Foreground simulations for observations of the global 21-cm signal
- Authors: Klutse, Diana
- Date: 2019
- Subjects: Cosmic background radiation , Astronomy -- Observations , Electromagnetic waves , Radiation, Background
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/76398 , vital:30557
- Description: The sky-averaged (global) spectrum of the redshifted 21-cm line promises to be a direct probe of the Dark Ages, the period before the first luminous sources formed and the Epoch of Reionization during which these sources produced enough ionizing photons to ionize the neutral intergalactic medium. However, observations of this signal are contaminated by both astrophysical foregrounds which are orders of magnitude brighter than the cosmological signal and by non-astrophysical and non-ideal instrumental effects. It is therefore crucial to understand all these data components and their impacts on the cosmological signal, for successful signal extraction. In this view, we investigated the impact that small scale spatial structures of diffuse Galactic foreground has on the foreground spectrum as observed by a global 21-cm observation. We simulated two different sets of observations using a realistic dipole beam model of two synchotron foreground templates that differ from each other in the small scale structure: the original 408 MHz all-sky map by Haslam et al. (1982) and a version where the calibration was improved to remove artifcats and point sources (Remazeilles et al., 2015). We generated simulated foreground spectra and modeled them using a polynomial expansion in frequency. We found that the different foreground templates have a modest impact on the simulated spectra, generate differences up to 2% in the root mean square of residual spectra after the log-polynomial best fit was subtracted out.
- Full Text:
- Date Issued: 2019
Observing cosmic reionization with PAPER: polarized foreground simulations and all sky images
- Authors: Nunhokee, Chuneeta Devi
- Date: 2019
- Subjects: Cosmic background radiation , Astronomy -- Observations , Epoch of reionization -- Research , Hydrogen -- Spectra , Radio interferometers
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/68203 , vital:29218
- Description: The Donald C. Backer Precision Array to Probe the Epoch of Reionization (PAPER, Parsons et al., 2010) was built with an aim to detect the redshifted 21 cm Hydrogen line, which is likely the best probe of thermal evolution of the intergalactic medium and reionization of neutral Hydrogen in our Universe. Observations of the 21 cm signal are challenged by bright astrophysical foregrounds and systematics that require precise modeling in order to extract the cosmological signal. In particular, the instrumental leakage of polarized foregrounds may contaminate the 21 cm power spectrum. In this work, we developed a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra and used it to predict contaminations in observations. We find the leakage due to a population of point sources to be higher than the diffuse Galactic emission – for which we can predict minimal contaminations at k>0.3 h Mpc -¹ We also analyzed data from the last observing season of PAPER via all-sky imaging with a view to characterize the foregrounds. We generated an all-sky catalogue of 88 sources down to a flux density of 5 Jy. Moreover, we measured both polarized point source and the Galactic diffuse emission, and used these measurements to constrain our model of polarization leakage. We find the leakage due to a population of point sources to be 12% lower than the prediction from our polarized model.
- Full Text:
- Date Issued: 2019