Phthalocyanine-nanoparticle conjugates supported on inorganic nanofibers as photocatalysts for the treatment of biological and organic pollutants as well as for hydrogen generation
- Authors: Mapukata, Sivuyisiwe
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanofibers , Nanoparticles , Zinc , Hydrogen , Organic water pollutants , Water Purification , Electrospinning , Photocatalysis , Photodegradation , Anti-infective agents
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192831 , vital:45268 , 10.21504/10962/192831
- Description: This thesis reports on the synthesis, photophysicochemical and photocatalytic properties of various zinc phthalocyanines (Pcs). For enhanced properties and catalyst support, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. For increased catalyst surface area and catalyst reusability, the Pcs and some of their conjugates were also supported on electrospun inorganic nanofibers i.e. SiO2, hematite (abbreviated Hem and has formula α-Fe2O3), ZnO and TiO2 nanofibers. The effect that the number of charges on a Pc has on its antimicrobial activities was evaluated by comparing the photoactivities of neutral, octacationic and hexadecacationic Pcs against S. aureus, E. coli and C. albicans. The extent of enhancement of their antimicrobial activities upon conjugation (through chemisorption) to Ag NPs was also studied in solution and when supported on SiO2 nanofibers. The results showed that the hexadecacationic complex 3 possessed the best antimicrobial activity against all three microorganisms, in solution and when supported on the SiO2 nanofibers. Covalent conjugation of Pcs with carboxylic acid moieties (complexes 4-6) to amine functionalised NPs (Cys-Ag, NH2-Fe3O4 and Cys-Fe3O4@Ag) resulted in enhanced singlet oxygen generation and thus antibacterial efficiencies. Comparison of the photodegradation efficiencies of semiconductor nanofibers (hematite, ZnO and TiO2) when bare and when modified with a Pc (complex 6) were evaluated. Modification of the nanofibers with the Pc resulted in enhanced photoactivities for the nanofibers with the hematite nanofibers being the best. Modification of the hematite nanofibers with two different Pcs i.e. monosubstituted (complex 5) and an asymmetrical tetrasubstituted Pc (complex 6) showed that complex 6 better enhanced the activity of the nanofibers. Evaluation of the hydrogen generation efficiencies of the bare and modified TiO2 nanofibers calcined at different temperatures demonstrated that the anatase nanofibers calcined at 500 oC possessed the best catalytic efficiency. The efficiency of the TiO2 nanofibers was enhanced in the presence of the Co and Pd NPs as well as a Pc (complex 7), with the extent of enhancement being the greatest for the nanofibers modified with the Pd NPs. The reported findings therefore demonstrate the versatility of applications of Pcs for different water purification techniques when supported on different nanomaterials. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Mapukata, Sivuyisiwe
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanofibers , Nanoparticles , Zinc , Hydrogen , Organic water pollutants , Water Purification , Electrospinning , Photocatalysis , Photodegradation , Anti-infective agents
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192831 , vital:45268 , 10.21504/10962/192831
- Description: This thesis reports on the synthesis, photophysicochemical and photocatalytic properties of various zinc phthalocyanines (Pcs). For enhanced properties and catalyst support, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. For increased catalyst surface area and catalyst reusability, the Pcs and some of their conjugates were also supported on electrospun inorganic nanofibers i.e. SiO2, hematite (abbreviated Hem and has formula α-Fe2O3), ZnO and TiO2 nanofibers. The effect that the number of charges on a Pc has on its antimicrobial activities was evaluated by comparing the photoactivities of neutral, octacationic and hexadecacationic Pcs against S. aureus, E. coli and C. albicans. The extent of enhancement of their antimicrobial activities upon conjugation (through chemisorption) to Ag NPs was also studied in solution and when supported on SiO2 nanofibers. The results showed that the hexadecacationic complex 3 possessed the best antimicrobial activity against all three microorganisms, in solution and when supported on the SiO2 nanofibers. Covalent conjugation of Pcs with carboxylic acid moieties (complexes 4-6) to amine functionalised NPs (Cys-Ag, NH2-Fe3O4 and Cys-Fe3O4@Ag) resulted in enhanced singlet oxygen generation and thus antibacterial efficiencies. Comparison of the photodegradation efficiencies of semiconductor nanofibers (hematite, ZnO and TiO2) when bare and when modified with a Pc (complex 6) were evaluated. Modification of the nanofibers with the Pc resulted in enhanced photoactivities for the nanofibers with the hematite nanofibers being the best. Modification of the hematite nanofibers with two different Pcs i.e. monosubstituted (complex 5) and an asymmetrical tetrasubstituted Pc (complex 6) showed that complex 6 better enhanced the activity of the nanofibers. Evaluation of the hydrogen generation efficiencies of the bare and modified TiO2 nanofibers calcined at different temperatures demonstrated that the anatase nanofibers calcined at 500 oC possessed the best catalytic efficiency. The efficiency of the TiO2 nanofibers was enhanced in the presence of the Co and Pd NPs as well as a Pc (complex 7), with the extent of enhancement being the greatest for the nanofibers modified with the Pd NPs. The reported findings therefore demonstrate the versatility of applications of Pcs for different water purification techniques when supported on different nanomaterials. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
Photodynamic antimicrobial chemotherapy activities of porphyrin- and phthalocyanine-platinum nanoparticle conjugates
- Authors: Managa, Muthumuni Elizabeth
- Date: 2015
- Subjects: Photochemotherapy , Anti-infective agents , Porphyrins , Phthalocyanines , Platinum , Nanoparticles , Bioconjugates , Electrospinning
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4539 , http://hdl.handle.net/10962/d1017919
- Description: This work reports on the conjugation of differently shaped Pt nanoparticles (PtNPs) with ClGa(III) 5,10,15,20-tetrakis-(4-carboxyphenyl) porphyrin (1) as well as chloro - (5,10,15,20-tetrakis (4- (4- carboxy phenycarbonoimidoyl) phenyl) porphyrinato) gallium(III) (2) The work also reports on platination of dihydroxosilicon octacarboxyphthalocyanine (OH)₂SiOCPc (3) to give dihydroxosilicontris(diaquaplatinum)octacarboxyphthalocyanine (OH)₂SiOCPc(Pt)₃ (4). The resulting conjugates were used for photodynamic antimicrobial chemotherapy against S. aureus, E. coli and C. albicans. The degree of photo-inactivation is dependent on concentration of the conjugates, light dose (fluence) and illumination time. The log reduction obtained for 1 when conjugated to cubic PtNPs was 4.64 log (which indicate 99.99 percent of the bacteria have been killed), which is much higher than 3.94 log unit for 1-hexagonal PtNPs and 3.31 log units for 1-unshaped PtNPs. Complex 2 conjugated to hexagonal PtNPs showed 18 nm red shift in the Soret band when compared to 2 alone. Complex 2 and 2-hexagonal PtNPs as well showed promising photodynamic antimicrobial chemotherapy (PACT) activity against S. aureus, E. coli and C. albicans in solution where the log reduction obtained was 4.92, 3.76, and 3.95 respectively for 2-hexagonal PtNPs. The singlet oxygen quantum yields obtained were higher at 0.56 for 2-hexagonl PtNPs in DMF while that of 2 was 0.52 in the same solvent. This resulted in improved PACT activity for 2-hexagonal PtNPs compared to 2. Complex 4 showed slight blue shifting of the absorption spectrum when compared to complex 3 The antimicrobial activity of 4 were promising as the highest log reduction value was observed when compared to the porphyrin conjugates.
- Full Text:
- Date Issued: 2015
- Authors: Managa, Muthumuni Elizabeth
- Date: 2015
- Subjects: Photochemotherapy , Anti-infective agents , Porphyrins , Phthalocyanines , Platinum , Nanoparticles , Bioconjugates , Electrospinning
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4539 , http://hdl.handle.net/10962/d1017919
- Description: This work reports on the conjugation of differently shaped Pt nanoparticles (PtNPs) with ClGa(III) 5,10,15,20-tetrakis-(4-carboxyphenyl) porphyrin (1) as well as chloro - (5,10,15,20-tetrakis (4- (4- carboxy phenycarbonoimidoyl) phenyl) porphyrinato) gallium(III) (2) The work also reports on platination of dihydroxosilicon octacarboxyphthalocyanine (OH)₂SiOCPc (3) to give dihydroxosilicontris(diaquaplatinum)octacarboxyphthalocyanine (OH)₂SiOCPc(Pt)₃ (4). The resulting conjugates were used for photodynamic antimicrobial chemotherapy against S. aureus, E. coli and C. albicans. The degree of photo-inactivation is dependent on concentration of the conjugates, light dose (fluence) and illumination time. The log reduction obtained for 1 when conjugated to cubic PtNPs was 4.64 log (which indicate 99.99 percent of the bacteria have been killed), which is much higher than 3.94 log unit for 1-hexagonal PtNPs and 3.31 log units for 1-unshaped PtNPs. Complex 2 conjugated to hexagonal PtNPs showed 18 nm red shift in the Soret band when compared to 2 alone. Complex 2 and 2-hexagonal PtNPs as well showed promising photodynamic antimicrobial chemotherapy (PACT) activity against S. aureus, E. coli and C. albicans in solution where the log reduction obtained was 4.92, 3.76, and 3.95 respectively for 2-hexagonal PtNPs. The singlet oxygen quantum yields obtained were higher at 0.56 for 2-hexagonl PtNPs in DMF while that of 2 was 0.52 in the same solvent. This resulted in improved PACT activity for 2-hexagonal PtNPs compared to 2. Complex 4 showed slight blue shifting of the absorption spectrum when compared to complex 3 The antimicrobial activity of 4 were promising as the highest log reduction value was observed when compared to the porphyrin conjugates.
- Full Text:
- Date Issued: 2015
Photophysicochemical and photodynamic antimicrobial chemotherapeutic studies of novel phthalocyanines conjugated to silver nanoparticles
- Authors: Rapulenyane, Nomasonto
- Date: 2013 , 2013-06-10
- Subjects: Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4291 , http://hdl.handle.net/10962/d1003912 , Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Description: This work reports on the synthesis, characterization and the physicochemical properties of novel unsymmetrically substituted zinc phthalocyanines: namely tris{11,19, 27-(1,2- diethylaminoethylthiol)-2-(captopril) phthalocyanine Zn ((ZnMCapPc (1.5)), hexakis{8,11,16,19,42,27-(octylthio)-1-(4-phenoxycarboxy) phthalocyanine} Zn (ZnMPCPc(1.7)) and Tris {11, 19, 27-(1,2-diethylaminoethylthiol)-1,2(caffeic acid) phthalocyanine} Zn ((ZnMCafPc (1.3)). Symmetrically substituted counterparts (tetrakis(diethylamino)zinc phthalocyaninato (3.8), octakis(octylthio)zinc phthalocyaninato (3.9) and tetrakis (carboxyphenoxy)zinc phthalocyaninato (3.10) complexes) were also synthesized for comparison of the photophysicochemical properties and to investigate the effect of the substituents on the low symmetry Pcs. The complexes were successfully characterized by IR, NMR, mass spectral and elemental analyses. All the complexes showed the ability to produce singlet oxygen, while the highest triplet quantum yields were obtained for 1.7, 1.5 and 3.9 (0.80, 0.65 and 0.62 respectively and the lowest were obtained for 1.3 and 3.10 (0.57 and 0.47 respectively). High triplet lifetimes (109-286 μs) were also obtained for all complexes, with 1.7 being the highest (286 μs) which also corresponds to its triplet and singlet quantum yields (0.80 and 0.77 respectively). The photosensitizing properties of low symmetry derivatives, ZnMCapPc and ZnMCafPc were investigated by conjugating glutathione (GSH) capped silver nanoparticles (AgNP). The formation of the amide bond was confirmed by IR and UV-Vis spectroscopies. The photophysicochemical behaviour of the novel phthalocyanine-GSH-AgNP conjugates and the simple mixture of the Ag NPs with low the symmetry phthalocyanines were investigated. It was observed that upon conjugation of the phthalocyanines to the GSH-AgNPs, a blue shift in the Q band was induced. The triplet lifetimes and quantum yields improved upon conjugation as compared to the phthalocyanines (Pc) alone. Complex 1.5 triplet lifetimes increased from 109 to 148 and triplet quantum yield from 0.65 to 0.86 upon conjugation. Fluorescence lifetimes and quantum yields decreased for the conjugates compared to the phthalocyanines alone, due to the quenching caused by the Ag NPs. The antimicrobial activity of the zinc phthalocyanines (complexes 1.3 and 1.5) and their conjugates against Escherichia coli was investigated. Only 1.3 and 1.5 complexes were investigated because of the availability of the sample. In general phthalocyanines showed increase in antibacterial activity with the increase in phthalocyanines concentration in the presence and absence of light. The Pc complexes and their Ag NP conjugates showed an increase in antibacterial activity, due to the synergistic effect afforded by Ag NP and Pcs. Improved antibacterial properties were obtained upon irradiation. 1.5-AgNPs had the highest antibacterial activity compared to 1.3-AgNPs conjugate; these results are in agreement with the photophysical behaviour. This work demonstrates improved photophysicochemical properties of low symm
- Full Text:
- Date Issued: 2013
- Authors: Rapulenyane, Nomasonto
- Date: 2013 , 2013-06-10
- Subjects: Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4291 , http://hdl.handle.net/10962/d1003912 , Phthalocyanines , Photochemistry , Photochemotherapy , Cancer -- Photochemotherapy , Anti-infective agents , Escherichia coli , Nanoparticles , Silver , Zinc
- Description: This work reports on the synthesis, characterization and the physicochemical properties of novel unsymmetrically substituted zinc phthalocyanines: namely tris{11,19, 27-(1,2- diethylaminoethylthiol)-2-(captopril) phthalocyanine Zn ((ZnMCapPc (1.5)), hexakis{8,11,16,19,42,27-(octylthio)-1-(4-phenoxycarboxy) phthalocyanine} Zn (ZnMPCPc(1.7)) and Tris {11, 19, 27-(1,2-diethylaminoethylthiol)-1,2(caffeic acid) phthalocyanine} Zn ((ZnMCafPc (1.3)). Symmetrically substituted counterparts (tetrakis(diethylamino)zinc phthalocyaninato (3.8), octakis(octylthio)zinc phthalocyaninato (3.9) and tetrakis (carboxyphenoxy)zinc phthalocyaninato (3.10) complexes) were also synthesized for comparison of the photophysicochemical properties and to investigate the effect of the substituents on the low symmetry Pcs. The complexes were successfully characterized by IR, NMR, mass spectral and elemental analyses. All the complexes showed the ability to produce singlet oxygen, while the highest triplet quantum yields were obtained for 1.7, 1.5 and 3.9 (0.80, 0.65 and 0.62 respectively and the lowest were obtained for 1.3 and 3.10 (0.57 and 0.47 respectively). High triplet lifetimes (109-286 μs) were also obtained for all complexes, with 1.7 being the highest (286 μs) which also corresponds to its triplet and singlet quantum yields (0.80 and 0.77 respectively). The photosensitizing properties of low symmetry derivatives, ZnMCapPc and ZnMCafPc were investigated by conjugating glutathione (GSH) capped silver nanoparticles (AgNP). The formation of the amide bond was confirmed by IR and UV-Vis spectroscopies. The photophysicochemical behaviour of the novel phthalocyanine-GSH-AgNP conjugates and the simple mixture of the Ag NPs with low the symmetry phthalocyanines were investigated. It was observed that upon conjugation of the phthalocyanines to the GSH-AgNPs, a blue shift in the Q band was induced. The triplet lifetimes and quantum yields improved upon conjugation as compared to the phthalocyanines (Pc) alone. Complex 1.5 triplet lifetimes increased from 109 to 148 and triplet quantum yield from 0.65 to 0.86 upon conjugation. Fluorescence lifetimes and quantum yields decreased for the conjugates compared to the phthalocyanines alone, due to the quenching caused by the Ag NPs. The antimicrobial activity of the zinc phthalocyanines (complexes 1.3 and 1.5) and their conjugates against Escherichia coli was investigated. Only 1.3 and 1.5 complexes were investigated because of the availability of the sample. In general phthalocyanines showed increase in antibacterial activity with the increase in phthalocyanines concentration in the presence and absence of light. The Pc complexes and their Ag NP conjugates showed an increase in antibacterial activity, due to the synergistic effect afforded by Ag NP and Pcs. Improved antibacterial properties were obtained upon irradiation. 1.5-AgNPs had the highest antibacterial activity compared to 1.3-AgNPs conjugate; these results are in agreement with the photophysical behaviour. This work demonstrates improved photophysicochemical properties of low symm
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »