The molecular basis of the effect of temperature on the structure and function of SARS-CoV-2 spike protein
- Khan, Faez I, Lobb, Kevin A, Lai, Dakun
- Authors: Khan, Faez I , Lobb, Kevin A , Lai, Dakun
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/453223 , vital:75232 , xlink:href="https://doi.org/10.3389/fmolb.2022.794960"
- Description: The remarkable rise of the current COVID-19 pandemic to every part of the globe has raised key concerns for the current public healthcare system. The spike (S) protein of SARS-CoV-2 shows an important part in the cell membrane fusion and receptor recognition. It is a key target for vaccine production. Several researchers studied the nature of this protein under various environmental conditions. In this work, we applied molecular modeling and extensive molecular dynamics simulation approaches at 0°C (273.15 K), 20°C (293.15 K), 40°C (313.15 K), and 60°C (333.15 K) to study the detailed conformational alterations in the SARS-CoV-2 S protein. Our aim is to understand the influence of temperatures on the structure, function, and dynamics of the S protein of SARS-CoV-2. The structural deviations, and atomic and residual fluctuations were least at low (0°C) and high (60°C) temperature. Even the internal residues of the SARS-CoV-2 S protein are not accessible to solvent at high temperature. Furthermore, there was no unfolding of SARS-CoV-2 spike S reported at higher temperature. The most stable conformations of the SARS-CoV-2 S protein were reported at 20°C, but the free energy minimum region of the SARS-CoV-2 S protein was sharper at 40°C than other temperatures. Our findings revealed that higher temperatures have little or no influence on the stability and folding of the SARS-CoV-2 S protein.
- Full Text:
- Date Issued: 2022
- Authors: Khan, Faez I , Lobb, Kevin A , Lai, Dakun
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/453223 , vital:75232 , xlink:href="https://doi.org/10.3389/fmolb.2022.794960"
- Description: The remarkable rise of the current COVID-19 pandemic to every part of the globe has raised key concerns for the current public healthcare system. The spike (S) protein of SARS-CoV-2 shows an important part in the cell membrane fusion and receptor recognition. It is a key target for vaccine production. Several researchers studied the nature of this protein under various environmental conditions. In this work, we applied molecular modeling and extensive molecular dynamics simulation approaches at 0°C (273.15 K), 20°C (293.15 K), 40°C (313.15 K), and 60°C (333.15 K) to study the detailed conformational alterations in the SARS-CoV-2 S protein. Our aim is to understand the influence of temperatures on the structure, function, and dynamics of the S protein of SARS-CoV-2. The structural deviations, and atomic and residual fluctuations were least at low (0°C) and high (60°C) temperature. Even the internal residues of the SARS-CoV-2 S protein are not accessible to solvent at high temperature. Furthermore, there was no unfolding of SARS-CoV-2 spike S reported at higher temperature. The most stable conformations of the SARS-CoV-2 S protein were reported at 20°C, but the free energy minimum region of the SARS-CoV-2 S protein was sharper at 40°C than other temperatures. Our findings revealed that higher temperatures have little or no influence on the stability and folding of the SARS-CoV-2 S protein.
- Full Text:
- Date Issued: 2022
Seed extract of Psoralea corylifolia and its constituent bakuchiol impairs AHL-based quorum sensing and biofilm formation in food-and human-related pathogens
- Husain, Fohad M, Ahmad, Iqbal, Khan, Faez I, Al-Shabib, Nasser A, Baig, Mohammad H, Hussain, Afzal, Rehman, Md T, Alajmi, Mohamed F, Lobb, Kevin A
- Authors: Husain, Fohad M , Ahmad, Iqbal , Khan, Faez I , Al-Shabib, Nasser A , Baig, Mohammad H , Hussain, Afzal , Rehman, Md T , Alajmi, Mohamed F , Lobb, Kevin A
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447182 , vital:74590 , xlink:href="https://doi.org/10.3389/fcimb.2018.00351"
- Description: The emergence of multi-drug resistance in pathogenic bacteria in clinical settings as well as food-borne infections has become a serious health concern. The problem of drug resistance necessitates the need for alternative novel therapeutic strategies to combat this menace. One such approach is targeting the quorum-sensing (QS) controlled virulence and biofilm formation. In this study, we first screened different fractions of Psoralea corylifolia (seed) for their anti-QS property in the Chromobacterium violaceum 12472 strain.
- Full Text:
- Date Issued: 2018
- Authors: Husain, Fohad M , Ahmad, Iqbal , Khan, Faez I , Al-Shabib, Nasser A , Baig, Mohammad H , Hussain, Afzal , Rehman, Md T , Alajmi, Mohamed F , Lobb, Kevin A
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447182 , vital:74590 , xlink:href="https://doi.org/10.3389/fcimb.2018.00351"
- Description: The emergence of multi-drug resistance in pathogenic bacteria in clinical settings as well as food-borne infections has become a serious health concern. The problem of drug resistance necessitates the need for alternative novel therapeutic strategies to combat this menace. One such approach is targeting the quorum-sensing (QS) controlled virulence and biofilm formation. In this study, we first screened different fractions of Psoralea corylifolia (seed) for their anti-QS property in the Chromobacterium violaceum 12472 strain.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »