Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin
- Witika, Bwalya A, Makoni, Pedzisai A, Matafwali, Scott K, Mweetwa, Larry L, Shandele, Ginnethon C, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Mweetwa, Larry L , Shandele, Ginnethon C , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183161 , vital:43917 , xlink:href="https://doi.org/10.3390/molecules26144244"
- Description: There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
- Full Text:
- Date Issued: 2021
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Mweetwa, Larry L , Shandele, Ginnethon C , Walker, Roderick B
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183161 , vital:43917 , xlink:href="https://doi.org/10.3390/molecules26144244"
- Description: There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
- Full Text:
- Date Issued: 2021
Biocompatibility of biomaterials for nanoencapsulation: Current approaches
- Witika, Bwalya A, Makoni, Pedzisai A, Matafwali, Scott K, Chabalenge, Billy, Mwila, Chiluba, Kalungia, Aubrey C, Nkanga, Christian I, Bapolisi, Alain M, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Chabalenge, Billy , Mwila, Chiluba , Kalungia, Aubrey C , Nkanga, Christian I , Bapolisi, Alain M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183289 , vital:43939 , xlink:href="https://doi.org/10.3390/nano10091649"
- Description: Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Matafwali, Scott K , Chabalenge, Billy , Mwila, Chiluba , Kalungia, Aubrey C , Nkanga, Christian I , Bapolisi, Alain M , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183289 , vital:43939 , xlink:href="https://doi.org/10.3390/nano10091649"
- Description: Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.
- Full Text:
- Date Issued: 2020
Nano-biomimetic drug delivery vehicles: Potential approaches for COVID-19 treatment
- Witika, Bwalya A, Makoni, Pedzisai A, Mweetwa, Larry L, Ntemi, Pascal V, Chikukwa, Mellisa T R, Matafwali, Scott K, Mwila, Chiluba, Mudenda, Steward, Katandula, Jonathan, Walker, Roderick B
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020
- Authors: Witika, Bwalya A , Makoni, Pedzisai A , Mweetwa, Larry L , Ntemi, Pascal V , Chikukwa, Mellisa T R , Matafwali, Scott K , Mwila, Chiluba , Mudenda, Steward , Katandula, Jonathan , Walker, Roderick B
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183440 , vital:43991 , xlink:href="https://doi.org/10.3390/molecules25245952"
- Description: The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
- Full Text:
- Date Issued: 2020
Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions
- Makoni, Pedzisai A, Kasongo, Kasongo W, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183492 , vital:44000 , xlink:href="https://doi.org/10.3390/pharmaceutics11080397"
- Description: The short term stability of efavirenz-loaded solid lipid nanoparticle and nanostructured lipid carrier dispersions was investigated. Hot High Pressure Homogenization with the capability for scale up production was successfully used to manufacture the nanocarriers without the use of toxic organic solvents for the first time. Glyceryl monostearate and Transcutol® HP were used as the solid and liquid lipids. Tween® 80 was used to stabilize the lipid nanocarriers. A Box-Behnken Design was used to identify the optimum operating and production conditions viz., 1100 bar for 3 cycles for the solid lipid nanoparticles and 1500 bar for 5 cycles for nanostructured lipid carriers. The optimized nanocarriers were predicted to exhibit 10% efavirenz loading with 3% and 4% Tween® 80 for solid lipid nanoparticles and nanostructured lipid carriers, respectively. Characterization of the optimized solid lipid nanoparticle and nanostructured lipid carrier formulations in relation to shape, surface morphology, polymorphism, crystallinity and compatibility revealed stable formulations with particle sizes in the nanometer range had been produced. The nanocarriers had excellent efavirenz loading with the encapsulation efficiency >90%. The optimized nanocarriers exhibited biphasic in vitro release patterns with an initial burst release during the initial 0–3 h followed by sustained release over a 24 h period The colloidal systems showed excellent stability in terms of Zeta potential, particle size, polydispersity index and encapsulation efficiency when stored for 8 weeks at 25 °C/60% RH in comparison to when stored at 40 °C/75% RH. The formulations manufactured using the optimized conditions and composition proved to be physically stable as aqueous dispersions.
