An analysis of the fruit-sucking and fruit-piercing moth complex in citrus orchards in South Africa
- Goddard, Mathew K, Hill, Martin P, Moore, Sean D
- Authors: Goddard, Mathew K , Hill, Martin P , Moore, Sean D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407000 , vital:70329 , xlink:href="https://hdl.handle.net/10520/EJC-15072d6de5"
- Description: Fruit-piercing moths are a sporadic pest of citrus, especially in the Eastern Cape Province of South Africa, where the adults can cause significant damage in outbreak years. However, growers confuse fruit-piercing moths with fruit-sucking moths that do not cause primary damage. In this study we trapped these moths during the 2013–2015 growing seasons. A large number of diverse fruit-feeding moths were collected through weekly sampling in citrus orchards in the Eastern Cape and northern Limpopo provinces. Twenty-three species of fruit-feeding moth were trapped. However, only two were fruit-piercing species, capable of causing primary damage, namely Serrodes partita (Fabricius) (Erebidae) and Eudocima divitiosa (Walker) (Erebidae). Surprisingly S. partita, which has been reported as the main fruit-piercing moth pest of citrus in South Africa, comprised only 6.9 % of trap catches. The categorisation of moths as fruit-piercing or fruit-sucking (causing secondary damage) was confirmed by examining the morphological structures (tearing hooks and erectile barbs) of these moths’ proboscides. This study has shown that in non-outbreak seasons, S. partita comprised only a small percentage of fruit-feeding moths in citrus orchards. However, growers may misidentify the harmless fruit-sucking species as fruit-piercing species, and thus overestimate the density of fruit-piercing moths.
- Full Text:
- Date Issued: 2019
- Authors: Goddard, Mathew K , Hill, Martin P , Moore, Sean D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407000 , vital:70329 , xlink:href="https://hdl.handle.net/10520/EJC-15072d6de5"
- Description: Fruit-piercing moths are a sporadic pest of citrus, especially in the Eastern Cape Province of South Africa, where the adults can cause significant damage in outbreak years. However, growers confuse fruit-piercing moths with fruit-sucking moths that do not cause primary damage. In this study we trapped these moths during the 2013–2015 growing seasons. A large number of diverse fruit-feeding moths were collected through weekly sampling in citrus orchards in the Eastern Cape and northern Limpopo provinces. Twenty-three species of fruit-feeding moth were trapped. However, only two were fruit-piercing species, capable of causing primary damage, namely Serrodes partita (Fabricius) (Erebidae) and Eudocima divitiosa (Walker) (Erebidae). Surprisingly S. partita, which has been reported as the main fruit-piercing moth pest of citrus in South Africa, comprised only 6.9 % of trap catches. The categorisation of moths as fruit-piercing or fruit-sucking (causing secondary damage) was confirmed by examining the morphological structures (tearing hooks and erectile barbs) of these moths’ proboscides. This study has shown that in non-outbreak seasons, S. partita comprised only a small percentage of fruit-feeding moths in citrus orchards. However, growers may misidentify the harmless fruit-sucking species as fruit-piercing species, and thus overestimate the density of fruit-piercing moths.
- Full Text:
- Date Issued: 2019
Screening of entomopathogenic fungi against citrus mealybug, Plannococcus citri (Hemiptera: Pseudococcidae)
- Chartier FitzGerald, Veronique C, Hill, Martin P, Moore, Sean D, Dames, Joanna F
- Authors: Chartier FitzGerald, Veronique C , Hill, Martin P , Moore, Sean D , Dames, Joanna F
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407059 , vital:70333 , xlink:href="https://hdl.handle.net/10520/EJC195093"
- Description: Planococcus citri (citrus mealybug) is a common and damaging citrus crop pest which has proven difficult to control using conventional methods, such as chemical pesticides and insect growth regulators, particularly late in the citrus growing season. The virulence of two entomopathogenic fungal species was studied in laboratory bioassays against the crawlers and adults of P. citri. Isolates of Metarhizium anisopliae and Beauveria bassiana, collected from citrus orchards in the Eastern Cape Province in South Africa, were verified using and molecular techniques. Mealybug bioassays were performed in 24-well plates. Beauveria bassiana (GAR 17 B3) and M. anisopliae (FCM AR 23 B3) isolates both resulted in 67.5 % mortality of mealybug crawlers and B. bassiana (GB AR 23 13 3) resulted in 64 % crawler mortality with concentrations of 1 x 107 conidia/ml. These three isolates were further tested in multipledose bioassays to determine the median lethal concentration (LC50), which were 5.29 x 105conidia/ml for the M. anisopliae isolate (FCM AR 23 B3), 4.25 x 106 conidia/ml for B. bassiana (GAR 17 B3), and 6.65 x 107 conidia/ml B. bassiana (GB AR 23 13 3) for crawlers, respectively. The results of this study suggested that two isolates (M. anisopliae FCM AR 23 B3 and B. bassiana GAR 17 B3) showed potential for further development as biological control agents against citrus mealybug. Further research would be required to determine their ability to perform under field conditions.
- Full Text:
- Date Issued: 2016
- Authors: Chartier FitzGerald, Veronique C , Hill, Martin P , Moore, Sean D , Dames, Joanna F
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407059 , vital:70333 , xlink:href="https://hdl.handle.net/10520/EJC195093"
- Description: Planococcus citri (citrus mealybug) is a common and damaging citrus crop pest which has proven difficult to control using conventional methods, such as chemical pesticides and insect growth regulators, particularly late in the citrus growing season. The virulence of two entomopathogenic fungal species was studied in laboratory bioassays against the crawlers and adults of P. citri. Isolates of Metarhizium anisopliae and Beauveria bassiana, collected from citrus orchards in the Eastern Cape Province in South Africa, were verified using and molecular techniques. Mealybug bioassays were performed in 24-well plates. Beauveria bassiana (GAR 17 B3) and M. anisopliae (FCM AR 23 B3) isolates both resulted in 67.5 % mortality of mealybug crawlers and B. bassiana (GB AR 23 13 3) resulted in 64 % crawler mortality with concentrations of 1 x 107 conidia/ml. These three isolates were further tested in multipledose bioassays to determine the median lethal concentration (LC50), which were 5.29 x 105conidia/ml for the M. anisopliae isolate (FCM AR 23 B3), 4.25 x 106 conidia/ml for B. bassiana (GAR 17 B3), and 6.65 x 107 conidia/ml B. bassiana (GB AR 23 13 3) for crawlers, respectively. The results of this study suggested that two isolates (M. anisopliae FCM AR 23 B3 and B. bassiana GAR 17 B3) showed potential for further development as biological control agents against citrus mealybug. Further research would be required to determine their ability to perform under field conditions.
- Full Text:
- Date Issued: 2016
Agathis bishopi, a larval parasitoid of false codling moth Thaumatotibia leucotreta: laboratory rearing and effect of adult food on parasitism and longevity
- Zimba, Kennedy J, Moore, Sean D, Heshula, Lelethu U P, Hill, Martin P
- Authors: Zimba, Kennedy J , Moore, Sean D , Heshula, Lelethu U P , Hill, Martin P
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406985 , vital:70328 , xlink:href="https://hdl.handle.net/10520/EJC185849"
- Description: Agathis bishopi (Nixon) (Hymenoptera: Braconidae) is a koinobiont larval endoparasitoid of false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of economic importance on citrus in South Africa. In the field Agathis bishopi was found to parasitise up to 34 % of FCM larvae in fruit, reflecting reasonable biocontrol potential. Improving the rearing of A. bishopi would therefore complement the existing biocontrol strategies for FCM. In several parasitic wasps, sugar concentration and feeding duration has been shown to influence parasitism and longevity. However, their effect on parasitism and longevity of A. bishopi is unknown. In the present study a rearing protocol for A. bishopi is described, including evaluation of the effects of honey concentration on parasitoid longevity. On average, 18.2%of FCM larvae in rearing containers were parasitised under the rearing protocol described. Cotton wool, instead of paper towelling, as honey carrier for feeding parasitoids in rearing containers significantly increased parasitism and yield of offspring. Furthermore, longevity significantly increased with higher concentrations of honey. Maximum lifespan duration for male and female parasitoids was achieved when parasitoids were fed on 36 % (w/v) honey. Results from this study indicate that A. bishopi requires a sufficient concentration of sugar, coupled with frequent and prolonged feeding on a cotton wool substrate, in order to achieve maximum parasitism and longevity. Such information provides a basis for optimising mass-rearing and longevity of A. bishopi and parasitism of FCM in orchards.
- Full Text:
- Date Issued: 2015
- Authors: Zimba, Kennedy J , Moore, Sean D , Heshula, Lelethu U P , Hill, Martin P
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406985 , vital:70328 , xlink:href="https://hdl.handle.net/10520/EJC185849"
- Description: Agathis bishopi (Nixon) (Hymenoptera: Braconidae) is a koinobiont larval endoparasitoid of false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of economic importance on citrus in South Africa. In the field Agathis bishopi was found to parasitise up to 34 % of FCM larvae in fruit, reflecting reasonable biocontrol potential. Improving the rearing of A. bishopi would therefore complement the existing biocontrol strategies for FCM. In several parasitic wasps, sugar concentration and feeding duration has been shown to influence parasitism and longevity. However, their effect on parasitism and longevity of A. bishopi is unknown. In the present study a rearing protocol for A. bishopi is described, including evaluation of the effects of honey concentration on parasitoid longevity. On average, 18.2%of FCM larvae in rearing containers were parasitised under the rearing protocol described. Cotton wool, instead of paper towelling, as honey carrier for feeding parasitoids in rearing containers significantly increased parasitism and yield of offspring. Furthermore, longevity significantly increased with higher concentrations of honey. Maximum lifespan duration for male and female parasitoids was achieved when parasitoids were fed on 36 % (w/v) honey. Results from this study indicate that A. bishopi requires a sufficient concentration of sugar, coupled with frequent and prolonged feeding on a cotton wool substrate, in order to achieve maximum parasitism and longevity. Such information provides a basis for optimising mass-rearing and longevity of A. bishopi and parasitism of FCM in orchards.
- Full Text:
- Date Issued: 2015
Beauveria and Metarhizium against false codling moth (Lepidoptera: Tortricidae): a step towards selecting isolates for potential development of a mycoinsecticide
- Coombes, Candice A, Hill, Martin P, Moore, Sean D, Dames, Joanna F, Fullard, T
- Authors: Coombes, Candice A , Hill, Martin P , Moore, Sean D , Dames, Joanna F , Fullard, T
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/405757 , vital:70203 , xlink:href="https://hdl.handle.net/10520/EJC167505"
- Description: False codling moth, Thaumatotibia leucotreta Meyrick (1912) (Lepidoptera: Tortricidae), can cause both pre- and post-harvest damage to citrus fruit. Not only can this result in reduced crop yield, but more importantly because of the moth's endemism to sub-Saharan Africa, it is classified as a phytosanitary pest by many export markets. An entire consignment of citrus may be rejected in the presence of a single moth (Moore 2012). Since the bulk of citrus fruit production in South Africa is exported, the control of T. leucotreta is critical (Citrus Growers Association, South Africa 2012). Traditionally, control has been achieved through the use of chemical insecticides; however, residue restrictions, resistance development and concerns about environmental pollution have substantially reduced the dependence on chemical pesticides in citrus. Research on T. leucotreta control has therefore focused on the use of biological organisms (e.g. parasitoids and viruses), which are used as control agents within an integrated pest management (IPM) programme in citrus. These biological control agents, however, only targeted the aboveground life stages of the pest, not the soil-dwelling life stages (late fifth instars, prepupae, pupae), which is the subject of this contribution (Moore 2012).
- Full Text:
- Date Issued: 2015
- Authors: Coombes, Candice A , Hill, Martin P , Moore, Sean D , Dames, Joanna F , Fullard, T
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/405757 , vital:70203 , xlink:href="https://hdl.handle.net/10520/EJC167505"
- Description: False codling moth, Thaumatotibia leucotreta Meyrick (1912) (Lepidoptera: Tortricidae), can cause both pre- and post-harvest damage to citrus fruit. Not only can this result in reduced crop yield, but more importantly because of the moth's endemism to sub-Saharan Africa, it is classified as a phytosanitary pest by many export markets. An entire consignment of citrus may be rejected in the presence of a single moth (Moore 2012). Since the bulk of citrus fruit production in South Africa is exported, the control of T. leucotreta is critical (Citrus Growers Association, South Africa 2012). Traditionally, control has been achieved through the use of chemical insecticides; however, residue restrictions, resistance development and concerns about environmental pollution have substantially reduced the dependence on chemical pesticides in citrus. Research on T. leucotreta control has therefore focused on the use of biological organisms (e.g. parasitoids and viruses), which are used as control agents within an integrated pest management (IPM) programme in citrus. These biological control agents, however, only targeted the aboveground life stages of the pest, not the soil-dwelling life stages (late fifth instars, prepupae, pupae), which is the subject of this contribution (Moore 2012).
- Full Text:
- Date Issued: 2015
DNA-based identification of Lepidoptera associated with citrus in South Africa
- Marsberg, Tamryn, Hill, Martin P, Moore, Sean D, Timm, Alicia E
- Authors: Marsberg, Tamryn , Hill, Martin P , Moore, Sean D , Timm, Alicia E
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/405782 , vital:70205 , xlink:href="https://hdl.handle.net/10520/EJC167513"
- Description: A number of insects, primarily Lepidoptera, cause damage to citrus in South Africa. A major limitation to the management and control of these pests is their correct identification. The aim of this study was to develop a database of gene sequences to aid in the identification of these Lepidoptera. Multiple specimens of 12 species were sequenced for the ~650 bp of the cytochrome oxidase I gene. These sequence data were supplemented and validated using sequences available in public databases. Results showed that each species could be unambiguously identified, and neighbour-joining analysis based on K2P distances formed highly supported, distinct clusters for each species, i.e. the maximum intraspecific genetic distance was less than that of the minimum interspecific genetic distances. Thus, this data set provides a molecular means to successfully identify the most important Lepidoptera associated with citrus in South Africa.
- Full Text:
- Date Issued: 2015
- Authors: Marsberg, Tamryn , Hill, Martin P , Moore, Sean D , Timm, Alicia E
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/405782 , vital:70205 , xlink:href="https://hdl.handle.net/10520/EJC167513"
- Description: A number of insects, primarily Lepidoptera, cause damage to citrus in South Africa. A major limitation to the management and control of these pests is their correct identification. The aim of this study was to develop a database of gene sequences to aid in the identification of these Lepidoptera. Multiple specimens of 12 species were sequenced for the ~650 bp of the cytochrome oxidase I gene. These sequence data were supplemented and validated using sequences available in public databases. Results showed that each species could be unambiguously identified, and neighbour-joining analysis based on K2P distances formed highly supported, distinct clusters for each species, i.e. the maximum intraspecific genetic distance was less than that of the minimum interspecific genetic distances. Thus, this data set provides a molecular means to successfully identify the most important Lepidoptera associated with citrus in South Africa.
- Full Text:
- Date Issued: 2015
Host searching and oviposition behaviour of Agathis bishopi (Hymenoptera: Braconidae), a larval parasitoid of false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae): a potential proxy indicator for fruit infestation
- Zimba, Kennedy J, Heshula, Lelethu U P, Moore, Sean D, Hill, Martin P
- Authors: Zimba, Kennedy J , Heshula, Lelethu U P , Moore, Sean D , Hill, Martin P
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407019 , vital:70330 , xlink:href="https://hdl.handle.net/10520/EJC195073"
- Description: Agathis bishopi (Nixon) (Hymenoptera: Braconidae)is an arrhenotokous larval endoparasitoid of Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) (Gendall 2007; Hofmeyr et al. 2015) commonly known as false codling moth (FCM), a major pest of citrus in South Africa (Moore et al. 2004; Malan et al. 2011). Under field conditions, A. bishopi was identified attacking more than 34% of FCM larvae in fruit, showing good biocontrol potential (Gendall 2007). Preference by A. bishopi for parasitising the early instars of its concealed host suggests that the parasitoid has strong natural host location ability (Sishuba 2003; Gendall 2007).
- Full Text:
- Date Issued: 2015
- Authors: Zimba, Kennedy J , Heshula, Lelethu U P , Moore, Sean D , Hill, Martin P
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407019 , vital:70330 , xlink:href="https://hdl.handle.net/10520/EJC195073"
- Description: Agathis bishopi (Nixon) (Hymenoptera: Braconidae)is an arrhenotokous larval endoparasitoid of Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) (Gendall 2007; Hofmeyr et al. 2015) commonly known as false codling moth (FCM), a major pest of citrus in South Africa (Moore et al. 2004; Malan et al. 2011). Under field conditions, A. bishopi was identified attacking more than 34% of FCM larvae in fruit, showing good biocontrol potential (Gendall 2007). Preference by A. bishopi for parasitising the early instars of its concealed host suggests that the parasitoid has strong natural host location ability (Sishuba 2003; Gendall 2007).
- Full Text:
- Date Issued: 2015
Comparison of the biology of geographically distinct populations of the citrus pest, Thaumatotibia leucotreta (Meyrick)(Lepidoptera: Tortricidae)
- Opoku-Debrah, John K, Hill, Martin P, Knox, Caroline M, Moore, Sean D
- Authors: Opoku-Debrah, John K , Hill, Martin P , Knox, Caroline M , Moore, Sean D
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/405769 , vital:70204 , xlink:href="https://hdl.handle.net/10520/EJC160246"
- Description: Baculovirus biopesticides are an important component of integrated pest management programmes worldwide. One such example is the Cryptophlebia leucotreta granulovirus (CrleGV) which is used for the control of false codling moth, Thaumatotibia (= Cryptophlebia) leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of citrus and other crops in South Africa. A potential problem associated with constant application of viral biopesticides is the differing susceptibility to the virus observed between different geographic populations of the insect host. This could be related to a number of factors, including biological performance and fitness of the target insect population. This study compared a variety of phenotypic traits between geographically distinct T. leucotreta populations collected from the Addo, Marble Hall, Citrusdal and Nelspruit regions of South Africa, and reared under laboratory conditions for several generations. Traits including pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and developmental time were used as parameters to measure biological performance and fitness. Insects from the Citrusdal region of the Western Cape exhibited significantly lower pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and the longest duration in larval and pupal development compared to the other colonies investigated. This is the first study to report differences in the performance of laboratory reared T. leucotreta from different geographic locations, and the findings may have important implications for the application of viral biopesticides for the control of this pest in South Africa.
- Full Text:
- Date Issued: 2014
- Authors: Opoku-Debrah, John K , Hill, Martin P , Knox, Caroline M , Moore, Sean D
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/405769 , vital:70204 , xlink:href="https://hdl.handle.net/10520/EJC160246"
- Description: Baculovirus biopesticides are an important component of integrated pest management programmes worldwide. One such example is the Cryptophlebia leucotreta granulovirus (CrleGV) which is used for the control of false codling moth, Thaumatotibia (= Cryptophlebia) leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of citrus and other crops in South Africa. A potential problem associated with constant application of viral biopesticides is the differing susceptibility to the virus observed between different geographic populations of the insect host. This could be related to a number of factors, including biological performance and fitness of the target insect population. This study compared a variety of phenotypic traits between geographically distinct T. leucotreta populations collected from the Addo, Marble Hall, Citrusdal and Nelspruit regions of South Africa, and reared under laboratory conditions for several generations. Traits including pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and developmental time were used as parameters to measure biological performance and fitness. Insects from the Citrusdal region of the Western Cape exhibited significantly lower pupal mass, female fecundity, egg hatch, pupal survival, adult eclosion and the longest duration in larval and pupal development compared to the other colonies investigated. This is the first study to report differences in the performance of laboratory reared T. leucotreta from different geographic locations, and the findings may have important implications for the application of viral biopesticides for the control of this pest in South Africa.
- Full Text:
- Date Issued: 2014
Morphological and genetic characterization of a South African Plutella xylostella granulovirus (plxy GV) isolate
- Abdulkadir, Fatima, Marsberg, Tamryn, Knox, Caroline M, Hill, Martin P, Moore, Sean D
- Authors: Abdulkadir, Fatima , Marsberg, Tamryn , Knox, Caroline M , Hill, Martin P , Moore, Sean D
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406117 , vital:70240 , xlink:href="https://hdl.handle.net/10520/EJC132828"
- Description: Plutella xylostella (L.) (Lepidoptera: Plutellidae), also known as diamondback moth, is a destructive insect pest of cruciferous crops (Talekar and Shelton 1993; Shelton 2004). The pest occurs wherever its host plants are cultivated and the global annual cost of damage and control is estimated to be US$4-5 billion (Zalucki et al. 2012). The extensive use of synthetic pesticides for control combined with the high fecundity of P. xylostella has resulted in the pest developing resistance to nearly all classes of insecticides (Grzywacz et al. 2009). Moreover, these chemicals have negative environmental implications and may affect non-target species, some of which are natural enemies of the pest.
- Full Text:
- Date Issued: 2013
- Authors: Abdulkadir, Fatima , Marsberg, Tamryn , Knox, Caroline M , Hill, Martin P , Moore, Sean D
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406117 , vital:70240 , xlink:href="https://hdl.handle.net/10520/EJC132828"
- Description: Plutella xylostella (L.) (Lepidoptera: Plutellidae), also known as diamondback moth, is a destructive insect pest of cruciferous crops (Talekar and Shelton 1993; Shelton 2004). The pest occurs wherever its host plants are cultivated and the global annual cost of damage and control is estimated to be US$4-5 billion (Zalucki et al. 2012). The extensive use of synthetic pesticides for control combined with the high fecundity of P. xylostella has resulted in the pest developing resistance to nearly all classes of insecticides (Grzywacz et al. 2009). Moreover, these chemicals have negative environmental implications and may affect non-target species, some of which are natural enemies of the pest.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »