa to develop explicit trait-based indicators of elevated fine sediments as well as an approach for predicting macroinvertebrate vulnerability and resilience to fine-sediment effects, thus advancing the science and practice of freshwater biomonitoring. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04-08
- Authors: Ntloko, Pindiwe
- Date: 2022-04-08
- Subjects: Water quality South Africa Mzimvubu River Watershed , Sedimentation and deposition South Africa Mzimvubu River Watershed , Aquatic invertebrates Effect of sediments on South Africa Mzimvubu River Watershed , Aquatic invertebrates Classification , Environmental monitoring South Africa Mzimvubu River Watershed , Analysis of variance , Multivariate analysis
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/294692 , vital:57245 , DOI 10.21504/10962/294692
- Description: Sedimentation of freshwater systems is one of the leading causes of water quality deterioration. The Mzimvubu River catchment, which includes the Tsitsa River and its tributaries, in the Eastern Cape is prone to elevated sediment impact due to dispersive soils that are easily erodible. In this study, taxonomy and trait-based approaches were used to assess the responses of macroinvertebrates to fine sediments in the Tsitsa River and its tributaries. Macroinvertebrates and environmental variables were sampled seasonally in winter, spring, summer and autumn of 2016 to 2018 in six selected sites, using the South African Scoring System version 5 as a collecting protocol. The sites were selected to represent a decreasing gradient of sediment influence from the highly impacted Sites 1 (Tsitsa upstream) 2 (Tsitsa downstream), and 3 (Qurana River) to moderately impacted Sites 4 (Millstream upstream) and 5 (Millstream downstream) and the least impacted Sites 6 (Pot River upstream), 7 (Little Pot River) and 8 (Pot River downstream), which were collectively referred to as the control sites. Analysis of basic physico-chemical variables, dissolved oxygen, pH, electrical conductivity, turbidity, total suspended solids, temperature and nutrients were undertaken seasonally over the study period. Sediments grain sizes were also analysed. All collected data were subjected to appropriate statistical tests – univariate and multivariate techniques. A fine-sediment-specific multimetric index was developed to monitor the impact of fine sediments on macroinvertebrate assemblages of the Tsitsa River and its tributaries. A total of 12 traits, resolved into 48 trait attributes, were selected to explore their distribution in relation to a fine-sediment stress gradient, and identify the trait-based signature of fine-sediment impact. A trait-based approach was then developed to classify South African macroinvertebrates into two groups: taxa that are potentially vulnerable to fine-sediment impact and those potentially resilient, based on the combination of traits possessed. Two-way analysis of variance (ANOVA) indicated that electrical conductivity, turbidity, embeddedness and total suspended solids were statistically significantly different between the sites. Apart from Dissolved oxygen, the remaining variables were statistically significantly lower at the control sites (P < 0.05). The two-way multivariate analysis of variance (MANOVA) indicated global significant differences between sites and seasons. The two-way MANOVA also revealed that the interaction between the sites and seasons were statistically significant. The MANOVA indicated global combined interactive effects across the sites for suspended fine-sediment grain sizes, two-way ANOVA, followed by a Tukey’s post-hoc test, was carried out to indicate where the significant differences lay. The one-way ANOVA results indicated that very fine sand, very coarse silt, medium silt, and fine silt were significantly higher at Tsitsa upstream, Tsitsa downstream, Qurana tributary that is at Millstream upstream, Millstream downstream and Control sites. The rest of the grain sizes did not differ statistically between the sites. In terms of the settled sediment grain sizes, the volumetric analysis did not show considerable differences across the sites. Settled fine-sediment grain sizes were evenly distributed across the sites. Statistically, MANOVA results indicated no significant differences across sites or across seasons. The developed Sediment Multimetric Index indicated that the sites in the Tsitsa River and those in the Qurana River were highly sedimented during the wet season, but became moderately sedimented during the dry season, indicating that the index responded to seasonality. The sediment multimetric index indicated that the control sites were less sedimented during both the wet season and dry seasons, suggesting minimal seasonal effects at the control sites. Traits such as an exposed and soft body, collector-filterers, shredding, feeding on coarse particulate organic matter and a high sensitivity to dissolved oxygen were identified as fine- sediment-sensitive indicator traits. Identified fine-sediment-tolerant traits and ecological preferences included complete sclerotisation, a cased/tubed body, a preference for fine particulate organic matter, a high tolerance to dissolved oxygen depletion, and climbing and skating behaviours. Regarding the trait-based approach followed for classifying macroinvertebrates into vulnerable taxa and resilient taxa, the results revealed that the relative abundance and richness of the vulnerable taxa decreased predictably along the increasing gradient of sediment impact. However, the relative abundance and richness of resilient taxa showed no marked response to the impact of an increasing gradient of fine sediments. Overall, the present study makes a contribution to the complementary application of trait-and taxonomy-based approaches to freshwater biomonitoring. The trait-based approach enables predictions to be made and tested based on the mechanistic understanding of the mediating roles of traits in organism- environment interaction. A fundamental challenge, which showcases the limitation of the current study, is the sparse trait data on Afrotropical macroinvertebrates at the species or generic levels. In this regard, the iv trait-based approaches developed here were the family level instead of species or genus. This is the first study in South Africa to develop explicit trait-based indicators of elevated fine sediments as well as an approach for predicting macroinvertebrate vulnerability and resilience to fine-sediment effects, thus advancing the science and practice of freshwater biomonitoring. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04-08
The assessment of degradation state in Ecological Infrastructure and prioritisation for rehabilitation and drought mitigation in the Tsitsa River Catchment
- Authors: Mahlaba, Bawinile
- Date: 2022-04-06
- Subjects: Environmental degradation South Africa Eastern Cape , Restoration ecology South Africa Eastern Cape , Climate change mitigation South Africa Eastern Cape , Droughts South Africa Eastern Cape , South African National Biodiversity Institute , Sustainable development South Africa Eastern Cape , Watersheds , Ecological Infrastructure (EI) , Tsitsa River Catchment
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/202138 , vital:46470
- Description: Ecosystem degradation is a serious concern globally, including in South Africa, because of the potential adverse impacts on food security, livelihoods, climate change, biodiversity, and ecosystem services. Ecosystem degradation can result in flow alteration in the landscape through changes in the hydrological regime. The study adopts the South African National Biodiversity Institute (SANBI) Framework of Investing in Ecological Infrastructure (EI) to prioritise the restoration of degraded ecosystems and maintain ecosystem structures and functions. This study aims to assess how EI (specifically wetlands, grassland, abandoned cultivated fields, and riparian zone) can facilitate drought mitigation: to assess land degradation status and identify priority EI areas that can be restored to improve the drought mitigation capacity. Two assessment methods were used in this study. Firstly, the Trends.Earth tool was used to assess degradation and land cover change from the year 2000-2015 in Tsitsa catchment, through assessment of Sustainable Development Goal degradation indicator (SDG15.3.1) at a resolution of 300 m. The degradation indicator uses information from three sub-indicators: Productivity, Landcover and Soil Organic Carbon to compute degraded areas. The degraded areas need to be restored and rehabilitated to maintain the flow of essential ecosystems services provided by EI. The second assessment used the Analytical Hierarchy Process (AHP), which integrates stakeholder inputs into a multi-criteria decision analysis (MCDA). The AHP is a useful decision support system that considers a range of quantitative and qualitative alternatives in making a final decision to solve complex problems. As part of the AHP analysis, participatory mapping using Participatory Geographic Information System was conducted to obtain stakeholder inputs for prioritising restoration of the key EI categories (wetlands, grassland, abandoned cultivated fields, and riparian zone) in the catchment. During the participatory mapping, communities prioritised the key EI based on three criteria: (1) ecosystem health, (2) water provisioning and (3) social benefits. The AHP method was used in ArcGIS to prioritise suitable key EI restoration areas with high potential to increase water recharge and storage, contribute to drought mitigation and ecosystem services for the catchment. The prioritisation of EI for community livelihoods in the AHP analysis included all three main criteria. In comparison, the prioritisation of suitable key EI restoration areas for flow regulations was based on two criteria: ecosystem health and water provisioning. The land degradation indicator showed that approximately 54% of the catchment is stable, 41% is degraded land, and 5% of the area has improved over the assessment period (15 years). The degradation status in the EI suggests that more than half (>50%) of each EI category is stable, but there are areas showing signs of degradation, including 43% of grasslands degraded and 39% of wetlands, cultivated lands, and riparian zones also degraded. Degradation is dominant in the upper (T35B and T3C) and lower (T35K, T35L and T35M) parts of the catchments. The three criteria used by the stakeholders in the prioritisation process of the key EI were assigned 12 spatial attributes (the catchment characteristics about the study area in relation to the criteria) to indicate relevant information needed for selecting suitable restoration areas to enhance flow regulation. The AHP analysis results identified approximately 63% (17,703 ha) of wetlands, 88% (235,829 ha) of grasslands, 78% (13,608 ha) of abandoned cultivated fields and 93% (3,791 ha) of the riparian zones as suitable areas for restoration to mitigate drought impact through flow regulation. Also, the suitability results showed 63% (17,703 ha) of wetlands, 58% (2,203 ha) of riparian zones, 68% (11,745 ha) of abandoned cultivated fields and 46% (122,285 ha) of grasslands as suitable restoration areas for improving ecosystem services for community livelihoods. The AHP analysis identified more than 39-43% (of the degraded EI indicated by the Trends.Earth analysis) areas that are suitable for restoration, because key EI plays a significant role in flow regulation and people’s livelihoods, especially when they are managed, maintained, and restored to good health conditions. Therefore, the prioritized EI areas should be either maintained, managed, rehabilitated or restored. The major distinct causes of land degradation are woody encroachment in grasslands, invasion of alien plants on abandoned cultivated fields and soil erosion in the catchment. The most suitable EI areas recommended for restoration are those natural resources near local communities, which provide essential ecosystem services to sustain their livelihood. Therefore, degraded EI in the T35 catchments should be restored and maintained to improve livelihood and mitigate drought impacts. The study pointed out how the key selected ecological infrastructure can help mitigate the impacts of droughts and improve human livelihood. The study contributes towards the important concept of investing in ecological infrastructure to improve the social, environmental, and economic benefits. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Mahlaba, Bawinile
- Date: 2022-04-06
- Subjects: Environmental degradation South Africa Eastern Cape , Restoration ecology South Africa Eastern Cape , Climate change mitigation South Africa Eastern Cape , Droughts South Africa Eastern Cape , South African National Biodiversity Institute , Sustainable development South Africa Eastern Cape , Watersheds , Ecological Infrastructure (EI) , Tsitsa River Catchment
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/202138 , vital:46470
- Description: Ecosystem degradation is a serious concern globally, including in South Africa, because of the potential adverse impacts on food security, livelihoods, climate change, biodiversity, and ecosystem services. Ecosystem degradation can result in flow alteration in the landscape through changes in the hydrological regime. The study adopts the South African National Biodiversity Institute (SANBI) Framework of Investing in Ecological Infrastructure (EI) to prioritise the restoration of degraded ecosystems and maintain ecosystem structures and functions. This study aims to assess how EI (specifically wetlands, grassland, abandoned cultivated fields, and riparian zone) can facilitate drought mitigation: to assess land degradation status and identify priority EI areas that can be restored to improve the drought mitigation capacity. Two assessment methods were used in this study. Firstly, the Trends.Earth tool was used to assess degradation and land cover change from the year 2000-2015 in Tsitsa catchment, through assessment of Sustainable Development Goal degradation indicator (SDG15.3.1) at a resolution of 300 m. The degradation indicator uses information from three sub-indicators: Productivity, Landcover and Soil Organic Carbon to compute degraded areas. The degraded areas need to be restored and rehabilitated to maintain the flow of essential ecosystems services provided by EI. The second assessment used the Analytical Hierarchy Process (AHP), which integrates stakeholder inputs into a multi-criteria decision analysis (MCDA). The AHP is a useful decision support system that considers a range of quantitative and qualitative alternatives in making a final decision to solve complex problems. As part of the AHP analysis, participatory mapping using Participatory Geographic Information System was conducted to obtain stakeholder inputs for prioritising restoration of the key EI categories (wetlands, grassland, abandoned cultivated fields, and riparian zone) in the catchment. During the participatory mapping, communities prioritised the key EI based on three criteria: (1) ecosystem health, (2) water provisioning and (3) social benefits. The AHP method was used in ArcGIS to prioritise suitable key EI restoration areas with high potential to increase water recharge and storage, contribute to drought mitigation and ecosystem services for the catchment. The prioritisation of EI for community livelihoods in the AHP analysis included all three main criteria. In comparison, the prioritisation of suitable key EI restoration areas for flow regulations was based on two criteria: ecosystem health and water provisioning. The land degradation indicator showed that approximately 54% of the catchment is stable, 41% is degraded land, and 5% of the area has improved over the assessment period (15 years). The degradation status in the EI suggests that more than half (>50%) of each EI category is stable, but there are areas showing signs of degradation, including 43% of grasslands degraded and 39% of wetlands, cultivated lands, and riparian zones also degraded. Degradation is dominant in the upper (T35B and T3C) and lower (T35K, T35L and T35M) parts of the catchments. The three criteria used by the stakeholders in the prioritisation process of the key EI were assigned 12 spatial attributes (the catchment characteristics about the study area in relation to the criteria) to indicate relevant information needed for selecting suitable restoration areas to enhance flow regulation. The AHP analysis results identified approximately 63% (17,703 ha) of wetlands, 88% (235,829 ha) of grasslands, 78% (13,608 ha) of abandoned cultivated fields and 93% (3,791 ha) of the riparian zones as suitable areas for restoration to mitigate drought impact through flow regulation. Also, the suitability results showed 63% (17,703 ha) of wetlands, 58% (2,203 ha) of riparian zones, 68% (11,745 ha) of abandoned cultivated fields and 46% (122,285 ha) of grasslands as suitable restoration areas for improving ecosystem services for community livelihoods. The AHP analysis identified more than 39-43% (of the degraded EI indicated by the Trends.Earth analysis) areas that are suitable for restoration, because key EI plays a significant role in flow regulation and people’s livelihoods, especially when they are managed, maintained, and restored to good health conditions. Therefore, the prioritized EI areas should be either maintained, managed, rehabilitated or restored. The major distinct causes of land degradation are woody encroachment in grasslands, invasion of alien plants on abandoned cultivated fields and soil erosion in the catchment. The most suitable EI areas recommended for restoration are those natural resources near local communities, which provide essential ecosystem services to sustain their livelihood. Therefore, degraded EI in the T35 catchments should be restored and maintained to improve livelihood and mitigate drought impacts. The study pointed out how the key selected ecological infrastructure can help mitigate the impacts of droughts and improve human livelihood. The study contributes towards the important concept of investing in ecological infrastructure to improve the social, environmental, and economic benefits. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04-06
The application of a simple decision support system to address water quality contestations in the Vaal Barrage catchment, South Africa
- Authors: Chili, Asanda Sandra
- Date: 2022-04
- Subjects: Vaal Barrage (South Africa : Reservoir) , Decision support systems South Africa Vaal Barrage (Reservoir) , Water Pollution Law and legislation South Africa , Water quality South Africa Vaal Barrage (Reservoir) , Water use Law and legislation South Africa Vaal Barrage (Reservoir) , Urban watersheds South Africa Vaal Barrage (Reservoir) , Watershed management South Africa Vaal Barrage (Reservoir) , Water use licences (WUL)
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/232204 , vital:49971
- Description: Deteriorating environmental water quality is one of the complex challenges in South Africa that threaten freshwater ecosystem health and functionality. An emerging concern is the contestation of water quality regulatory instruments such as standards in water use licences (WUL), and the resource quality objectives. In the Vaal Barrage catchment where this study was undertaken these contestations were evident, suggesting the need for both technical and social solutions to water quality changes in socio-ecological systems. The Vaal Barrage catchment within the lower section of the Upper Vaal is a highly developed, urbanised, and complex catchment supporting and contributing to the social-economic development of Gauteng Province and the entire country, as the Upper Vaal contribute 20% to the Gross Domestic Product of South Africa. This study explores the motivations for stakeholders’ contestations of water quality regulatory instruments in order to contribute to ways in which water resource users and regulators can collaboratively address water quality challenges in the Vaal Barrage catchment. The study also explores water quality scenarios and their ecological and management implications. Document analysis, participant observations and a semi-structured questionnaire were deployed to explore stakeholders’ motivations, values, and perceptions of the water quality regulatory instruments. The results were triangulated to gain better insights into research participants responses. To explore water quality management scenarios, the study applied a water quality systems assessment model Decision Support System (DSS). The DSS was recently developed as part of a bigger project within the Vaal Barrage catchment. Regarding stakeholders’ motivation for contesting water quality regulatory instruments in the catchment, the results revealed a perceived lack of scientific credibility and defensibility in the processes used for deriving standards in WUL, a lack of transparent linkage between the WUL and resource quality objectives, and the increased need for stakeholder engagement in the resource quality objective formulation process. Furthermore, the study revealed punitive measures, education and awareness, self-regulation as mechanisms to encourage compliance. The applied DSS results showed that high nutrient loads, sulphate and total dissolved solids sourced from upstream catchments contribute to water quality deterioration in the Vaal Barrage catchment. The results also showed that the Vaal Barrage catchment could not host additional licence emitters because of TDS, phosphate and nitrate levels, which pose a serious risk to the ecology of the Vaal Barrage catchment, indicating that system had exceeded its assimilative capacity for critical water quality variables. Lastly, the results evidenced the need for collaborative action by the waste emitters within the Vaal Barrage catchment, particularly collaboration between upstream and downstream waste emitters. The study has far-reaching implications for water quality management in South Africa. These include i) the need for transparent and open processes and methods for deriving standards in water use licence, ii) the need for a water quality DSS that recognises catchment hydrological complexity in deriving standards in WUL, and for linking WUL and Resource Quality Objectives (RQOs), iii) collaboration between resources users, and between the resources users and the regulators to bring pollution to acceptable levels and iv) both social and technical solutions are necessary for managing water quality challenge, particularly in a highly developed catchment such as the Vaal Barrage system. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04
- Authors: Chili, Asanda Sandra
- Date: 2022-04
- Subjects: Vaal Barrage (South Africa : Reservoir) , Decision support systems South Africa Vaal Barrage (Reservoir) , Water Pollution Law and legislation South Africa , Water quality South Africa Vaal Barrage (Reservoir) , Water use Law and legislation South Africa Vaal Barrage (Reservoir) , Urban watersheds South Africa Vaal Barrage (Reservoir) , Watershed management South Africa Vaal Barrage (Reservoir) , Water use licences (WUL)
- Language: English
- Type: Master's thesis , text
- Identifier: http://hdl.handle.net/10962/232204 , vital:49971
- Description: Deteriorating environmental water quality is one of the complex challenges in South Africa that threaten freshwater ecosystem health and functionality. An emerging concern is the contestation of water quality regulatory instruments such as standards in water use licences (WUL), and the resource quality objectives. In the Vaal Barrage catchment where this study was undertaken these contestations were evident, suggesting the need for both technical and social solutions to water quality changes in socio-ecological systems. The Vaal Barrage catchment within the lower section of the Upper Vaal is a highly developed, urbanised, and complex catchment supporting and contributing to the social-economic development of Gauteng Province and the entire country, as the Upper Vaal contribute 20% to the Gross Domestic Product of South Africa. This study explores the motivations for stakeholders’ contestations of water quality regulatory instruments in order to contribute to ways in which water resource users and regulators can collaboratively address water quality challenges in the Vaal Barrage catchment. The study also explores water quality scenarios and their ecological and management implications. Document analysis, participant observations and a semi-structured questionnaire were deployed to explore stakeholders’ motivations, values, and perceptions of the water quality regulatory instruments. The results were triangulated to gain better insights into research participants responses. To explore water quality management scenarios, the study applied a water quality systems assessment model Decision Support System (DSS). The DSS was recently developed as part of a bigger project within the Vaal Barrage catchment. Regarding stakeholders’ motivation for contesting water quality regulatory instruments in the catchment, the results revealed a perceived lack of scientific credibility and defensibility in the processes used for deriving standards in WUL, a lack of transparent linkage between the WUL and resource quality objectives, and the increased need for stakeholder engagement in the resource quality objective formulation process. Furthermore, the study revealed punitive measures, education and awareness, self-regulation as mechanisms to encourage compliance. The applied DSS results showed that high nutrient loads, sulphate and total dissolved solids sourced from upstream catchments contribute to water quality deterioration in the Vaal Barrage catchment. The results also showed that the Vaal Barrage catchment could not host additional licence emitters because of TDS, phosphate and nitrate levels, which pose a serious risk to the ecology of the Vaal Barrage catchment, indicating that system had exceeded its assimilative capacity for critical water quality variables. Lastly, the results evidenced the need for collaborative action by the waste emitters within the Vaal Barrage catchment, particularly collaboration between upstream and downstream waste emitters. The study has far-reaching implications for water quality management in South Africa. These include i) the need for transparent and open processes and methods for deriving standards in water use licence, ii) the need for a water quality DSS that recognises catchment hydrological complexity in deriving standards in WUL, and for linking WUL and Resource Quality Objectives (RQOs), iii) collaboration between resources users, and between the resources users and the regulators to bring pollution to acceptable levels and iv) both social and technical solutions are necessary for managing water quality challenge, particularly in a highly developed catchment such as the Vaal Barrage system. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04
Establishing a water resources assessment system for Eswatini (Swaziland) incorporating data and modelling uncertainty
- Authors: Ndzabandzaba, Coli
- Date: 2021-10-29
- Subjects: Water resources development Eswatini , Water-supply Eswatini Management , Hydrologic models Eswatini , Runoff Mathematical models , Rain and rainfall Mathematical models , Pitman model
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/189009 , vital:44806 , 10.21504/10962/189009
- Description: The uneven distribution of water resources availability globally puts pressure on environmental and human or socio-economic systems and has complex implications for the interactions within these systems. The natural environment and water resources are increasingly threatened by development, and water management crises are still occurring. This is exacerbated by the lack of accurate and adequate information on these systems. In Eswatini, for example, the pressure on the available water resources is mounting due to increasing water demand for irrigation while information about natural hydrological conditions and levels of water resources developments are uncertain. In addition, the practical application of hydrological models for water resources assessments that incorporate uncertainty in Eswatini has yet to be realised. The aim of the study, therefore, was to develop a water resource assessment system that is based on both observed and simulated information and that includes uncertainty. This study focusses on a regional water resource assessment using an uncertainty version of the Pitman monthly rainfall-runoff model whose outputs are constrained by six indices of natural hydrological response (i.e., mean monthly runoff, mean monthly groundwater recharge, Q10, Q50 and Q90 percentage points of the flow duration curve and % time of zero flows) for each of the 122 sub-basins of the transboundary catchments of Eswatini. A 2-step uncertainty modelling approach was tested, validated and then applied to all the sub-basins of Eswatini. The first step of the model run establishes behavioural, but uncertain model parameter ranges for natural incremental sub-basin hydrological responses and the model is typically run 100 000 times for each sub-basin. The parameter space that defines the uncertainty in parameter estimation is sampled based on simple Monte Carlo approach. The second step links all the sub-basin outputs and allows for water use parameters to be incorporated, where necessary, in order to generate cumulative sub-basin outflows. The results from the constraint index analysis have proved to be useful in constraining the model outputs. Generally, the behavioural model outputs produced realistic uncertainty estimates as well as acceptable simulations based on the assessment of the flow duration curves. The modelling results indicated that there is some degree of uncertainty that cannot be easily accounted for due to some identified data issues. The results also showed that there is still a possibility to improve the simulations provided such issues are resolved. The issues about the simulation of stream flow that were detected are mainly related to availability of data to estimate water use parameters. Another challenge in setting up the model was associated with establishing constraints that match the parameters for natural hydrological conditions for specific sub-basins and maintaining consistency in the adjustment of the model output constraints for other sub-basins. In an attempt to overcome this problem, the study recommends additional hydrological response constraints to be used with the Pitman model. Another main recommendation relates to the strong cooperation of relevant catchment management authorities and stakeholders including scientists in order to make information more available to users. The new hydrological insight is derived from the analysis of hydrological indices which highlighted the regional variations in hydrological processes and sub-basin response across the transboundary basins of Eswatini. The adopted modelling approach provides further insight into all the uncertainties associated with quantifying the available water resources of the country. The study has provided further understanding of the spatial variability of the hydrological response and existing development impacts than was previously available. It is envisaged that these new insights will provide an improved basis for future water management in Eswatini. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Ndzabandzaba, Coli
- Date: 2021-10-29
- Subjects: Water resources development Eswatini , Water-supply Eswatini Management , Hydrologic models Eswatini , Runoff Mathematical models , Rain and rainfall Mathematical models , Pitman model
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/189009 , vital:44806 , 10.21504/10962/189009
- Description: The uneven distribution of water resources availability globally puts pressure on environmental and human or socio-economic systems and has complex implications for the interactions within these systems. The natural environment and water resources are increasingly threatened by development, and water management crises are still occurring. This is exacerbated by the lack of accurate and adequate information on these systems. In Eswatini, for example, the pressure on the available water resources is mounting due to increasing water demand for irrigation while information about natural hydrological conditions and levels of water resources developments are uncertain. In addition, the practical application of hydrological models for water resources assessments that incorporate uncertainty in Eswatini has yet to be realised. The aim of the study, therefore, was to develop a water resource assessment system that is based on both observed and simulated information and that includes uncertainty. This study focusses on a regional water resource assessment using an uncertainty version of the Pitman monthly rainfall-runoff model whose outputs are constrained by six indices of natural hydrological response (i.e., mean monthly runoff, mean monthly groundwater recharge, Q10, Q50 and Q90 percentage points of the flow duration curve and % time of zero flows) for each of the 122 sub-basins of the transboundary catchments of Eswatini. A 2-step uncertainty modelling approach was tested, validated and then applied to all the sub-basins of Eswatini. The first step of the model run establishes behavioural, but uncertain model parameter ranges for natural incremental sub-basin hydrological responses and the model is typically run 100 000 times for each sub-basin. The parameter space that defines the uncertainty in parameter estimation is sampled based on simple Monte Carlo approach. The second step links all the sub-basin outputs and allows for water use parameters to be incorporated, where necessary, in order to generate cumulative sub-basin outflows. The results from the constraint index analysis have proved to be useful in constraining the model outputs. Generally, the behavioural model outputs produced realistic uncertainty estimates as well as acceptable simulations based on the assessment of the flow duration curves. The modelling results indicated that there is some degree of uncertainty that cannot be easily accounted for due to some identified data issues. The results also showed that there is still a possibility to improve the simulations provided such issues are resolved. The issues about the simulation of stream flow that were detected are mainly related to availability of data to estimate water use parameters. Another challenge in setting up the model was associated with establishing constraints that match the parameters for natural hydrological conditions for specific sub-basins and maintaining consistency in the adjustment of the model output constraints for other sub-basins. In an attempt to overcome this problem, the study recommends additional hydrological response constraints to be used with the Pitman model. Another main recommendation relates to the strong cooperation of relevant catchment management authorities and stakeholders including scientists in order to make information more available to users. The new hydrological insight is derived from the analysis of hydrological indices which highlighted the regional variations in hydrological processes and sub-basin response across the transboundary basins of Eswatini. The adopted modelling approach provides further insight into all the uncertainties associated with quantifying the available water resources of the country. The study has provided further understanding of the spatial variability of the hydrological response and existing development impacts than was previously available. It is envisaged that these new insights will provide an improved basis for future water management in Eswatini. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2021
- Full Text:
- Date Issued: 2021-10-29