Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media
- He, Qinggang, Wu, Gang, Liu, Ke, Khene, Samson M, Li, Qing, Mugadza, Tawanda, Deunf, Elise, Nyokong, Tebello, Chen, Shaowei W
- Authors: He, Qinggang , Wu, Gang , Liu, Ke , Khene, Samson M , Li, Qing , Mugadza, Tawanda , Deunf, Elise , Nyokong, Tebello , Chen, Shaowei W
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241472 , vital:50942 , xlink:href="https://doi.org/10.1002/celc.201402054"
- Description: The effects of different redox mediators on the oxygen reduction reaction (ORR) catalyzed by an iron porphyrin complex, iron(III) meso-tetra(N-methyl-4-pyridyl)porphine chloride [FeIIITMPyP], in 0.1 M triflic acid were investigated by cyclic voltammetry (CV) and spectroelectrochemistry in conjunction with density functional theory (DFT) calculations. The formal potentials of the FeIIITMPyP catalyst and the redox mediators, as well as the half-wave potentials for the ORR, were determined by CV in the absence and presence of oxygen in acidic solutions. UV/Vis spectroscopic and spectroelectrochemical studies confirmed that only the 2,2′-azino-bis(3-ethylbenzothiazioline-6-sulfonic acid)diammonium salt (C18H24N6O6S4) showed effective interactions with FeIIITMPyP during the ORR. DFT calculations suggested strong interaction between FeIIITMPyP and the C18H24N6O6S4 redox mediator. The redox mediator caused lengthening of the dioxygen iron bond, which thus suggested easier dioxygen reduction. Consistent results were observed in electrochemical impedance spectroscopic measurements for which the electron-transfer kinetics were also evaluated.
- Full Text:
- Date Issued: 2014
- Authors: He, Qinggang , Wu, Gang , Liu, Ke , Khene, Samson M , Li, Qing , Mugadza, Tawanda , Deunf, Elise , Nyokong, Tebello , Chen, Shaowei W
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241472 , vital:50942 , xlink:href="https://doi.org/10.1002/celc.201402054"
- Description: The effects of different redox mediators on the oxygen reduction reaction (ORR) catalyzed by an iron porphyrin complex, iron(III) meso-tetra(N-methyl-4-pyridyl)porphine chloride [FeIIITMPyP], in 0.1 M triflic acid were investigated by cyclic voltammetry (CV) and spectroelectrochemistry in conjunction with density functional theory (DFT) calculations. The formal potentials of the FeIIITMPyP catalyst and the redox mediators, as well as the half-wave potentials for the ORR, were determined by CV in the absence and presence of oxygen in acidic solutions. UV/Vis spectroscopic and spectroelectrochemical studies confirmed that only the 2,2′-azino-bis(3-ethylbenzothiazioline-6-sulfonic acid)diammonium salt (C18H24N6O6S4) showed effective interactions with FeIIITMPyP during the ORR. DFT calculations suggested strong interaction between FeIIITMPyP and the C18H24N6O6S4 redox mediator. The redox mediator caused lengthening of the dioxygen iron bond, which thus suggested easier dioxygen reduction. Consistent results were observed in electrochemical impedance spectroscopic measurements for which the electron-transfer kinetics were also evaluated.
- Full Text:
- Date Issued: 2014
Polyamide nanofiber membranes functionalized with zinc phthalocyanines
- Goethals, Annelies, Mugadza, Tawanda, Arslanoglu, Yasin, Zugle, Ruphino, Antunes, Edith M, Van Hulle, Stijn W, Nyokong, Tebello, De Clerck, Karen
- Authors: Goethals, Annelies , Mugadza, Tawanda , Arslanoglu, Yasin , Zugle, Ruphino , Antunes, Edith M , Van Hulle, Stijn W , Nyokong, Tebello , De Clerck, Karen
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241505 , vital:50945 , xlink:href="https://doi.org/10.1002/app.40486"
- Description: Electrospinning is an efficient method for the production of polyamide nanofiber membranes that are suitable for water filtration. Previous studies have shown that nanofiber membranes have high clean water permeability. The pathogen removal efficiency can be improved by functionalization with (organic) biocides. However, these membranes, like other membranes, are vulnerable to fouling which reduces the filtration efficiency. Therefore the present article investigates the potential of zinc phthalocyanines, which can produce singlet oxygen in the presence of visible light, as a functionalizing agent. The polyamide nanofiber membranes were functionalized with phthalocyanines using both a pre-functionalizing and post-functionalizing method. Only the post-functionalization method shows to result in nanofiber membranes capable of producing singlet oxygen. After 30 min 45% of 1,2-diphenylisobenzofuran (DPBF), used as an oxygen quencher, was removed by reaction with singlet oxygen. This resulted in a removal rate of 0.33 mol DBPF mol−1Zn min−1. During short term leaching tests, phthalocyanines could not be detected.
- Full Text:
- Date Issued: 2014
- Authors: Goethals, Annelies , Mugadza, Tawanda , Arslanoglu, Yasin , Zugle, Ruphino , Antunes, Edith M , Van Hulle, Stijn W , Nyokong, Tebello , De Clerck, Karen
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241505 , vital:50945 , xlink:href="https://doi.org/10.1002/app.40486"
- Description: Electrospinning is an efficient method for the production of polyamide nanofiber membranes that are suitable for water filtration. Previous studies have shown that nanofiber membranes have high clean water permeability. The pathogen removal efficiency can be improved by functionalization with (organic) biocides. However, these membranes, like other membranes, are vulnerable to fouling which reduces the filtration efficiency. Therefore the present article investigates the potential of zinc phthalocyanines, which can produce singlet oxygen in the presence of visible light, as a functionalizing agent. The polyamide nanofiber membranes were functionalized with phthalocyanines using both a pre-functionalizing and post-functionalizing method. Only the post-functionalization method shows to result in nanofiber membranes capable of producing singlet oxygen. After 30 min 45% of 1,2-diphenylisobenzofuran (DPBF), used as an oxygen quencher, was removed by reaction with singlet oxygen. This resulted in a removal rate of 0.33 mol DBPF mol−1Zn min−1. During short term leaching tests, phthalocyanines could not be detected.
- Full Text:
- Date Issued: 2014
Porphyrin nanorods modified glassy carbon electrode for the electrocatalysis of dioxygen, methanol and hydrazine
- George, Reama C, Mugadza, Tawanda, Khene, Samson, Egharevba, Gabriel O, Nyokong, Tebello
- Authors: George, Reama C , Mugadza, Tawanda , Khene, Samson , Egharevba, Gabriel O , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247388 , vital:51576 , xlink:href="https://doi.org/10.1002/elan.201100081"
- Description: Porphyrin nanorods (PNR) were prepared by ionic self-assembly of two oppositely charged porphyrin molecules consisting of free base meso-tetraphenylsulfonate porphyrin (H4TPPS42−) and meso-tetra(N-methyl-4-pyridyl) porphyrin (MTMePyP4+M=Sn, Mn, In, Co). These consist of H4TPPS42−SnTMePyP4+, H4TPPS42−CoTMePyP4+, H4TPPS42−InTMePyP4+ and H4TPPS42−MnTMePyP4+ porphyrin nanorods. The absorption spectra and transmission electron microscopic (TEM) images of these structures were obtained. These porphyrin nanostructures were used to modify a glassy carbon electrode for the electrocatalytic reduction of oxygen, and the oxidation of hydrazine and methanol at low pH. The cyclic voltammogram of PNR-modified GCE in pH 2 buffer solution has five irreversible processes, two distinct reduction processes and three oxidation processes. The porphyrin nanorods modified GCE produce good responses especially towards oxygen reduction at −0.50 V vs. Ag|AgCl (3 M KCl). The process of electrocatalytic oxidation of methanol using PNR-modified GCE begins at 0.71 V vs. Ag|AgCl (3 M KCl). The electrochemical oxidation of hydrazine began at around 0.36 V on H4TPPS42−SnTMePyP4+ modified GCE. The GCE modified with H4TPPS42−CoTMePyP4+ H4TPPS42−InTMePyP4+ and H4TPPS42−MnTMePyP4+ porphyrin nanorods began oxidizing hydrazine at 0.54 V, 0.59 V and 0.56 V, respectively.
- Full Text:
- Date Issued: 2011
- Authors: George, Reama C , Mugadza, Tawanda , Khene, Samson , Egharevba, Gabriel O , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247388 , vital:51576 , xlink:href="https://doi.org/10.1002/elan.201100081"
- Description: Porphyrin nanorods (PNR) were prepared by ionic self-assembly of two oppositely charged porphyrin molecules consisting of free base meso-tetraphenylsulfonate porphyrin (H4TPPS42−) and meso-tetra(N-methyl-4-pyridyl) porphyrin (MTMePyP4+M=Sn, Mn, In, Co). These consist of H4TPPS42−SnTMePyP4+, H4TPPS42−CoTMePyP4+, H4TPPS42−InTMePyP4+ and H4TPPS42−MnTMePyP4+ porphyrin nanorods. The absorption spectra and transmission electron microscopic (TEM) images of these structures were obtained. These porphyrin nanostructures were used to modify a glassy carbon electrode for the electrocatalytic reduction of oxygen, and the oxidation of hydrazine and methanol at low pH. The cyclic voltammogram of PNR-modified GCE in pH 2 buffer solution has five irreversible processes, two distinct reduction processes and three oxidation processes. The porphyrin nanorods modified GCE produce good responses especially towards oxygen reduction at −0.50 V vs. Ag|AgCl (3 M KCl). The process of electrocatalytic oxidation of methanol using PNR-modified GCE begins at 0.71 V vs. Ag|AgCl (3 M KCl). The electrochemical oxidation of hydrazine began at around 0.36 V on H4TPPS42−SnTMePyP4+ modified GCE. The GCE modified with H4TPPS42−CoTMePyP4+ H4TPPS42−InTMePyP4+ and H4TPPS42−MnTMePyP4+ porphyrin nanorods began oxidizing hydrazine at 0.54 V, 0.59 V and 0.56 V, respectively.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »