Electrocatalytic Behavior of Manganese and Cobalt Porphyrins Attached to Graphene Quantum Dots: Applied in the Oxidation of Hydrazine
- Jokazi, Mbulelo, Mpeta, Lekhetho S, Nyokong, Tebello
- Authors: Jokazi, Mbulelo , Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360411 , vital:65086 , xlink:href="https://doi.org/10.1002/elan.202200222"
- Description: Manganese and cobalt metalated 5, 10, 15-tris(aminophenyl)-20-(4-carboxyphenyl) porphyrins (ClMnTA3CPP and CoTA3CPP) were synthesized and attached to graphene quantum dots (GQDs) via π-π interaction and electrostatic interaction. The electrochemical oxidation of hydrazine was performed via cyclic voltammetry and chronoamperometry. The CoTA3CPP showed good electrocatalytic activity towards the oxidation of hydrazine in terms of catalytic rate constants and limits of detection (LoD). ClMnTA3CPP showed lower overpotential 0.60 V. The introduction of GQDs improved the electrocatalytic ability when combined with CoTA3CPP and ClMnTA3CPP with the lowest LoD (0.0025 mM CoTA3CPP–GQDs) followed by ClMnTA3CPP–GQDs with 0.0033 mM.
- Full Text:
- Date Issued: 2023
- Authors: Jokazi, Mbulelo , Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360411 , vital:65086 , xlink:href="https://doi.org/10.1002/elan.202200222"
- Description: Manganese and cobalt metalated 5, 10, 15-tris(aminophenyl)-20-(4-carboxyphenyl) porphyrins (ClMnTA3CPP and CoTA3CPP) were synthesized and attached to graphene quantum dots (GQDs) via π-π interaction and electrostatic interaction. The electrochemical oxidation of hydrazine was performed via cyclic voltammetry and chronoamperometry. The CoTA3CPP showed good electrocatalytic activity towards the oxidation of hydrazine in terms of catalytic rate constants and limits of detection (LoD). ClMnTA3CPP showed lower overpotential 0.60 V. The introduction of GQDs improved the electrocatalytic ability when combined with CoTA3CPP and ClMnTA3CPP with the lowest LoD (0.0025 mM CoTA3CPP–GQDs) followed by ClMnTA3CPP–GQDs with 0.0033 mM.
- Full Text:
- Date Issued: 2023
Design and fabrication of electrochemical sensor based on molecularly imprinted polymer loaded onto silver nanoparticles for the detection of 17-β-Estradiol
- Regasa, Melkamu Biyana, Nyokong, Tebello
- Authors: Regasa, Melkamu Biyana , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300287 , vital:57913 , xlink:href="https://doi.org/10.1002/jmr.2978"
- Description: In this research report, we prepared an electrochemical sensor based on the molecularly imprinted poly(p-aminophenol) supported by silver nanoparticles capped with 2-mercaptobenzoxazole for the selective and sensitive detection of endocrine disrupting 17-β-estradiol (E2). The electropolymerization of the functional monomer prepared the proposed molecularly imprinted polymer (MIP) composite-based sensor in the presence of E2 as a template. The recognition materials were characterized using Fourier transform infrared, cyclic voltammetry (CV), square wave voltammetry (SWV), scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray powder diffraction techniques. The electrochemical measurements were performed by employing both CV and SWV methods. We did the optimization of critical parameters affecting the sensor performances through the experimental design and verification. The developed sensor showed a linear range from 10 pM to 100 nM with the calculated quantification and detection limits of 1.86 and 6.19 pM, respectively. The incorporation of AgNP with high electrical conductivity into the MIP matrix enhanced the sensor's performance. Furthermore, the sensor was applied to determine E2 in real water samples without any sample preconcentration steps to achieve the percent recovery of 91.87% to 98.36% and acceptable reusability and storage stability performances.
- Full Text:
- Date Issued: 2022
- Authors: Regasa, Melkamu Biyana , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300287 , vital:57913 , xlink:href="https://doi.org/10.1002/jmr.2978"
- Description: In this research report, we prepared an electrochemical sensor based on the molecularly imprinted poly(p-aminophenol) supported by silver nanoparticles capped with 2-mercaptobenzoxazole for the selective and sensitive detection of endocrine disrupting 17-β-estradiol (E2). The electropolymerization of the functional monomer prepared the proposed molecularly imprinted polymer (MIP) composite-based sensor in the presence of E2 as a template. The recognition materials were characterized using Fourier transform infrared, cyclic voltammetry (CV), square wave voltammetry (SWV), scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray powder diffraction techniques. The electrochemical measurements were performed by employing both CV and SWV methods. We did the optimization of critical parameters affecting the sensor performances through the experimental design and verification. The developed sensor showed a linear range from 10 pM to 100 nM with the calculated quantification and detection limits of 1.86 and 6.19 pM, respectively. The incorporation of AgNP with high electrical conductivity into the MIP matrix enhanced the sensor's performance. Furthermore, the sensor was applied to determine E2 in real water samples without any sample preconcentration steps to achieve the percent recovery of 91.87% to 98.36% and acceptable reusability and storage stability performances.
- Full Text:
- Date Issued: 2022
Reaction of Perrhenate with Phthalocyanine Derivatives in the Presence of Reducing Agents and Rhenium Oxide Nanoparticles in Biomedical Applications
- Ntsimango, Songeziwe, Gandidzanwa, Sendibitiyosi, Joseph, Sinelizwi V, Hosten, Eric C, Randall, Marvin, Edkins, Adrienne L, Khene, Samson M, Mashazi, Philani N, Nyokong, Tebello, Abrahams, Abubak’r, Tshentu, Zenixole R
- Authors: Ntsimango, Songeziwe , Gandidzanwa, Sendibitiyosi , Joseph, Sinelizwi V , Hosten, Eric C , Randall, Marvin , Edkins, Adrienne L , Khene, Samson M , Mashazi, Philani N , Nyokong, Tebello , Abrahams, Abubak’r , Tshentu, Zenixole R
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300257 , vital:57910 , xlink:href="https://doi.org/10.1002/open.202200037"
- Description: A novel alternative route to access rhenium(V)−phthalocyanine complexes through direct metalation of metal-free phthalocyanines (H2Pcs) with a rhenium(VII) salt in the presence of various two-electron reducing agents is presented. Direct ion metalation of tetraamino- or tetranitrophthalocyanine with perrhenate (ReO4−) in the presence of triphenylphosphine led to oxidative decomposition of the H2Pcs, giving their respective phthalonitriles. Conversely, treatment of H2Pcs with ReO4− employing sodium metabisulfite yielded the desired ReVO−Pc complex. Finally, reaction of H2Pcs with ReO4− and NaBH4 as reducing agent led to the formation of rhenium oxide (RexOy) nanoparticles (NPs). The NP synthesis was optimised, and the RexOy NPs were capped with folic acid (FA) conjugated with tetraaminophthalocyanine (TAPc) to enhance their cancer cell targeting ability. The cytotoxicity profile of the resultant RexOy−TAPc−FA NPs was assessed and found to be greater than 80 % viability in four cell lines, namely, MDA−MB-231, HCC7, HCC1806 and HEK293T. Non-cytotoxic concentrations were determined and employed in cancer cell localization studies. The particle size effect on localization of NPs was also investigated using confocal fluorescence and transmission electron microscopy. The smaller NPs (≈10 nm) were found to exhibit stronger fluorescence properties than the ≈50 nm NPs and exhibited better cell localization ability than the ≈50 nm NPs.
- Full Text:
- Date Issued: 2022
- Authors: Ntsimango, Songeziwe , Gandidzanwa, Sendibitiyosi , Joseph, Sinelizwi V , Hosten, Eric C , Randall, Marvin , Edkins, Adrienne L , Khene, Samson M , Mashazi, Philani N , Nyokong, Tebello , Abrahams, Abubak’r , Tshentu, Zenixole R
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300257 , vital:57910 , xlink:href="https://doi.org/10.1002/open.202200037"
- Description: A novel alternative route to access rhenium(V)−phthalocyanine complexes through direct metalation of metal-free phthalocyanines (H2Pcs) with a rhenium(VII) salt in the presence of various two-electron reducing agents is presented. Direct ion metalation of tetraamino- or tetranitrophthalocyanine with perrhenate (ReO4−) in the presence of triphenylphosphine led to oxidative decomposition of the H2Pcs, giving their respective phthalonitriles. Conversely, treatment of H2Pcs with ReO4− employing sodium metabisulfite yielded the desired ReVO−Pc complex. Finally, reaction of H2Pcs with ReO4− and NaBH4 as reducing agent led to the formation of rhenium oxide (RexOy) nanoparticles (NPs). The NP synthesis was optimised, and the RexOy NPs were capped with folic acid (FA) conjugated with tetraaminophthalocyanine (TAPc) to enhance their cancer cell targeting ability. The cytotoxicity profile of the resultant RexOy−TAPc−FA NPs was assessed and found to be greater than 80 % viability in four cell lines, namely, MDA−MB-231, HCC7, HCC1806 and HEK293T. Non-cytotoxic concentrations were determined and employed in cancer cell localization studies. The particle size effect on localization of NPs was also investigated using confocal fluorescence and transmission electron microscopy. The smaller NPs (≈10 nm) were found to exhibit stronger fluorescence properties than the ≈50 nm NPs and exhibited better cell localization ability than the ≈50 nm NPs.
- Full Text:
- Date Issued: 2022
Creating the Ideal Push-Pull System for Electrocatalysis A Comparative Study on Symmetrical and Asymmetrical Cardanol-based Cobalt Phthalocyanines
- Nkhahle, Reitumetse, Nyokong, Tebello
- Authors: Nkhahle, Reitumetse , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/${Handle} , vital:44452 , xlink:href="https://doi.org/10.1002/elan.202060019"
- Description: A symmetrical cardanol-based cobalt phthalocyanine (Pc) along with its asymmetrical acid-based derivatives were synthesized and applied in the electrocatalysis of hydrazine. Despite the inhibition of electron movement by the bulky cardanol-based substituent throughout the series of molecules, an ideal combination of substituents was established in GCE-3 (2,9,16-tris(3- pentadecylphenoxy)-23-mono propionic acid phthalocyanato cobalt (II)) where a limit of detection (LoD) value of 5.10 μM (signal to noise ratio=5) was recorded for the detection of hydrazine. The results obtained serve as an illustration that the combination of electron-donating and electron-withdrawing substituents has a significant influence on the complete functioning of the phthalocyanine molecule(s) being investigated.
- Full Text:
- Date Issued: 2021
- Authors: Nkhahle, Reitumetse , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/${Handle} , vital:44452 , xlink:href="https://doi.org/10.1002/elan.202060019"
- Description: A symmetrical cardanol-based cobalt phthalocyanine (Pc) along with its asymmetrical acid-based derivatives were synthesized and applied in the electrocatalysis of hydrazine. Despite the inhibition of electron movement by the bulky cardanol-based substituent throughout the series of molecules, an ideal combination of substituents was established in GCE-3 (2,9,16-tris(3- pentadecylphenoxy)-23-mono propionic acid phthalocyanato cobalt (II)) where a limit of detection (LoD) value of 5.10 μM (signal to noise ratio=5) was recorded for the detection of hydrazine. The results obtained serve as an illustration that the combination of electron-donating and electron-withdrawing substituents has a significant influence on the complete functioning of the phthalocyanine molecule(s) being investigated.
- Full Text:
- Date Issued: 2021
Naked Eye and Colorimetric Detection of Cyanide with a 1, 3‐Diethyl‐2‐thiobarbituric Acid Substituted Ferrocene Chemosensor
- Babu, Balaji, Mack, John, Nyokong, Tebello
- Authors: Babu, Balaji , Mack, John , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190567 , vital:45006 , xlink:href="https://doi.org/10.1002/slct.202100163"
- Description: A 1,3-diethyl-2-thiobarbituric-acid-substituted ferrocene (FET) has been evaluated for its cyanide sensing ability by UV-visible absorption spectroscopy and other characterization methods. FET provides a ratiometric colorimetric chemosensor for the CN− anion detection in 1 : 1 DMSO/H2O (v/v) solution. The addition of CN− results in an immediate color change from dark blue to pale orange that is visible to the naked eye. Mechanism studies and molecular modelling with TD-DFT calculations demonstrate that nucleophilic addition of CN− to an electrophilic sp2-hybridized carbon atom blocks charge transfer from the ferrocene ring complex to the thiobarbituric acid moiety. The FET sensor exhibits excellent selectivity for CN− and a limit of detection of 0.2 μM.
- Full Text:
- Date Issued: 2021
- Authors: Babu, Balaji , Mack, John , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190567 , vital:45006 , xlink:href="https://doi.org/10.1002/slct.202100163"
- Description: A 1,3-diethyl-2-thiobarbituric-acid-substituted ferrocene (FET) has been evaluated for its cyanide sensing ability by UV-visible absorption spectroscopy and other characterization methods. FET provides a ratiometric colorimetric chemosensor for the CN− anion detection in 1 : 1 DMSO/H2O (v/v) solution. The addition of CN− results in an immediate color change from dark blue to pale orange that is visible to the naked eye. Mechanism studies and molecular modelling with TD-DFT calculations demonstrate that nucleophilic addition of CN− to an electrophilic sp2-hybridized carbon atom blocks charge transfer from the ferrocene ring complex to the thiobarbituric acid moiety. The FET sensor exhibits excellent selectivity for CN− and a limit of detection of 0.2 μM.
- Full Text:
- Date Issued: 2021
Analytical Detection and Electrocatalysis of Paracetamol in Aqueous Media Using Rare‐Earth Double‐Decker Phthalocyaninato Chelates as Electrochemically Active Materials
- Sekhosana, Kutloana E, Nkhahle, Reitumetse, Nyokong, Tebello
- Authors: Sekhosana, Kutloana E , Nkhahle, Reitumetse , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190840 , vital:45033 , xlink:href="https://doi.org/10.1002/slct.202002268"
- Description: Paracetamol (PA), being an analgesic and antipyretic medicine, can cause fatal hepatotoxicity and nephrotoxicity when overdosed. It is therefore important to develop electrochemical sensors that can monitor and quantify it in aquatic environments. In this study, rare-earth sandwich-type phthalocyaninato chelates based on neodymium (1 a) and samarium (1 b) were employed as electrocatalysts to modify glassy carbon electrodes (GCE) for the first time. It was found that 1 a-modified GCE (herein referred to as 1 a-GCE) is less conductive than 1 b-modified counterpart (1 b-GCE). A larger rate constant was also obtained for 1 b-GCE. It was established that a faster oxidation rate efficiency was responsible for lower limit of detection value obtained for 1 b-GCE as compared to 1 a-GCE.
- Full Text:
- Date Issued: 2020
- Authors: Sekhosana, Kutloana E , Nkhahle, Reitumetse , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190840 , vital:45033 , xlink:href="https://doi.org/10.1002/slct.202002268"
- Description: Paracetamol (PA), being an analgesic and antipyretic medicine, can cause fatal hepatotoxicity and nephrotoxicity when overdosed. It is therefore important to develop electrochemical sensors that can monitor and quantify it in aquatic environments. In this study, rare-earth sandwich-type phthalocyaninato chelates based on neodymium (1 a) and samarium (1 b) were employed as electrocatalysts to modify glassy carbon electrodes (GCE) for the first time. It was found that 1 a-modified GCE (herein referred to as 1 a-GCE) is less conductive than 1 b-modified counterpart (1 b-GCE). A larger rate constant was also obtained for 1 b-GCE. It was established that a faster oxidation rate efficiency was responsible for lower limit of detection value obtained for 1 b-GCE as compared to 1 a-GCE.
- Full Text:
- Date Issued: 2020
Enhanced Light-Driven Antimicrobial Activity of Cationic Poly (oxanorbornene) s by Phthalocyanine Incorporation into Polymer as Pendants
- Ahmetali, Erem, Sen, Pinar, Süer, N Ceren, Aksu, Burak, Nyokong, Tebello, Eren, Tarik, Sener, Kasim M
- Authors: Ahmetali, Erem , Sen, Pinar , Süer, N Ceren , Aksu, Burak , Nyokong, Tebello , Eren, Tarik , Sener, Kasim M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185976 , vital:44453 , xlink:href=" https://doi.org/10.1002/macp.202000386"
- Description: Amphiphilic poly(oxanorbornene)s are promising synthetic polymers that mimic the structural properties and antimicrobial functions of naturally occurring antimicrobial peptides. Here, poly(oxanorbornene)s bearing pendant zinc(II) phthalocyanine and triphenyl(ethyl) phosphonium functionalities are synthesized by ring-opening metathesis polymerization (ROMP). Fluorescence, singlet oxygen and triplet quantum yields of polymers are measured in dimethyl sulfoxide and aqueous medium. The singlet oxygen quantum yields of copolymers with the highest triphenyl and triethyl phosphonium content are found to be 0.29 and 0.41, respectively. Then, antimicrobial activities of polymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are investigated under both dark and light conditions. Synergistic effect of zinc(II) phthalocyanine and phosphonium-containing poly(oxanorbornene) is observed that the conjugate possessing the most triphenyl phosphonium side chains has the highest activity under light against both gram-positive and gram-negative bacterial strains after 80 min irradiation, reducing the survival of E. coli or S. aureus by 99.9999%. Hemolytic concentrations of the copolymers are found between 8 and 512 µg mL−1. Scanning electron microscopy (SEM) proves that the bacteria membrane deforms after contacting with the biocidal polymer.
- Full Text:
- Date Issued: 2020
- Authors: Ahmetali, Erem , Sen, Pinar , Süer, N Ceren , Aksu, Burak , Nyokong, Tebello , Eren, Tarik , Sener, Kasim M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185976 , vital:44453 , xlink:href=" https://doi.org/10.1002/macp.202000386"
- Description: Amphiphilic poly(oxanorbornene)s are promising synthetic polymers that mimic the structural properties and antimicrobial functions of naturally occurring antimicrobial peptides. Here, poly(oxanorbornene)s bearing pendant zinc(II) phthalocyanine and triphenyl(ethyl) phosphonium functionalities are synthesized by ring-opening metathesis polymerization (ROMP). Fluorescence, singlet oxygen and triplet quantum yields of polymers are measured in dimethyl sulfoxide and aqueous medium. The singlet oxygen quantum yields of copolymers with the highest triphenyl and triethyl phosphonium content are found to be 0.29 and 0.41, respectively. Then, antimicrobial activities of polymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are investigated under both dark and light conditions. Synergistic effect of zinc(II) phthalocyanine and phosphonium-containing poly(oxanorbornene) is observed that the conjugate possessing the most triphenyl phosphonium side chains has the highest activity under light against both gram-positive and gram-negative bacterial strains after 80 min irradiation, reducing the survival of E. coli or S. aureus by 99.9999%. Hemolytic concentrations of the copolymers are found between 8 and 512 µg mL−1. Scanning electron microscopy (SEM) proves that the bacteria membrane deforms after contacting with the biocidal polymer.
- Full Text:
- Date Issued: 2020
The effects of asymmetry in combination with reduced graphene oxide nanosheets on hydrazine electrocatalytic detection on cobalt phthalocyanines
- Mpeta, Lekhetho S, Sen, Pinar, Nyokong, Tebello
- Authors: Mpeta, Lekhetho S , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186023 , vital:44456 , xlink:href="https://doi.org/10.1002/elan.202060094"
- Description: New symmetric {tetrakis [4-(4-(5-chloro-1Hbenzo[d]imidazol-2-yl) phenoxy phthalocyaninato] Co (II) (CoTPc)} and low symmetry {tris tert butyl phenoxy mono [4-(4-(5-chloro-1H-benzo[d]imidazol-2-yl) phenoxy phthalocyaninato]} Co (II) (CoMPc) were successfully synthesised and combined with reduced graphene oxide nanosheets (rGONS) for electrocatalytic detection of hydrazine. Prior to electrocatalysis, the probes were characterised using cyclic voltammetry and electrochemical impedance spectroscopy. Chronoamperometry was used to determine catalytic rate constant and the limit of detection (LOD). CoMPc-rGONS gave catalytic rate constant and LOD of 1.37×106 M 1 s 1 and 0.82 μM respectively, rendering it a more suitable probe for hydrazine, due to low symmetry.
- Full Text:
- Date Issued: 2020
- Authors: Mpeta, Lekhetho S , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186023 , vital:44456 , xlink:href="https://doi.org/10.1002/elan.202060094"
- Description: New symmetric {tetrakis [4-(4-(5-chloro-1Hbenzo[d]imidazol-2-yl) phenoxy phthalocyaninato] Co (II) (CoTPc)} and low symmetry {tris tert butyl phenoxy mono [4-(4-(5-chloro-1H-benzo[d]imidazol-2-yl) phenoxy phthalocyaninato]} Co (II) (CoMPc) were successfully synthesised and combined with reduced graphene oxide nanosheets (rGONS) for electrocatalytic detection of hydrazine. Prior to electrocatalysis, the probes were characterised using cyclic voltammetry and electrochemical impedance spectroscopy. Chronoamperometry was used to determine catalytic rate constant and the limit of detection (LOD). CoMPc-rGONS gave catalytic rate constant and LOD of 1.37×106 M 1 s 1 and 0.82 μM respectively, rendering it a more suitable probe for hydrazine, due to low symmetry.
- Full Text:
- Date Issued: 2020
A 3, 5-DistyrylBODIPY Dye Functionalized with Boronic Acid Groups for Direct Electrochemical Glucose Sensing
- Ndebele, Nobuhle, Mack, John, Nyokong, Tebello
- Authors: Ndebele, Nobuhle , Mack, John , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187556 , vital:44671 , xlink:href="https://doi.org/10.1002/elan.201800651"
- Description: The synthesis and characterization of a novel BODIPY dye functionalized with bis-boronic acid groups to enable direct glucose sensing through selective recognition of carbohydrates is reported. Styrylation with boronic acid groups at the 3,5-positions of the BODIPY core results in an extension of the π-conjugation system of the dye and in a red-shift of the main absorption band from 500 to 637 nm. The functionalized BODIPY dye was adsorbed on a glassy carbon electrode using the drop and dry method. Modified and bare electrodes were characterized using cyclic voltammetry and scanning electrochemical microscopy, while glucose detection was carried out by using differential pulse voltammetry and chronoamperometry. The detection limit was determined to be 1.42 μM. The dye was found to be selective and sensitive towards glucose, since likely interferences have only minor effects on the glucose detection.
- Full Text:
- Date Issued: 2019
- Authors: Ndebele, Nobuhle , Mack, John , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187556 , vital:44671 , xlink:href="https://doi.org/10.1002/elan.201800651"
- Description: The synthesis and characterization of a novel BODIPY dye functionalized with bis-boronic acid groups to enable direct glucose sensing through selective recognition of carbohydrates is reported. Styrylation with boronic acid groups at the 3,5-positions of the BODIPY core results in an extension of the π-conjugation system of the dye and in a red-shift of the main absorption band from 500 to 637 nm. The functionalized BODIPY dye was adsorbed on a glassy carbon electrode using the drop and dry method. Modified and bare electrodes were characterized using cyclic voltammetry and scanning electrochemical microscopy, while glucose detection was carried out by using differential pulse voltammetry and chronoamperometry. The detection limit was determined to be 1.42 μM. The dye was found to be selective and sensitive towards glucose, since likely interferences have only minor effects on the glucose detection.
- Full Text:
- Date Issued: 2019
Electrocatalytic Activity of Asymmetrical Cobalt Phthalocyanines in the Presence of N Doped Graphene Quantum Dots: The Push-pull Effects of Substituents
- Nkhahle, Reitumetse, Sekhosana, Kutloano E, Centane, Sixolile, Nyokong, Tebello
- Authors: Nkhahle, Reitumetse , Sekhosana, Kutloano E , Centane, Sixolile , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186904 , vital:44546 , xlink:href="https://doi.org/10.1002/elan.201800837"
- Description: A series of Co phthalocyanine (CoPc) derivatives and their respective nitrogen doped graphene quantum dot conjugates were used as catalysts towards the electrooxidation of hydrazine. Using a glassy carbon electrode as a support for the electrocatalysts, through cyclic voltammetry and chronoamperometry, the effects of combining the CoPcs with the nitrogen doped graphene quantum dots (NGQDs) were studied. The general observations made were that the NGQDs improve the catalytic activity of the CoPcs in both the p-p stacked and covalently linked conjugates by increasing the sensitivities and lowering the limits of detection with values as low as 0.43 mM being recorded.
- Full Text:
- Date Issued: 2019
- Authors: Nkhahle, Reitumetse , Sekhosana, Kutloano E , Centane, Sixolile , Nyokong, Tebello
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186904 , vital:44546 , xlink:href="https://doi.org/10.1002/elan.201800837"
- Description: A series of Co phthalocyanine (CoPc) derivatives and their respective nitrogen doped graphene quantum dot conjugates were used as catalysts towards the electrooxidation of hydrazine. Using a glassy carbon electrode as a support for the electrocatalysts, through cyclic voltammetry and chronoamperometry, the effects of combining the CoPcs with the nitrogen doped graphene quantum dots (NGQDs) were studied. The general observations made were that the NGQDs improve the catalytic activity of the CoPcs in both the p-p stacked and covalently linked conjugates by increasing the sensitivities and lowering the limits of detection with values as low as 0.43 mM being recorded.
- Full Text:
- Date Issued: 2019
Improved Photophysical and Photochemical Properties of Thiopheneethoxy Substituted Metallophthalocyanines on Immobilization onto Gold‐speckled Silica Nanoparticles
- Dube, Edith, Oluwole, David O, Nyokong, Tebello
- Authors: Dube, Edith , Oluwole, David O , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187699 , vital:44688 , xlink:href="https://doi.org/10.1111/php.12879"
- Description: This work reports on the synthesis of tetrakis-[(thiophineethoxy) phthalocyaninato] indium(II) chloride (3). The photophysical behavior of complex 3 was compared to that of the Zn derivative (tetrakis-[(thiophineethoxy) phthalocyaninato] zinc(II) (complex 2)). The compounds were interacted with gold-speckled silica (GSS) nanoparticles via Au–S self assembly to afford the conjugates (2–GSS and 3–GSS). The photophysicochemical behavior of the compounds and their conjugates were assessed. The conjugates afforded a decrease in fluorescence quantum yields and lifetimes with improved triplet and singlet oxygen quantum yields in comparison with complexes 2 and 3 alone. The complexes and their conjugates could serve as good candidates for photodynamic therapy.
- Full Text:
- Date Issued: 2018
- Authors: Dube, Edith , Oluwole, David O , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/187699 , vital:44688 , xlink:href="https://doi.org/10.1111/php.12879"
- Description: This work reports on the synthesis of tetrakis-[(thiophineethoxy) phthalocyaninato] indium(II) chloride (3). The photophysical behavior of complex 3 was compared to that of the Zn derivative (tetrakis-[(thiophineethoxy) phthalocyaninato] zinc(II) (complex 2)). The compounds were interacted with gold-speckled silica (GSS) nanoparticles via Au–S self assembly to afford the conjugates (2–GSS and 3–GSS). The photophysicochemical behavior of the compounds and their conjugates were assessed. The conjugates afforded a decrease in fluorescence quantum yields and lifetimes with improved triplet and singlet oxygen quantum yields in comparison with complexes 2 and 3 alone. The complexes and their conjugates could serve as good candidates for photodynamic therapy.
- Full Text:
- Date Issued: 2018
The Primary Demonstration of Exciton Coupling Effects on Optical Limiting Properties of Blue Double-Decker Lanthanide Phthalocyanine Salts
- Sekhosana, Kutloano E, Nkhahle, Reitumetse, Nyokong, Tebello
- Authors: Sekhosana, Kutloano E , Nkhahle, Reitumetse , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234614 , vital:50213 , xlink:href="https://doi.org/10.1002/slct.201800597"
- Description: In this manuscript, novel green and blue sandwich-type rare-earth phthalocyanines (LnPc2) are presented. This parent green LnPc2 complex is named bis-{2(3),9(10),16(17),23(24)-tetra(4-tert-buylphenoxy) phthalocyaninato} neodymium (III) (2) and modified into blue LnPc2 complexes (3), (4) and (5) based on hexadecyltrimethylammonium ion, mononeodymium(III) diacetate and monodysprosium(III) diacetate as counter ions, respectively. These stable blue lanthanide Pc salts are highly soluble in many organic and inorganic solvents. All complexes 2, 3, 4 and 5 were studied for optical limiting for the first time using Z-scan at nanosecond regime in the visible absorption spectral wavelength (532 nm). Our studies reveal the advantage of exciton coupling in blue sandwich-type rare-earth phthalocyanines over the π-radicals (characterized by blue valence at 485 nm) in the green counterpart which are in resonance with the 532 nm wavelength for optical limiting application. Large singlet ground state to excited state absorption cross section ratios were found, particularly for complex 5 in comparison to that of complex 2.
- Full Text:
- Date Issued: 2018
- Authors: Sekhosana, Kutloano E , Nkhahle, Reitumetse , Nyokong, Tebello
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/234614 , vital:50213 , xlink:href="https://doi.org/10.1002/slct.201800597"
- Description: In this manuscript, novel green and blue sandwich-type rare-earth phthalocyanines (LnPc2) are presented. This parent green LnPc2 complex is named bis-{2(3),9(10),16(17),23(24)-tetra(4-tert-buylphenoxy) phthalocyaninato} neodymium (III) (2) and modified into blue LnPc2 complexes (3), (4) and (5) based on hexadecyltrimethylammonium ion, mononeodymium(III) diacetate and monodysprosium(III) diacetate as counter ions, respectively. These stable blue lanthanide Pc salts are highly soluble in many organic and inorganic solvents. All complexes 2, 3, 4 and 5 were studied for optical limiting for the first time using Z-scan at nanosecond regime in the visible absorption spectral wavelength (532 nm). Our studies reveal the advantage of exciton coupling in blue sandwich-type rare-earth phthalocyanines over the π-radicals (characterized by blue valence at 485 nm) in the green counterpart which are in resonance with the 532 nm wavelength for optical limiting application. Large singlet ground state to excited state absorption cross section ratios were found, particularly for complex 5 in comparison to that of complex 2.
- Full Text:
- Date Issued: 2018
Effects of substituents on the electrocatalytic activity of cobalt phthalocyanines when conjugated to graphene quantum dots
- Centane, Sixolile, Achadu, Ojodomo John, Nyokong, Tebello
- Authors: Centane, Sixolile , Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188237 , vital:44737 , xlink:href="https://doi.org/10.1002/elan.201700252"
- Description: We report on the π–π interactions between graphene quantum dots (GQDs) and the following cobalt phthalocyanine derivatives: cobalt monocarboxyphenoxy phthalocyanine (complex 1), cobalt tetracarboxyphenoxyphthalocyanine (complex 2), and cobalt tetraaminophenoxy phthalocyanine (complex 3). The conjugates (conj) with GQDs are represented as 1@GQDs(conj), 2@GQDs(conj) and 3@GQDs(conj), respectively. The resulting phthalocyanine/GQDs conjugates were adsorbed on containing a glassy carbon electrode (GCE) using the drop and dry method. We explore the electrochemical properties of phthalocyanines functionalized with both electron withdrawing groups and electron donating groups when non-covalently linked to the π-electron rich graphene quantum dots. GCE/3, GCE/2@GQDs(conj) and GCE/1@GQDs(conj) had the lowest limits of detection (LOD). Sequentially modified electrodes showed less favourable detection limits compared to the conjugates.
- Full Text:
- Date Issued: 2017
- Authors: Centane, Sixolile , Achadu, Ojodomo John , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188237 , vital:44737 , xlink:href="https://doi.org/10.1002/elan.201700252"
- Description: We report on the π–π interactions between graphene quantum dots (GQDs) and the following cobalt phthalocyanine derivatives: cobalt monocarboxyphenoxy phthalocyanine (complex 1), cobalt tetracarboxyphenoxyphthalocyanine (complex 2), and cobalt tetraaminophenoxy phthalocyanine (complex 3). The conjugates (conj) with GQDs are represented as 1@GQDs(conj), 2@GQDs(conj) and 3@GQDs(conj), respectively. The resulting phthalocyanine/GQDs conjugates were adsorbed on containing a glassy carbon electrode (GCE) using the drop and dry method. We explore the electrochemical properties of phthalocyanines functionalized with both electron withdrawing groups and electron donating groups when non-covalently linked to the π-electron rich graphene quantum dots. GCE/3, GCE/2@GQDs(conj) and GCE/1@GQDs(conj) had the lowest limits of detection (LOD). Sequentially modified electrodes showed less favourable detection limits compared to the conjugates.
- Full Text:
- Date Issued: 2017
Electrode modification through click chemistry using Ni and Co alkyne phthalocyanines for electrocatalytic detection of hydrazine
- O'Donoghue, Charles S, Shumba, Munyaradzai, Nyokong, Tebello
- Authors: O'Donoghue, Charles S , Shumba, Munyaradzai , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233032 , vital:50049 , xlink:href="https://doi.org/10.1002/elan.201700084"
- Description: This work reports on the development of sensors for the detection of hydrazine using glassy carbon electrodes (GCE) modified with phthalocyanines through click chemistry. Tetrakis(5-hexyn-oxy) cobalt(II) phthalocyanine (complex 2) and tetrakis(5-hexyn-oxy) nickel(II) phthalocyanine (complex 3) were employed as electrode modifiers for hydrazine detection. The GCE was first grafted via the in situ diazotization of a diazonium salt, rendering the GCE surface layered with azide groups. From this point, the 1, 3-dipolar cycloaddition reaction, catalysed by a copper catalyst was utilised to “click” the phthalocyanines to the surface of the grafted GCE. The modified electrodes were characterized by scanning electrochemical microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The electrografted CoP2-clicked-GCE and NiP3-clicked-GCE exhibited electrocatalytic activity towards the detection of hydrazine. The limit of detection (LoD) for the CoPc-GCE was 6.09 μM, while the NiPc-GCE had a LoD of 8.69 μM. The sensitivity was 51.32 μA mM−1 for the CoPc-GCE and 111.2 μA mM−1 for the NiPc-GCE.
- Full Text:
- Date Issued: 2017
- Authors: O'Donoghue, Charles S , Shumba, Munyaradzai , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233032 , vital:50049 , xlink:href="https://doi.org/10.1002/elan.201700084"
- Description: This work reports on the development of sensors for the detection of hydrazine using glassy carbon electrodes (GCE) modified with phthalocyanines through click chemistry. Tetrakis(5-hexyn-oxy) cobalt(II) phthalocyanine (complex 2) and tetrakis(5-hexyn-oxy) nickel(II) phthalocyanine (complex 3) were employed as electrode modifiers for hydrazine detection. The GCE was first grafted via the in situ diazotization of a diazonium salt, rendering the GCE surface layered with azide groups. From this point, the 1, 3-dipolar cycloaddition reaction, catalysed by a copper catalyst was utilised to “click” the phthalocyanines to the surface of the grafted GCE. The modified electrodes were characterized by scanning electrochemical microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The electrografted CoP2-clicked-GCE and NiP3-clicked-GCE exhibited electrocatalytic activity towards the detection of hydrazine. The limit of detection (LoD) for the CoPc-GCE was 6.09 μM, while the NiPc-GCE had a LoD of 8.69 μM. The sensitivity was 51.32 μA mM−1 for the CoPc-GCE and 111.2 μA mM−1 for the NiPc-GCE.
- Full Text:
- Date Issued: 2017
Electrode modification through click chemistry using Ni and Co alkyne phthalocyanines for electrocatalytic detection of hydrazine
- O'Donoghue, Charles S, Shumba, Munyaradzai, Nyokong, Tebello
- Authors: O'Donoghue, Charles S , Shumba, Munyaradzai , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/242763 , vital:51076 , xlink:href="https://doi.org/10.1002/elan.201700084"
- Description: This work reports on the development of sensors for the detection of hydrazine using glassy carbon electrodes (GCE) modified with phthalocyanines through click chemistry. Tetrakis(5-hexyn-oxy) cobalt(II) phthalocyanine (complex 2) and tetrakis(5-hexyn-oxy) nickel(II) phthalocyanine (complex 3) were employed as electrode modifiers for hydrazine detection. The GCE was first grafted via the in situ diazotization of a diazonium salt, rendering the GCE surface layered with azide groups. From this point, the 1, 3-dipolar cycloaddition reaction, catalysed by a copper catalyst was utilised to “click” the phthalocyanines to the surface of the grafted GCE. The modified electrodes were characterized by scanning electrochemical microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The electrografted CoP2-clicked-GCE and NiP3-clicked-GCE exhibited electrocatalytic activity towards the detection of hydrazine. The limit of detection (LoD) for the CoPc-GCE was 6.09 μM, while the NiPc-GCE had a LoD of 8.69 μM. The sensitivity was 51.32 μA mM−1 for the CoPc-GCE and 111.2 μA mM−1 for the NiPc-GCE.
- Full Text:
- Date Issued: 2017
- Authors: O'Donoghue, Charles S , Shumba, Munyaradzai , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/242763 , vital:51076 , xlink:href="https://doi.org/10.1002/elan.201700084"
- Description: This work reports on the development of sensors for the detection of hydrazine using glassy carbon electrodes (GCE) modified with phthalocyanines through click chemistry. Tetrakis(5-hexyn-oxy) cobalt(II) phthalocyanine (complex 2) and tetrakis(5-hexyn-oxy) nickel(II) phthalocyanine (complex 3) were employed as electrode modifiers for hydrazine detection. The GCE was first grafted via the in situ diazotization of a diazonium salt, rendering the GCE surface layered with azide groups. From this point, the 1, 3-dipolar cycloaddition reaction, catalysed by a copper catalyst was utilised to “click” the phthalocyanines to the surface of the grafted GCE. The modified electrodes were characterized by scanning electrochemical microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The electrografted CoP2-clicked-GCE and NiP3-clicked-GCE exhibited electrocatalytic activity towards the detection of hydrazine. The limit of detection (LoD) for the CoPc-GCE was 6.09 μM, while the NiPc-GCE had a LoD of 8.69 μM. The sensitivity was 51.32 μA mM−1 for the CoPc-GCE and 111.2 μA mM−1 for the NiPc-GCE.
- Full Text:
- Date Issued: 2017
First example of nonlinear optical materials based on nanoconjugates of sandwich phthalocyanines with quantum dots
- Oluwole, David O, Yagodin, Alexey V, Mkhize, Nhlakanipho C, Sekhosana, Kutloana E, Martynov, Alexander G, Gorbunova, Yulia G, Tsivadze, Aslan Yu, Nyokong, Tebello
- Authors: Oluwole, David O , Yagodin, Alexey V , Mkhize, Nhlakanipho C , Sekhosana, Kutloana E , Martynov, Alexander G , Gorbunova, Yulia G , Tsivadze, Aslan Yu , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/238014 , vital:50577 , xlink:href="https://doi.org/10.1002/chem.201604401"
- Description: We report original, selective, and efficient approaches to novel nonlinear optical (NLO) materials, namely homoleptic double- and triple-decker europium(III) complexes 2 and 3 with the A3B-type phthalocyanine ligand (2,3-bis[2′-(2′′-hydroxyethoxy)ethoxy]-9,10,16,17,23,24-hexa-n-butoxyphthalocyanine 1) bearing two anchoring diethyleneglycol chains terminated with OH groups. Their covalently linked nanoconjugates with mercaptosuccinic acid-capped ternary CdSeTe/CdTeS/ZnSeS quantum dots are prepared in the presence of an ethyl(dimethylaminopropyl)carbodiimide activating agent. Optical limiting (OL) properties of the obtained low-symmetry complexes and their conjugates with quantum dots (QDs) are measured for the first time by the open-aperture Z-scan technique (532 nm laser and pulse rate of 10 ns). For comparison, symmetrical double- and triple-decker EuIII octa-n-butoxyphthalocyaninates 5 and 6 and their mixtures with trioctylphosphine oxide-capped QDs are also synthesized and studied. It is revealed that both lowering of molecular symmetry and expansion of the π-electron system upon moving from double- to triple-decker complexes significantly improves the OL characteristics, making the low-symmetry triple-decker complex 3 the most efficient optical limiter in the studied family of sandwich complexes, affording 50 % lowering of light transmittance below 0.5 J cm−2 input fluence. Conjugation (both covalent and noncovalent) with QDs affords further enhancement of the OL properties of both double- and triple-decker complexes. Altogether, the obtained results contribute to the development of novel nonlinear optical materials for future nanoelectronic and optical device applications.
- Full Text:
- Date Issued: 2017
- Authors: Oluwole, David O , Yagodin, Alexey V , Mkhize, Nhlakanipho C , Sekhosana, Kutloana E , Martynov, Alexander G , Gorbunova, Yulia G , Tsivadze, Aslan Yu , Nyokong, Tebello
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/238014 , vital:50577 , xlink:href="https://doi.org/10.1002/chem.201604401"
- Description: We report original, selective, and efficient approaches to novel nonlinear optical (NLO) materials, namely homoleptic double- and triple-decker europium(III) complexes 2 and 3 with the A3B-type phthalocyanine ligand (2,3-bis[2′-(2′′-hydroxyethoxy)ethoxy]-9,10,16,17,23,24-hexa-n-butoxyphthalocyanine 1) bearing two anchoring diethyleneglycol chains terminated with OH groups. Their covalently linked nanoconjugates with mercaptosuccinic acid-capped ternary CdSeTe/CdTeS/ZnSeS quantum dots are prepared in the presence of an ethyl(dimethylaminopropyl)carbodiimide activating agent. Optical limiting (OL) properties of the obtained low-symmetry complexes and their conjugates with quantum dots (QDs) are measured for the first time by the open-aperture Z-scan technique (532 nm laser and pulse rate of 10 ns). For comparison, symmetrical double- and triple-decker EuIII octa-n-butoxyphthalocyaninates 5 and 6 and their mixtures with trioctylphosphine oxide-capped QDs are also synthesized and studied. It is revealed that both lowering of molecular symmetry and expansion of the π-electron system upon moving from double- to triple-decker complexes significantly improves the OL characteristics, making the low-symmetry triple-decker complex 3 the most efficient optical limiter in the studied family of sandwich complexes, affording 50 % lowering of light transmittance below 0.5 J cm−2 input fluence. Conjugation (both covalent and noncovalent) with QDs affords further enhancement of the OL properties of both double- and triple-decker complexes. Altogether, the obtained results contribute to the development of novel nonlinear optical materials for future nanoelectronic and optical device applications.
- Full Text:
- Date Issued: 2017
Flexible Metal–Porphyrin Dimers (M= MnIIICl, CoII, NiII, CuII)
- Li, Minzhi, Zhang, Qian, Xu, Li, Zhu, Weihua, Mack, John, May, Aviwe K, Nyokong, Tebello, Kobayashi, Nagao, Liang, Xu
- Authors: Li, Minzhi , Zhang, Qian , Xu, Li , Zhu, Weihua , Mack, John , May, Aviwe K , Nyokong, Tebello , Kobayashi, Nagao , Liang, Xu
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/239676 , vital:50754 , xlink:href="https://doi.org/10.1002/cplu.201600475"
- Description: Four metalloporphyrin dimers linked by bridging amide-bonded xanthene moieties and that contain either MnIII, CoII, NiII, or CuII metal centers were synthesized. Various spectroscopic, electrochemical, and spectroelectrochemical methods were used to study trends in their properties. Their electronic structure and optical properties were analyzed through a comparison of the electronic absorption and magnetic circular dichroism (MCD) spectral data with the results of time-dependent (TD)-DFT calculations.
- Full Text:
- Date Issued: 2017
- Authors: Li, Minzhi , Zhang, Qian , Xu, Li , Zhu, Weihua , Mack, John , May, Aviwe K , Nyokong, Tebello , Kobayashi, Nagao , Liang, Xu
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/239676 , vital:50754 , xlink:href="https://doi.org/10.1002/cplu.201600475"
- Description: Four metalloporphyrin dimers linked by bridging amide-bonded xanthene moieties and that contain either MnIII, CoII, NiII, or CuII metal centers were synthesized. Various spectroscopic, electrochemical, and spectroelectrochemical methods were used to study trends in their properties. Their electronic structure and optical properties were analyzed through a comparison of the electronic absorption and magnetic circular dichroism (MCD) spectral data with the results of time-dependent (TD)-DFT calculations.
- Full Text:
- Date Issued: 2017
Optical Limiting Properties of 3, 5-Dithienylenevinylene BODIPY Dyes at 532 nm
- Harris, Jessica, Gai, Lizhi, Kubheka, Gugu, Mack, John, Nyokong, Tebello, Shen, Zhen
- Authors: Harris, Jessica , Gai, Lizhi , Kubheka, Gugu , Mack, John , Nyokong, Tebello , Shen, Zhen
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189274 , vital:44833 , xlink:href="https://doi.org/10.1002/chem.201702503"
- Description: The optical limiting properties of a series of near infrared absorbing 3,5-dithienylenevinylene BODIPY (borondipyrromethene) dyes (1–3) that contain donor and acceptor moieties in their p-conjugation systems were studied by using the z-scan technique at 532 nm in the nanosecond pulse range. A strong reverse saturable absorption response was observed when the compounds are embedded into poly(bisphenol carbonate A) polymer thin films, which demonstrates that BODIPY dyes with this type of structure are suitable for use in optical limiting applications.
- Full Text:
- Date Issued: 2017
- Authors: Harris, Jessica , Gai, Lizhi , Kubheka, Gugu , Mack, John , Nyokong, Tebello , Shen, Zhen
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189274 , vital:44833 , xlink:href="https://doi.org/10.1002/chem.201702503"
- Description: The optical limiting properties of a series of near infrared absorbing 3,5-dithienylenevinylene BODIPY (borondipyrromethene) dyes (1–3) that contain donor and acceptor moieties in their p-conjugation systems were studied by using the z-scan technique at 532 nm in the nanosecond pulse range. A strong reverse saturable absorption response was observed when the compounds are embedded into poly(bisphenol carbonate A) polymer thin films, which demonstrates that BODIPY dyes with this type of structure are suitable for use in optical limiting applications.
- Full Text:
- Date Issued: 2017
A chiral hemiporphyrazine derivative
- Wu, Yanping, Gai, Lizhi, Xiao, Xuqiong, Lu, Hua, Li, Zhifang, Mack, John, Harris, Jessica, Nyokong, Tebello, Shen, Zhen
- Authors: Wu, Yanping , Gai, Lizhi , Xiao, Xuqiong , Lu, Hua , Li, Zhifang , Mack, John , Harris, Jessica , Nyokong, Tebello , Shen, Zhen
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/240404 , vital:50831 , xlink:href="https://doi.org/10.1002/asia.201600754"
- Description: The synthesis of an optically active hemiporphyrazine with chiral binaphthyl substituents (1) is reported, providing the first example of the incorporation of an intrinsically chiral moiety into the macrocyclic core of a hemiporphyrazine analogue. A negative circular dichroism (CD) signal is observed in the 325–450 nm region of the CD spectrum of (S,S)-1, while mainly positive bands are observed in the 220–325 nm region. Mirror symmetry is observed across the entire wavelength range of the CD spectra of (R,R)-1 and (S,S)-1. An irreversible one-electron oxidation wave with an onset potential at 1.07 V is observed by cyclic voltammetry, along with a reversible one-electron reduction wave at −0.85 V. Density functional calculations reproduce the experimentally observed data and trends, and provide further insight into the nature of the electronic transitions.
- Full Text:
- Date Issued: 2016
- Authors: Wu, Yanping , Gai, Lizhi , Xiao, Xuqiong , Lu, Hua , Li, Zhifang , Mack, John , Harris, Jessica , Nyokong, Tebello , Shen, Zhen
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/240404 , vital:50831 , xlink:href="https://doi.org/10.1002/asia.201600754"
- Description: The synthesis of an optically active hemiporphyrazine with chiral binaphthyl substituents (1) is reported, providing the first example of the incorporation of an intrinsically chiral moiety into the macrocyclic core of a hemiporphyrazine analogue. A negative circular dichroism (CD) signal is observed in the 325–450 nm region of the CD spectrum of (S,S)-1, while mainly positive bands are observed in the 220–325 nm region. Mirror symmetry is observed across the entire wavelength range of the CD spectra of (R,R)-1 and (S,S)-1. An irreversible one-electron oxidation wave with an onset potential at 1.07 V is observed by cyclic voltammetry, along with a reversible one-electron reduction wave at −0.85 V. Density functional calculations reproduce the experimentally observed data and trends, and provide further insight into the nature of the electronic transitions.
- Full Text:
- Date Issued: 2016
Characterization and Electrocatalytic Activity of Nanocomposites Consisting of Nanosized Cobalt Tetraaminophenoxy Phthalocyanine, Multi‐walled Carbon Nanotubes and Gold Nanoparticles
- Shumba, Munyaradzi, Nyokong, Tebello
- Authors: Shumba, Munyaradzi , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188659 , vital:44773 , xlink:href="https://doi.org/10.1002/elan.201501058"
- Description: Glassy carbon electrodes were modified with composites containing cobalt tetraaminophenoxy phthalocyanine nanoparticles (CoTAPhPcNP), multi-walled carbon nanotubes (MWCNT) and gold nanorods (AuNRs). The modified electrodes were studied for their electrocatalytic behavior towards the reduction of hydrogen peroxide. Phthalocyanine nanoparticles significantly improved electron transfer kinetics as compared to phthalocyanines which are not in the nanoparticle form when alone or in the presence of multiwalled carbon nanotubes (MWCNTs). CoTAPhPcNP-MWCNT-GCE proved to be suitable for hydrogen peroxide detection with a catalytic rate constant of 3.45×103 M−1 s−1 and a detection limit of 1.61×10−7 M. Adsorption Gibbs free energy ΔGo was found to be −19.22 kJ mol−1 for CoTAPhPcNP-MWCNT-GCE.
- Full Text:
- Date Issued: 2016
- Authors: Shumba, Munyaradzi , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/188659 , vital:44773 , xlink:href="https://doi.org/10.1002/elan.201501058"
- Description: Glassy carbon electrodes were modified with composites containing cobalt tetraaminophenoxy phthalocyanine nanoparticles (CoTAPhPcNP), multi-walled carbon nanotubes (MWCNT) and gold nanorods (AuNRs). The modified electrodes were studied for their electrocatalytic behavior towards the reduction of hydrogen peroxide. Phthalocyanine nanoparticles significantly improved electron transfer kinetics as compared to phthalocyanines which are not in the nanoparticle form when alone or in the presence of multiwalled carbon nanotubes (MWCNTs). CoTAPhPcNP-MWCNT-GCE proved to be suitable for hydrogen peroxide detection with a catalytic rate constant of 3.45×103 M−1 s−1 and a detection limit of 1.61×10−7 M. Adsorption Gibbs free energy ΔGo was found to be −19.22 kJ mol−1 for CoTAPhPcNP-MWCNT-GCE.
- Full Text:
- Date Issued: 2016