The expression and evaluation of CrpeNPV gp37 as a formulation additive for enhanced infectivity with CrleGV-SA and improved Thaumatotibia leucotreta control
- Authors: Muleya, Naho
- Date: 2024-10-11
- Subjects: Cryptophlebia leucotreta Biological control , False Codling Moth , Cryptophlebia leucotreta granulovirus , Cryptophlebia peltastica nucleopolyhedrovirus , Citrus Diseases and pests South Africa , Baculoviruses
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/463919 , vital:76457
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is a significant pest native to Africa, causing damage to citrus and posing a threat to the export of fresh citrus in South Africa. Classified as a phytosanitary risk by several South African export markets, this pest necessitates effective control measures. Baculoviruses emerge as promising biological control agents against T. leucotreta due to their inherent safety and eco-friendly characteristics. Among these, Cryptophlebia leucotreta Granulovirus (CrleGV-SA) and Cryptophlebia peltastica Nucleopolyhedrovirus (CrpeNPV) stand out, both causing larval mortality upon infecting T. leucotreta. CrleGV-SA has been formulated into the products Cryptogran™, CryptoMax™ and Cryptex®, while CrpeNPV has been formulated into the product Multimax™. Both viruses are used in integrated pest management programmes to reduce fruit damage in agricultural fields, with CrleGV-SA having been employed against T. leucotreta for nearly 20 years in South Africa. However, these control options are limited by factors such as virulence and the slow speed of kill. This limitation can be addressed by exploiting potential synergistic relationships between baculoviruses infecting the same host. Previous studies have demonstrated that the truncated CpGV gp37 can enhance the infectivity of NPVs on other lepidopteran pests, such as Spodoptera exigua (Hübner). Although the mechanism behind this phenomenon remains unclear, it presents an opportunity to enhance the effectiveness of baculovirus-based management strategies. Notably, the genome of CrpeNPV encodes gp37, while CrleGV-SA lacks this gene. The potential interaction between CrleGV-SA and CrpeNPV gp37 remains unexplored. Therefore, investigating whether they exhibit synergistic or antagonistic effects is essential for optimising baculovirus-based management of T. leucotreta. This study aims to express CrpeNPV gp37 in a bacterial system and then evaluate its effect on larval mortality when combined with CrleGV-SA in laboratory bioassays. The initial step involved extracting genomic DNA (gDNA) from occlusion bodies (OBs) of CrpeNPV. A modified Quick DNA Miniprep plus kit was utilised, which entailed pre-treatment with Na2CO3 followed by neutralisation with Tris-HCI before gDNA extraction using the kit. Subsequently, the concentration of the gDNA was estimated using a Nanodrop spectrophotometer. Oligonucleotides targeting the CrpeNPV gp37 gene were designed for PCR amplification, with the gDNA serving as a template. The gp37 amplicon was identified through agarose gel electrophoresis and then gel purified in preparation for cloning. Secondly, the purified PCR product was cloned into the intermediate vector pJET1.2/blunt and then subcloned into the bacterial expression vector pCA528 through DNA ligation. The construction of recombinant plasmids (pJET-gp37 and pCA-gp37) was conducted and verified using Colony PCR, plasmid extraction, restriction enzyme analysis, and Sanger sequencing. Thirdly, the recombinant protein (6×His-SUMO-gp37) was expressed and purified using Nickel affinity chromatography and analysed through SDS-PAGE and Western blot techniques. The expression of 6×His-SUMO-gp37 was carried out at both 25 °C and 18 °C. A time course induction study was conducted, inducing transformed cells for 0-, 3-, 5-, and 24-hours post induction (hpi). SDS-PAGE and Western blotting of samples collected at various time points revealed that 6×His-SUMO-gp37, approximately 42 kDa in size, was visible from 3 hpi, with maximal expression at 24 hpi. Solubility analysis of 6×His-SUMO-gp37 was performed at both temperatures, showing solubility at 18 °C but predominantly present in the insoluble fraction. The soluble protein was purified under native conditions, while the insoluble protein was purified under denaturing conditions. Despite being unable to elute 6×His-SUMO-gp37 under native conditions, successful elution was achieved under denaturing conditions, confirmed via Western blot analysis. No further experiments were conducted on the eluted 6×His-SUMO-gp37 under denaturing conditions. Lastly, a preliminary surface dose bioassay was conducted to evaluate the efficacy of pelleted bacteria expressing 6×His-SUMO-gp37 in combination with CrleGV-SA against T. leucotreta neonates. Two lethal concentration doses of CrleGV-SA were prepared: a low concentration (2.96×104 OBs/mL) capable of killing 40 % of the T. leucotreta population, and a high concentration (2.96×105 OBs/mL) capable of killing 90 % of the population. The target protein, 6×His-SUMO-gp37, and the control, pCA528, were obtained by lysing the cells, centrifuging the samples, and collecting the insoluble fractions in pellet form. These fractions were then resuspended in PBS and used as treatments in combination with the prepared CrleGV-SA concentration doses. The concentration of the pellets was estimated using a Nanodrop spectrophotometer by measuring the absorbance at 280 nm. The bioassay results revealed that the combination of 100 μg/mL of pelleted bacteria expressing 6×His-SUMO-gp37 with CrleGV-SA had no effect on T. leucotreta larval mortality compared to CrleGV-SA alone. A one-way ANOVA was performed to assess differences among the virus treatment groups, concluding that no statistically significant differences were observed among the groups. The experiments in this study provided valuable insights for future research, particularly in exploring the use of a protein-virus combination as a novel method for pest control. , Thesis (MSc) -- Faculty of Science, Biochemistry, Microbiology & Bioinformatics, 2024
- Full Text:
- Date Issued: 2024-10-11
Genetic analysis and field application of a UV-tolerant strain of CrleGV for improved control of Thaumatotibia leucotreta
- Authors: Bennett, Tahnee Tashia
- Date: 2022-10-14
- Subjects: Cryptophlebia leucotreta Biological control , Pests Integrated control , Biological pest control agents , Ultraviolet radiation , Oligonucleotides
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362741 , vital:65358
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), also known as false codling moth (FCM), is indigenous to sub-Saharan Africa. Thaumatotibia leucotreta has been controlled through an integrated pest management (IPM) programme, which includes chemical control, sterile insect technique (SIT), cultural and biological control. As part of the biological control, a key component is the use of Cryptophlebia leucotreta granulovirus (CrleGV-SA). Currently, CryptogranTM, a commercial formulation of CrleGV, is the preferred product to use in South Africa for the control of T. leucotreta. The registration of the biopesticide Cryptogran (River bioscience, South Africa) was established after conducting extensive field trials with CrleGV-SA. One of the major factors affecting the baculovirus efficacy in the field is UV irradiation. A UV-tolerant Cryptophlebia leucotreta granulovirus (CrleGV-SA-C5) isolate was isolated after consecutive cycles of UV exposure. This UV-tolerant isolate is genetically distinct from the CrleGV-SA isolate. The CrleGV-SA-C5 isolate has the potential as a biological control agent. The control of T. leucotreta in South Africa could be improved by the development of novel isolates into new biopesticide formulations. To date, there has not been any field trials conducted on the CrleGV-SA-C5 isolate. Therefore, it is important to determine the biological and genetic stability of this isolate and to conduct field trials with CrleGV-SA- C5 to test the efficacy of the isolate before possible production into a biopesticide. A de novo assembly was conducted to reassemble the genome of CrleGV-SA-C5 which was followed by a sequence comparison with the CrleGV-SA genome. The identification of SNPs, led to the design of oligonucleotides flanking the regions where the SNPs were detected. Polymerase chain reaction amplification of the target regions was conducted using the oligonucleotides. After sequence comparison, seven SNPs were detected and PCR amplification was successful using the three oligonucleotides, Pif-2, HypoP and Lef-8/HP. To differentiate between CrleGV-SA-C5 and CrleGV-SA genomes and confirm the presence of the SNPs, two methods of screening were conducted. The first was the construction of six plasmids, the plasmids contained the targeted pif-2, HypoP, and the Lef-8/HP insert regions from both the CrleGV-SA-C5 and CrleGV-SA genome region where the SNPs were identified, followed by sequencing. The Five recombinant plasmids, pC5_Pif-2, pSA_Pif-2, pC5_HypoP, pSA_HypoP, and pC5_Lef-8/HP were successfully sequenced. No amplicon was obtained for one of the plasmids used as template (pSA_Lef-8/HP) and therefore the PCR product used for cloning was sequenced instead. Sequence alignment confirmed the presence of four of the five targeted SNPs in the genome of the CrleGV-SA-C5 isolate. However, of these only one SNP (UV_7) rendered a suitable marker for the differentiation between the CrleGV-SA-C5 and CrleGV-SA isolates as the SNPs, UV_2, UV_3 and UV_5, were also present in the CrleGV- SA sequences. The second screening method was a quantitative polymerase chain reaction (qPCR) melt curve analysis to differentiate between the CrleGV-SA-C5 and CrleGV-SA isolates. qPCR melt curve analysis was done using the CrleGV-SA-C5 and CrleGV-SA HypoP PCR products. This technique was unable to differentiate between the CrleGV-SA-C5 and CrleGV-SA isolates. However, this may be as a result of sequence data confirming that SNP UV_5 originally identified in the CrleGV-SA-C5 HypoP region was identical to the SNP at the same position in the CrleGV-SA HypoP region. Following the differentiation of the CrleGV-SA-C5 and CrleGV-SA isolates through two screening methods, the genetic integrity of the CrleGV-SA-C5 isolate after two virus bulk-ups was determined by PCR amplification of the target regions in the bulk-up virus followed by sequencing. Prior to virus bulk-up, surface dose bioassays were conducted on 4th instar larvae and LC50 and LC90 values of 4.01 x 106 OBs/ml and 8.75 x 109 OBs/ml respectively were obtained. The CrleGV-SA-C5 isolate was then bulked up in fourth instar T. leucotreta larvae using the LC90 value that was determined. Sequencing of the target regions from the CrleGV- SA-C5_BU2 (bulk-up 2) was conducted. Sequencing results confirmed the presence of the target SNPs in the CrleGV-SA-C5_BU2 genome. The UV-tolerance of the CrleGV-SA-C5 isolate in comparison to the CrleGV-SA isolate was evaluated by detached fruit bioassays under natural UV irradiation. Two detached fruit bioassays were set-up, a UV exposure and a non-UV exposure bioassay set-up. Three treatments were used for each bioassay set-up which were the viruses CrleGV-SA-C5 and CrleGV-SA and a ddH2O control. Statistical analysis indicated that there was no significant difference between the virus treatments in both the UV exposed detached fruit bioassay and the non-UV exposed detached fruit bioassay. This study is the second study to report on the de novo assembly of the CrleGV-SA-C5 and sequence comparison with the CrleGV-SA genome, and the first to report on the UV-tolerance of the CrleGV-SA-C5 isolate by detached fruit bioassays. Future work could involve further evaluation of intraspecific genetic variability in the CrleGV-SA-C5 isolate and to identify any additional SNPs present within the genome that can be used as suitable markers for differentiation between the CrleGV-SA-C5 and CrleGV-SA isolates. It was recognised that it is required to conduct further detached fruit bioassays and field trials, but with improved protocols, for the efficacy and UV-tolerance of the CrleGV-SA-C5 isolate to be conclusively determined. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-10-14
Potential Synergism between Entomopathogenic Fungi and Entomopathogenic Nematodes for the control of false codling moth (Thaumatotibia leucotreta)
- Authors: Prinsloo, Samantha Lee
- Date: 2021-10
- Subjects: Cryptophlebia leucotreta , Entomopathogenic fungi , Insect nematodes , Citrus Diseases and pests , Cryptophlebia leucotreta Biological control , Pests Integrated control , Biological pest control agents
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188832 , vital:44790
- Description: False codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) (FCM), is a major phytosanitary pest of citrus in South Africa. Sufficient control measures for the soil-dwelling life stages of FCM have yet to be identified and owing to restrictions on the use of insecticides, non-chemical control options have been investigated including the use of entomopathogenic fungi (EPF) and entomopathogenic nematodes (EPN). Laboratory and field trials on an indigenous EPF, Metarhizium anisopliae FCM Ar 23 B3, have shown that this isolate is capable of inducing mortality in FCM soil-dwelling life stages. Other agents that have been highlighted as potential controls for soil-dwelling FCM life stages are the EPN species Steinernema yirgalemense 157-C, S. jeffreyense J194 and H. noenieputensis 158-C. This study conducted laboratory bioassays to assess the virulence of these four control agents on fifth instar FCM, in 24-well plates. These results reaffirmed the virulence of the four microbial control agents at their recommended doses of 50 IJs (EPN) and 1×107 conidia/ml (EPF) against fifth instar FCM with 80 to 96% larval mortality recorded. The EPF isolate exhibited the lowest mortality whilst S. yirgalemense induced the greatest mortality. In addition, the lethal concentration (LC) values for each isolate were determined using dose response bioassays. These values were previously unknown for all EPN species and for the EPF isolate based on the methodology used in this study. The LC50 results in order from lowest to highest EPN IJ concentration requirements were 4.38 IJs (S. yirgalemense), 4.47 IJs (S. jeffreyense) and 7.11 IJs (H. noenieputensis). The EPF isolate exhibited an LC50 of 3.42×105 conidia/ml. Lastly, research has shown that the combination of two control agents may increase control of late instar lepidopteran and coleopteran larvae, through synergistic interactions. Thus, the interactions that occurred between the combination of these EPN species with the EPF isolate were determined. This study found that when all three EPN species were combined simultaneously and sequentially with the EPF isolate M. anisopliae FCM AR 23 B3, additive interactions took place with exception of the simultaneous application of S. yirgalemense and H. noenieputensis, with the EPF and S. jeffreyense applied 24 h post EPF application. For the former, a synergistic interaction was found, whilst for the latter two, an antagonistic interaction. Although no strongly synergistic interactions were observed, additive interactions have been shown to reach a synergistic level when certain parameters are changed. Moving forward, a uniform methodology for conducting EPF/EPN interaction experiments has been suggested. It has also been recommended that due to the additive interactions observed in this study, laboratory soil-bioassays and field trials should be carried out for all three EPN species in combination with the EPF isolate. This research will inevitably facilitate the constant knowledge into management strategies for the phytosanitary pest, FCM in South African citrus. , Thesis (MSc) -- Science, Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-10