- Full Text:
- Date Issued: 2019
- Authors: Makoni, Pedzisai A , Kasongo, Kasongo W , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183492 , vital:44000 , xlink:href="https://doi.org/10.3390/pharmaceutics11080397"
- Description: The short term stability of efavirenz-loaded solid lipid nanoparticle and nanostructured lipid carrier dispersions was investigated. Hot High Pressure Homogenization with the capability for scale up production was successfully used to manufacture the nanocarriers without the use of toxic organic solvents for the first time. Glyceryl monostearate and Transcutol® HP were used as the solid and liquid lipids. Tween® 80 was used to stabilize the lipid nanocarriers. A Box-Behnken Design was used to identify the optimum operating and production conditions viz., 1100 bar for 3 cycles for the solid lipid nanoparticles and 1500 bar for 5 cycles for nanostructured lipid carriers. The optimized nanocarriers were predicted to exhibit 10% efavirenz loading with 3% and 4% Tween® 80 for solid lipid nanoparticles and nanostructured lipid carriers, respectively. Characterization of the optimized solid lipid nanoparticle and nanostructured lipid carrier formulations in relation to shape, surface morphology, polymorphism, crystallinity and compatibility revealed stable formulations with particle sizes in the nanometer range had been produced. The nanocarriers had excellent efavirenz loading with the encapsulation efficiency >90%. The optimized nanocarriers exhibited biphasic in vitro release patterns with an initial burst release during the initial 0–3 h followed by sustained release over a 24 h period The colloidal systems showed excellent stability in terms of Zeta potential, particle size, polydispersity index and encapsulation efficiency when stored for 8 weeks at 25 °C/60% RH in comparison to when stored at 40 °C/75% RH. The formulations manufactured using the optimized conditions and composition proved to be physically stable as aqueous dispersions.
- Full Text:
- Date Issued: 2019
Stability indicating HPLC-ECD method for the analysis of clarithromycin in pharmaceutical dosage forms: Method scaling versus re-validation.
- Makoni, Pedzisai A, Chikukwa, Mellisa T R, Khamanga, Sandile M, Walker, Roderick B
- Authors: Makoni, Pedzisai A , Chikukwa, Mellisa T R , Khamanga, Sandile M , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183387 , vital:43984 , xlink:href="https://doi.org/10.3390/scipharm87040031"
- Description: An isocratic high-performance liquid chromatographic method using electrochemical detection (HPLC-ECD) for the quantitation of clarithromycin (CLA) was developed using Response Surface Methodology (RSM) based on a Central Composite Design (CCD). The method was validated using International Conference on Harmonization (ICH) guidelines with an analytical run time of 20 min. Method re-validation following a change in analytical column was successful in reducing the analytical run time to 13 min, decreasing solvent consumption thus facilitating environmental and financial sustainability. The applicability of using the United States Pharmacopeia (USP) method scaling approach in place of method re-validation using a column with a different L–designation to the original analytical column, was investigated. The scaled method met all USP system suitability requirements for resolution, tailing factor and % relative standard deviation (RSD). The re-validated and scaled method was successfully used to resolve CLA from manufacturing excipients in commercially available dosage forms. Although USP method scaling is only permitted for columns within the same L-designation, these data suggest that it may also be applicable to columns of different designation.
- Full Text:
- Date Issued: 2019
- Authors: Makoni, Pedzisai A , Chikukwa, Mellisa T R , Khamanga, Sandile M , Walker, Roderick B
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/183387 , vital:43984 , xlink:href="https://doi.org/10.3390/scipharm87040031"
- Description: An isocratic high-performance liquid chromatographic method using electrochemical detection (HPLC-ECD) for the quantitation of clarithromycin (CLA) was developed using Response Surface Methodology (RSM) based on a Central Composite Design (CCD). The method was validated using International Conference on Harmonization (ICH) guidelines with an analytical run time of 20 min. Method re-validation following a change in analytical column was successful in reducing the analytical run time to 13 min, decreasing solvent consumption thus facilitating environmental and financial sustainability. The applicability of using the United States Pharmacopeia (USP) method scaling approach in place of method re-validation using a column with a different L–designation to the original analytical column, was investigated. The scaled method met all USP system suitability requirements for resolution, tailing factor and % relative standard deviation (RSD). The re-validated and scaled method was successfully used to resolve CLA from manufacturing excipients in commercially available dosage forms. Although USP method scaling is only permitted for columns within the same L-designation, these data suggest that it may also be applicable to columns of different designation.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »